

Effect of pristine nanostructure on first cycle ECcharacteristics in Li-excess cathode ceramics

Lars Riekehr, Jinlong Liu, Björn Schwarz, Florian Sigel, Yongyao Xia, Helmut Ehrenberg

Motivation: Li-excess materials with the composition $0.5Li_2MnO_3:0.5Li(Ni_{1/3}Co_{1/3}Mn_{1/3})O_2$ offer a high theoretical discharge capacity of 250 mAg⁻¹ and are therefore a suitable canditate for battery powered electro-mobility. The material forms a nano composite with platelet shaped domains of Li_2MnO_3 and $Li(Ni_{1/3}Co_{1/3}Mn_{1/3})O_2$ (NCM) cation configurations embedded in a coherent, rhombohedrally distorted cubic closed packed oxygen (ccp-O) lattice. During the first cycle, Li_2MnO_3 is activated by the loss of oxygen and electrochemically (EC-) active LiMnO_2 is formed. The extent of this activation process strongly depends on the nanostructure configuration. This phenomen is investigated by correlating the nanostructure and EC-characteristics of two samples with the same composition $0.5Li_2MnO_3$:0.5NCM. Our results do not only show a strong dependence of the Li_2MnO_3 activation on nanostructure configuration but also suggest an EC-active Li_2MnO_3 component.

Sample 2: thicker platelet shaped Li₂MnO₃ nano domains with larger diameter evenly dispersed in the particle.

Acknowledgement: Financial support of the DFG to the SFB 595 "Electrical Fatigue in Functional Materials" is gratefully acknowledged.