

Complexation of gluconate with An(III)/Ln(III) in diluted to concentrated MgCl₂ solutions: Mg(II)–gluconate and Mg(II)–An(III)/Ln(III)–gluconate systems

<u>A. Tasi¹, B. Kutus², X. Gaona¹, Th. Rabung¹, I. Palinko², P. Sipos², M. Altmaier¹, H. Geckeis¹</u>

¹Karlsruhe Institute of Technology, Institute for Nuclear Waste Disposal (KIT–INE), Karlsruhe, Germany ²University of Szeged, Department of Inorganic and Analytical Chemistry, 6720 Szeged, Dóm square 7, Hungary agost.tasi@kit.edu

Introduction

In the long term safety assessment of repositories for radioactive waste disposal, the event of water intrusion and consequent formation of aqueous systems needs to be evaluated. In the case of repositories in rock salt formations, brine solutions are dominated by NaCl and MgCl₂. The use of brucite-based backfill material in such repository concepts is responsible for the buffering of pH_m to ~9. Gluconic acid ($C_6H_{12}O_7$, HGH₅) is a poly–hydroxocarboxylic acid expected in repositories for low and intermediate–level radioactive waste as a component in the formulation of cement. Formation of stable An(III)/Ln(III)–gluconate binary complexes has been reported in the literature [1]. The presence of Ca(II) enhances complex stability through formation of ternary species with An(III)/Ln(III) in the hyperalkaline pH range [2]. Despite the relevance of Mg(II) in An(III)/Ln(III)–gluconate complexes may outcompete the formation of An(III)–gluconate complexes.

Objectives:

- Evaluating the formation of binary Mg(II)–gluconate complexes, and deriving the corresponding thermodynamic and activity models, as basis for the interpretation of the ternary system Mg(II)–An(III)–gluconate
- Assessing the solubility and aqueous speciation of Nd(III)/Cm(III) in the presence of gluconate and dilute to concentrated MgCl₂ solutions in alkaline media
- Deriving comprehensive thermodynamic and activity models for Mg(II)– Nd(III)/Cm(III)–gluconate systems under repository-relevant conditions
- Providing a sound basis to interpret An(III) behavior in saline systems in the

presence of gluconate

Experimental conditions

Mg(II)–GH₅⁻ system

NMR experiments

- I H and I C NMR spectra recorded at 25 °C
- Bruker Avance DRX-500 spectrometer operating at 499.9 MHz for ¹H and 125.7 MHz for ¹³C
- [GH₅⁻]_{tot} = 0.20 M, pH_m = 8(TRIS)
- NaCl and MgCl₂ as background electrolytes:
 0.03 M ≤ [MgCl₂]_{tot} ≤ 0.27 M
 I = 1.0, 2.0 M (NaCl)

Mg(II)–An(III)/Ln(III)–GH₅[–] system

Nd(III) – solubility experiments

- Samples prepared and stored at 22 ± 2 °C in Ar-gloveboxes (O₂ content < 2 ppm)
- Undersaturation solubility experiments with Nd(OH)₃(am) (*ca.* 7 mg per batch experiment)

Results and discussion

Mg(II)–GH₅[–] : ¹H, ¹³C NMR

Differences in ¹H and ¹³C NMR chemical shifts (δ) upon increasing [Mg(II)]_{tot} were used to assess the complex formation in the binary system Mg(II)–GH₅⁻ system:

- Mg(II)–gluconate interaction is weaker than for the Ca(II)– gluconate system [4]
- → Hypothesis: rigid coordination structure (octahedral) of Mg(II)-complexes
- Formation of MgGH₅⁺ proposed

• Apparent stability constant in I = 1.0 M (NaCI– MgCI₂–NaGH₅):

 $M^{2+} + GH_5^- \Leftrightarrow MGH_5^+$

M = Mg → log K' (/ = 1 M) = 0.15 ± 0.20 (p.w.) (¹H + ¹³C NMR) M = Ca → log K' (/ = 1 M) = 1.02 ± 0.05 [3]

On-going ²⁵Mg 1D and ²⁵Mg ¹H 2D NMR measurements, coupled with quantumchemical calculations

Mg(II)–An(III)/Ln(III)–GH₅[–] :

- $pH_m = 8(TRIS)$, $9(Mg(OH)_2 \text{ or}$ $Mg_2(OH)_3CI \cdot 4H_2O(cr))$ (with $pH_m = pH_{exp} + A_m$)
- Background electrolyte: 0.25 M, 1.00 M, 2.50 M, 3.50 and 4.50 M MgCl₂
- $10^{-4} \text{ M} \le [GH_5^{-1}]_{tot} \le 0.1 \text{ M}$
- Equilibration time: 16 days (on-going)
- Phase separation: 10 kD ultrafiltration
- [Nd(III)]_{tot} determined by ICP-MS
- Reference system without GH₅⁻ available from [3]
- Solid phase characterization (on-going): XRD, SEM–EDS, XPS, chemical analysis

Cm(III)–TRLFS measurements

- Excitation at $\lambda = 396.6$ nm
- [Cm(III)]_{tot} = 1.10⁻⁷ M
- 0.25 M and 4.50 M MgCl₂ as background electrolyte
- 10⁻⁵ M ≤ [GH₅⁻]_{tot} ≤ 0.1 M, by step-wise addition of concentrated NaGH₅ stock solution

- Strong increase in Nd(III) solubility in 0.25 and 1.0 M MgCl₂ solutions with increasing gluconate concentration
- No (or weak) complexation at higher MgCl₂ concentration
- \rightarrow competition between Mg(II) and Nd(III) for gluconate
- Decrease of m_{Nd} at high MgCl₂ and GH_5^- concentration
- \rightarrow formation of a Mg(II)–Nd(III)–gluconate solid phase (?)

Single isosbestic point found in 0.25 M MgCl₂ and pH_m = 8
 Large red-shift in wavelength: ~9 nm

 → indicating the formation of one Cm(III)–gluconate species with 1:2 stochiometry (analogy with Ca(II)–Cm(III)–GH₅⁻[2])
 More complex speciation scheme observed at higher MgCl₂ concentrations

Summary and conclusions

- GH₅⁻ forms weak complexes with Mg²⁺ at pH_m ≤ 9. Binary Mg(II)–gluconate species may become relevant in concentrated MgCl₂ brines
- GH₅⁻ importantly increases the solubility of Nd(III) in diluted MgCl₂ solutions, but has a minor impact on the solubility in concentrated MgCl₂ brines:
- → competition of Mg(II) with Nd(III) and possible formation of Mg(II)-Nd(III)-gluconate solid phases
- TRLFS data show distinct Cm(III) spectra in the absence and presence of gluconate, clearly hinting towards the formation of Cm(III)–gluconate complexes
- Sampling at longer equilibration times and accurate solid phase characterization planned before development of thermodynamic and activity models

References

Research, **345**, 1856–1864 (2010)

TITS, J. et al. "The effect of isosaccharinic acid and gluconic acid on the retention of Eu(III), Am(III) and Th(IV) by calcite" *Applied Geochemistry*, **20**, 2082-2096 (2005).
 GAONA, X. et al. "Complexation of An(III) and An(IV) with gluconate under hyperalkaline pH conditions: solubility and TRLFS studies" (2014). ISSP Conference, Karlsruhe.
 NECK, V. et al. "Thermodynamics of trivalent actinides and neodymium in NaCl, MgCl₂, and CaCl₂ solutions: Solubility, hydrolysis, and ternary Ca–M(III)–OH complexes "*Pure Appl. Chem.*, **81**, 1555–1568 (2009)
 PALLAGI, A. et al. "Multinuclear NMR and molecular modelling investigations on the structure and equilibria of complexes that form in aqueous solutions of Ca²⁺ and gluconate" *Carbohydrate*

This work has been supported by the European FP7 TALISMAN project, under contract with the European Commission.

KIT – University of the State of Baden-Württemberg and National Large-scale Research Center of the Helmholtz Association

