SOLUBILITY AND REDOX BEHAVIOUR OF PLUTONIUM UNDER HYPERALKALINE REDUCING CONDITIONS Tasi¹, X. Gaona¹, D. Fellhauer¹, M. Böttle¹, J. Rothe¹, D. Schild¹, C.-H. Graser¹, M. Grivé², J. Bruno², K. Källström³, M. Altmaier¹, H. Geckeis¹ ¹Karlsruhe Institute of Technology, Institute for Nuclear Waste Disposal (KIT-INE), Karlsruhe, Germany ²Amphos²¹ Consulting S.L., Passeig Garcia i Faria, 49-51, 1-1a, 08019 Barcelona, Spain ³Svensk Kärnbränslehantering AB, Avd. Låg-och medelaktivt avfall, Box 250, 101 24 Stockholm, Sweden ### **Background** Disposal of radioactive waste: repositories in deep geological formations: Anoxic corrosion of Fe → reducing conditions - Disposal of low and intermediate level wastes (L/ILW) → presence of cementitious materials: $10 \le pH \le 13.3$ - Knowledge of the aquatic chemistry of actinides within the given boundary conditions (pH, E_h): fundamental input in Safety Assessment repositories for radioactive waste disposal # Pu chemistry Alkaline, reducing conditions: - pH_m ≤ 9 Pu(III) and Pu(IV) [1] - $pH_m > 9 Pu(IV)_{aq,s}$ (only?) - Relevant uncertainties associated to Pu(III) thermodynamic data [2] - III-defined Pu(IV) / Pu(III) redox border under alkaline conditions - Key input for the prediction of Pu chemical behaviour ### **Objectives** - Determination of PuO₂(am,hyd) solubility alkaline to hyperalkaline reducing conditions - Investigation of the redox behaviour of Pu in the aqueous and solid phase \rightarrow use of advanced characterization methods - Reduction of uncertainties for the Pu(IV) / Pu(III) thermodynamic data in the hyperalkaline pH range - Setting the basis for investigating the impact of ISA on Pu chemistry under hyperalkaline reducing conditions ### **Experimental** #### Solubility experiments - Three series of samples, prepared and stored at 22 ± 2 °C in Ar-gloveboxes (O2 content < 2 ppm) - Undersaturation solubility experiments with aged 242 PuO₂(am,hyd), I = 0.10 M (HCI/NaCI/NaOH) - Acidic series: $pH_m = 3 6$, unbuffered system 30 mg of Pu solid; equilibration time: ~8 years - Alkaline series: pH_m = 8 (TRIS), 9 (CHES) to 12.8 - Redox conditions buffered by: - 2 mM hydroquinone (pe + pH_m = 9.5 ± 1) - ("reference system" \rightarrow predominance of Pu(IV)) $2 \text{ mM SnCl}_2 \text{ (pe + pH}_m = 2 \pm 1)$ (strongly reducing conditions $\rightarrow Pu(IV) + Pu(III)$?) - 0.2-1 mg 242 Pu per sample(\rightarrow from acidic series) - equilibration time ≤ 173 days - m_{Pu}, pH_m and E_h values regularly monitored #### Aqueous phase characterization - Phase separation: 10 kD ultrafiltration (LSC) or ultra-centrifugation at 90000 rpm (SF-ICP-MS) - [Pu]_{tot} determined by LSC or (SF-)ICP-MS - Pu redox state analysis: Liquid-liquid extraction (described in [1]) PMBP and HDEHP (+ oxidation step with K₂Cr₂O₇) Capillary Electrophoresis (CE) coupled SF-ICP-MS 730 mm - fused silica capillary, 75 µm inner diam... CE-BGE: 1.00 M acetic acid, separation voltage ### Solid phase characterization of 30 kV. EOF marker: 2-bromo-ethanol - conventional XRD - XANES and (synchrotron-based) in-situ XRD - → INE-Beamline for Actinide Research at ANKA [3] # Pourbaix-diagram Experimentally measured (pe + pH_m) values ### Solubility and redox speciation #### Acidic region - Consistent values after 940d and 2886d, - Solvent extraction and CE-ICP-MS: Pu(V) - predominant aqueous species $PuO_2(am,hyd)$ solubility-controlling phase; $m_{Pu(IV)}$ known: $log*K^{\circ}_{s,0}$ = -58.12 ± 0.30 (excellent agreement with [1]) #### Alkaline region CE-ICP-MS - Hydroquinone system: very low m_{Pu} (-9.9 ≤ log(m_{Pu}) ≤ -11.4) within $8 \le pH_m \le 12.8 \rightarrow Pu(IV)_s \leftrightarrow Pu(IV)_{aq}$ - SnCl₂ system: very low m_{Pu} at pH_m ≥ 9. Behaviour at pH_m = 8 under evaluation \rightarrow formation of Pu(III)_s and/or Pu(III)_{aq}? [4] ### Solid phase characterization ### Conventional / in-situ XRD ## Diffraction patterns - Initial Pu solid from acidic solubility series, $pH_m = 5.93$ - solid phases from HQ-syst.: - perfect match with patterns - of PuO₂(cr) reported in [5] PuO₂(am,hyd) confirmed as - solubility controlling phase ■ SnCl₂ –buffered system: - weaker signal of PuO₂(cr), additional reflections related to $Sn_3O_2(OH)_2(s)$ at $pH_m = 9$ Expected predominance of PuO2(am,hyd), however the presence of Pu₂O₃(cr) and PuO_{2-x}(cr) cannot be ruled out → similar XRD patterns #### Pu L_{III}-edge spectra - HQ-buffered systems and initial solid material: - identical edge energies with the reference value of $Pu(IV)_{aq}$ reported in [6] - SnCl₂ -buffered systems: - shift in the white line position: $\Delta E = 1.2 \text{ eV}$ Significant contribution of Pu(III) \rightarrow 30 ± 5 % by LC of the reference spectra from [6] # **Summary** ### > A nanocrystalline PuO₂(am,hyd) solid phase was thoroughly characterized using XRD, XPS and XANES analysis. Experimentally determined $\log^*\!K^\circ_{s,0}$ is in excellent agreement with current NEA-TDB selection [2] - ➤ Solubility of Pu in hydroquinone systems at $8 \le pH_m \le 13$ is very low and consistent with the solubility control by $PuO_2(am,hyd) \leftrightarrow Pu(IV)_{aq}$ - > XANES analyses confirm the presence of a Pu(III) solid phase in SnCl₂ systems. However, Pu solubility remains very low ($\leq 10^{-10}$ m) at pH_m $\geq 9 \rightarrow log^*K^{\circ}_{s,0}\{Pu(OH)_3(s)\}$ selected in NEA-TDB [2] likely overestimated #### Outlook - > Additional experiments on-going in SnCl₂ systems at $pH_m \le 9$ to determine the formation and stability of Pu(III), and Pu(III) - > Optimization of CE-SF-ICP-MS for the redox speciation of Pu at ultra-trace level under hyperalkaline reducing conditions - > Use of the established methodology and experimental approach to investigate Pu-ISA interaction under reducing conditions and its impact on the uptake by cement Acknowledgements: Frank Geyer and Cornelia Walschburger (KIT-INE) are gratefully acknowledged for the SF-ICP-MS and ICP-MS measurements, respectively. The contribution of Kathy Dardenne (KIT-INE) to the evaluation of the in-situ XRD is highly appreciated. SKB, Swedish Nuclear Fuel and Waste Management Company, funded this study.