Effect of pristine nanostructure on first cycle ECcharacteristics in Li-excess cathode ceramics

Lars Riekehr, Jinlong Liu, Björn Schwarz, Florian Sigel, Yongyao Xia, Helmut Ehrenberg

Motivation: Li-excess materials with the composition $\left.0.5 \mathrm{Li}_{2} \mathrm{MnO}_{3}: 0.5 \mathrm{Li}^{(} \mathrm{Ni}_{1 / 3} \mathrm{Co}_{1 / 3} \mathrm{Mn}_{1 / 3}\right) \mathrm{O}_{2}$ offer a high theoretical discharge capacity of 250 mAg - and are therefore a suitable canditate for battery powered electro-mobility. The material forms a nano composite with platelet shaped domains of $\mathrm{Li}_{2} \mathrm{MnO}_{3}$ and $\mathrm{Li}\left(\mathrm{Ni}_{1 / 3} \mathrm{Co}_{1 / 3} \mathrm{Mn}_{1 / 3}\right) \mathrm{O}_{2}\left(\mathrm{NCM}^{2}\right)$ cation configurations embedded in a coherent, rhombohedrally distorted cubic closed packed oxygen (ccp-O) lattice. During the first cycle, $\mathrm{Li}_{2} \mathrm{MnO}_{3}$ is activated by the loss of oxygen and electrochemically (EC-) active LiMnO_{2} is formed. The extent of this activation process strongly depends on the nanostructure configuration. This phenomen is investigated by correlating the nanostructure and EC-characteristics of two samples with the same composition $0.5 \mathrm{Li}_{2} \mathrm{MnO}_{3}: 0.5 \mathrm{NCM}$. Our results do not only show a strong dependence of the $\mathrm{Li}_{2} \mathrm{MnO}_{3}$ activation on nanostructure configuration but also suggest an EC-active $\mathrm{Li}_{2} \mathrm{MnO}_{3}$ component.

Theoretical Aspects of the Structure

TEM Analysis

Sample 1: very thin platelet shaped $\mathrm{Li}_{2} \mathrm{MnO}_{3}$ nano domains are evenly dispersed in the particle.

Sample 2: thicker platelet shaped $\mathrm{Li}_{2} \mathrm{MnO}_{3}$ nano domains with larger diameter evenly dispersed in the particle.

EC-Reaction of the Formation Cycle

$$
\begin{aligned}
& \text { 1. Delithiation of the NCM component } \\
& 0.5 \mathrm{Li}_{2} \mathrm{MnO}_{3}+0.5 \mathrm{LiNi}_{1 / 3} \mathrm{Mn}_{1 / 3} \mathrm{Co}_{1 / 3} \mathrm{O}_{2} \xrightarrow[\text { charge }]{\text { ocV }-4.4 \mathrm{~V}} \\
& 0.5 \mathrm{Li}_{2} \mathrm{MnO}_{3}+0.5 \mathrm{Ni}_{1 / 3} \mathrm{Mn}_{1 / 3} \mathrm{Co}_{1 / 3} \mathrm{O}_{2}+0.5 \mathrm{Li}^{+}+0.5 e \\
& \text { 2. Activation of the } \mathrm{Li}_{2} \mathrm{MnO}_{3} \text { component: } \\
& 0.5 \mathrm{Li}_{2} \mathrm{MnO}_{3}+0.5 \mathrm{Ni}_{1 / 3} \mathrm{Mn}_{1 / 3} \mathrm{Co}_{1 / 3} \mathrm{O}_{2} \xrightarrow[\text { charge }]{4.4 \mathrm{~V}-4.8 \mathrm{~V}} \\
& (0.5-\eta) \mathrm{Li}_{2} \mathrm{MnO}_{3}+\eta \mathrm{MnO}_{2}+0.5 \mathrm{Ni}_{1 / 3} \mathrm{Mn}_{1 / 3} \mathrm{Co}_{1 / 3} \mathrm{O}_{2}+2 \eta \mathrm{Li}^{+}+\eta\left(\frac{1}{2}\right) \mathrm{O}_{2}+2 \eta e^{-} \\
& \text {3. Lithiation and formation of } \mathrm{LiMnO}_{2} \\
& (0.5-\eta) \operatorname{Li}_{2} \mathrm{MnO}_{3}+\eta \mathrm{MnO}_{2} \cdot 0.5 \mathrm{Ni}_{1 / 3} \mathrm{Mn}_{1 / 3} \mathrm{Co}_{1 / 3} \mathrm{O}_{2}+(0.5+\eta) \mathrm{Li}^{+}+(0.5+\eta) e^{-} \\
& \xrightarrow{4.8 V-2.0 V} \\
& \xrightarrow[\text { discharge }]{ }(0.5-\eta) \mathrm{Li}_{2} \mathrm{MnO}_{3}+\eta \mathrm{LiMnO}_{2}+0.5 \mathrm{LiNi}_{1 / 3} \mathrm{Mn}_{1 / 3} \mathrm{Co}_{1 / 3} \mathrm{O}_{2}
\end{aligned}
$$

DIFFaX Simulations and Synchrotron-XRD Data

DIFFaX is used to estimate $\mathrm{Li}_{2} \mathrm{MnO}_{3}$ domain thickness and diameter by implementing defect free $\mathrm{Li}_{2} \mathrm{MnO}_{3}$ stacking sequences in randomly stacked $\mathrm{Li}_{2} \mathrm{MnO}_{3}$ and NCM layers.

Sample 1
Sample 2

Defect free stacking sequences Defect free stacking sequences of 1-5 $\mathrm{Li}_{2} \mathrm{MnO}_{3}$ layers and a of $5-35 \mathrm{Li}_{2} \mathrm{MnO}_{3}$ layers and a layer diameter of 100 nm has layer diameter of 180 nm has been used. been used.

EC-Characterisation

Conclusion: The TEM analysis shows considerable differences in domain thickness and diameter for the two stoichiometrically identical samples. The differences have been veryfied by DIFFaX simulations to synchrotron powder XRD patterns. The EC-analysis shows that the given reaction mechanism is not complete and cannot explain the anomalous capacity of an $\mathrm{EC}-\mathrm{acitve} \mathrm{Li}_{2} \mathrm{MnO}_{3}$ component. Correlating nano structure with ECcharacteristics shows that $0.5 \mathrm{Li}_{2} \mathrm{MnO}_{3}: 0.5 \mathrm{NCM}$ with platelet shaped $\mathrm{Li}_{2} \mathrm{MnO}_{3}$ domains of low thickness and diameter are superior to composite structures with larger $\mathrm{Li}_{2} \mathrm{MnO}_{3}$ domains in the first cycle.

Acknowledgement: Financial support of the DFG to the SFB 595 "Electrical Fatigue in Functional Materials" is gratefully acknowledged.

