

SOLUBILITY AND REDOX BEHAVIOUR OF PLUTONIUM UNDER HYPERALKALINE REDUCING CONDITIONS

Tasi¹, X. Gaona¹, D. Fellhauer¹, M. Böttle¹, J. Rothe¹, D. Schild¹, C.-H. Graser¹, M. Grivé², J. Bruno², K. Källström³, M. Altmaier¹, H. Geckeis¹

¹Karlsruhe Institute of Technology, Institute for Nuclear Waste Disposal (KIT-INE), Karlsruhe, Germany

²Amphos²¹ Consulting S.L., Passeig Garcia i Faria, 49-51, 1-1a, 08019 Barcelona, Spain ³Svensk Kärnbränslehantering AB, Avd. Låg-och medelaktivt avfall, Box 250, 101 24 Stockholm, Sweden

Background

Disposal of radioactive waste: repositories in deep geological formations:

Anoxic corrosion of Fe → reducing conditions

- Disposal of low and intermediate level wastes (L/ILW) → presence of cementitious materials: $10 \le pH \le 13.3$
- Knowledge of the aquatic chemistry of actinides within the given boundary conditions (pH, E_h): fundamental input in Safety Assessment repositories for radioactive waste disposal

Pu chemistry

Alkaline, reducing conditions:

- pH_m ≤ 9 Pu(III) and Pu(IV) [1]
- $pH_m > 9 Pu(IV)_{aq,s}$ (only?)
- Relevant uncertainties associated to Pu(III) thermodynamic data [2]
- III-defined Pu(IV) / Pu(III) redox border under alkaline conditions
- Key input for the prediction of Pu chemical behaviour

Objectives

- Determination of PuO₂(am,hyd) solubility alkaline to hyperalkaline reducing conditions
- Investigation of the redox behaviour of Pu in the aqueous and solid phase \rightarrow use of advanced characterization methods
- Reduction of uncertainties for the Pu(IV) / Pu(III) thermodynamic data in the hyperalkaline pH range
- Setting the basis for investigating the impact of ISA on Pu chemistry under hyperalkaline reducing conditions

Experimental

Solubility experiments

- Three series of samples, prepared and stored at 22 ± 2 °C in Ar-gloveboxes (O2 content < 2 ppm)
- Undersaturation solubility experiments with aged 242 PuO₂(am,hyd), I = 0.10 M (HCI/NaCI/NaOH)
- Acidic series: $pH_m = 3 6$, unbuffered system 30 mg of Pu solid; equilibration time: ~8 years
- Alkaline series: pH_m = 8 (TRIS), 9 (CHES) to 12.8
 - Redox conditions buffered by:
 - 2 mM hydroquinone (pe + pH_m = 9.5 ± 1)
 - ("reference system" \rightarrow predominance of Pu(IV)) $2 \text{ mM SnCl}_2 \text{ (pe + pH}_m = 2 \pm 1)$ (strongly reducing conditions $\rightarrow Pu(IV) + Pu(III)$?)
- 0.2-1 mg 242 Pu per sample(\rightarrow from acidic series)
- equilibration time ≤ 173 days
- m_{Pu}, pH_m and E_h values regularly monitored

Aqueous phase characterization

- Phase separation: 10 kD ultrafiltration (LSC) or ultra-centrifugation at 90000 rpm (SF-ICP-MS)
- [Pu]_{tot} determined by LSC or (SF-)ICP-MS
- Pu redox state analysis:

Liquid-liquid extraction (described in [1]) PMBP and HDEHP (+ oxidation step with K₂Cr₂O₇) Capillary Electrophoresis (CE) coupled SF-ICP-MS 730 mm - fused silica capillary, 75 µm inner diam... CE-BGE: 1.00 M acetic acid, separation voltage

Solid phase characterization

of 30 kV. EOF marker: 2-bromo-ethanol

- conventional XRD
- XANES and (synchrotron-based) in-situ XRD
- → INE-Beamline for Actinide Research at ANKA [3]

Pourbaix-diagram

Experimentally measured (pe + pH_m) values

Solubility and redox speciation

Acidic region

- Consistent values after 940d and 2886d,
- Solvent extraction and CE-ICP-MS: Pu(V) - predominant aqueous species

 $PuO_2(am,hyd)$ solubility-controlling phase; $m_{Pu(IV)}$ known: $log*K^{\circ}_{s,0}$ = -58.12 ± 0.30 (excellent agreement with [1])

Alkaline region

CE-ICP-MS

- Hydroquinone system: very low m_{Pu} (-9.9 ≤ log(m_{Pu}) ≤ -11.4) within $8 \le pH_m \le 12.8 \rightarrow Pu(IV)_s \leftrightarrow Pu(IV)_{aq}$
- SnCl₂ system: very low m_{Pu} at pH_m ≥ 9. Behaviour at pH_m = 8 under evaluation \rightarrow formation of Pu(III)_s and/or Pu(III)_{aq}? [4]

Solid phase characterization

Conventional / in-situ XRD

Diffraction patterns

- Initial Pu solid from acidic solubility series, $pH_m = 5.93$
- solid phases from HQ-syst.: - perfect match with patterns
- of PuO₂(cr) reported in [5] PuO₂(am,hyd) confirmed as
- solubility controlling phase ■ SnCl₂ –buffered system:
- weaker signal of PuO₂(cr), additional reflections related to $Sn_3O_2(OH)_2(s)$ at $pH_m = 9$

Expected predominance of PuO2(am,hyd), however the presence of Pu₂O₃(cr) and PuO_{2-x}(cr) cannot be ruled out → similar XRD patterns

Pu L_{III}-edge spectra

- HQ-buffered systems and initial solid material:
- identical edge energies with the reference value of $Pu(IV)_{aq}$ reported in [6]
- SnCl₂ -buffered systems:
 - shift in the white line position: $\Delta E = 1.2 \text{ eV}$

Significant contribution of Pu(III) \rightarrow 30 ± 5 % by LC of the reference spectra from [6]

Summary

> A nanocrystalline PuO₂(am,hyd) solid phase was thoroughly characterized using XRD, XPS and XANES analysis. Experimentally determined $\log^*\!K^\circ_{s,0}$ is in excellent agreement with current NEA-TDB selection [2]

- ➤ Solubility of Pu in hydroquinone systems at $8 \le pH_m \le 13$ is very low and consistent with the solubility control by $PuO_2(am,hyd) \leftrightarrow Pu(IV)_{aq}$
- > XANES analyses confirm the presence of a Pu(III) solid phase in SnCl₂ systems. However, Pu solubility remains very low ($\leq 10^{-10}$ m) at pH_m $\geq 9 \rightarrow log^*K^{\circ}_{s,0}\{Pu(OH)_3(s)\}$ selected in NEA-TDB [2] likely overestimated

Outlook

- > Additional experiments on-going in SnCl₂ systems at $pH_m \le 9$ to determine the formation and stability of Pu(III), and Pu(III)
- > Optimization of CE-SF-ICP-MS for the redox speciation of Pu at ultra-trace level under hyperalkaline reducing conditions
- > Use of the established methodology and experimental approach to investigate Pu-ISA interaction under reducing conditions and its impact on the uptake by cement

Acknowledgements: Frank Geyer and Cornelia Walschburger (KIT-INE) are gratefully acknowledged for the SF-ICP-MS and ICP-MS measurements, respectively. The contribution of Kathy Dardenne (KIT-INE) to the evaluation of the in-situ XRD is highly appreciated. SKB, Swedish Nuclear Fuel and Waste Management Company, funded this study.