
A Critique of the Programming Language C�

Walter F� Tichy

Michael Philippsen

Phil Hatcher

University of Karlsruhe

School of Informatics

D����� Karlsruhe� F�R�G�

University of New Hampshire

Department of Computer Science

Durham� NH ��	
�� U�S�A�

tichy�ira�uka�de

philippsen�ira�uka�de

pjh�cs�unh�edu

This paper appeared in� Communications of the ACM� ������	
�	�� June 
	

C� is a data parallel programming language origi�
nally developed for the Connection Machine� E�orts
are now underway to standardize a revised version of
C� ���� We think that standardization of C� is prema�
ture at this time	 since the language contains a number
of unproven constructs and obvious 
aws� We are con�
cerned that standardization of a parallel language now
might force its programming model upon future gen�
erations of programmers	 even though we already know
it is de�cient� The purpose of this note is to make the
relevant issues accessible to a wider audience and to
make speci�c recommendations for improving C��

C� is an extension of ANSI standard C and in�
tended as an �ecient	 fairly low�level systems pro�
gramming language���� for parallel computers with
distributed memory� Parallelism is expressed directly
in the data parallel paradigm� In this paradigm	 �par�
allelism comes from simultaneous operations across
large sets of data	 rather than from multiple threads
of control����� Data parallelism is a synchronous
paradigm and therefore well suited to SIMD machines�
It has also been implemented successfully on a MIMD
machine����

As an extension of C	 C� inherits most of the draw�
backs of its ancestor	 but we are not concerned about
those here� Neither are we concerned with limiting
C� to a synchronous paradigm	 even though an asyn�
chronous one would be more general� We are con�
cerned	 however	 with the principles of programming
language design	 the programming model underlying
C�	 and the ecient implementability of C� on both
SIMD and MIMD machines� The problems we identi�
�ed in C� in these areas are discussed below�

� Parallel Data Types

C� introduces the parallel variable as a new data
type� The parallel variable is an array of one or more
�parallel� dimensions� All elements of a parallel di�
mension may be processed simultaneously	 while the
traditional	 �serial� dimensions can only be processed
serially� For example	 if one wishes to de�ne a two�
dimensional array A whose rows can be processed
in parallel	 but whose columns are processed serially	
then one declares the following�

shape �N�rowdim�

float�rowdim A�N��

The shape declaration given here introduces rowdim
as the name for a storage structure that can hold vari�
ables with a parallel dimension ofN elements� note the
index range declared on the left of the identi�er� The
second declaration then allocates a variable A with
the shape given by rowdim� The elements of this vari�
able are again vectors	 but with a serial dimension�
This time	 the index range is on the right� The left
and right indexing carries over into accessing arrays�
The expression �i�A�j� would select the element in the
i�th row and j�th column of A� This notation is un�
usual	 but is intended to provide syntactic clues to the
programmer about which dimensions can be processed
serially and which in parallel� A minor annoyance is
that if the programmer should decide to change a di�
mension from serial to parallel or vice versa	 all index
expressions in the program involving the changed type
must be switched around accordingly�

While syntax is a matter of taste	 non�orthogonality
of the new type constructor for parallel variables is a
more serious problem� Parallel variables cannot be

�



combined freely with other types� For instance	 it is
not possible to create parallel variables with records as
elements that in turn have parallel variables as com�
ponents� Perhaps one could argue that this particular
restriction is minor for the intended application area of
C�� A more serious non�orthogonality concerns point�
ers� Pointers may not be stored in parallel variables
�or in records or other data structures stored in par�
allel variables�� This restriction is unfortunate	 since
there are many non�numeric applications that could
use parallel pointers���� Also	 omitting them is incon�
sistent with the spirit of C	 where pointers are used
frequently� The prohibition against parallel arrays of
pointers seems to be motivated partly by the address�
ing properties of the Connection Machine	 and partly
by the type structure of C� itself� The earlier version
of C� has about ten di�erent variants for each pointer
type� The variants re
ect whether the pointer itself is
stored in a singular or a parallel variable and whether
it actually points to a singular or parallel variable	 plus
some additional variants� The result is that parallel
pointers in old C� are exceedingly complicated to pro�
gram� It appears that the same complexities would
arise in new C�	 and were omitted for this reason�

The source of these diculties is quite simple� The
orthogonal notions of data type and data layout have
been intermixed in C�� A data type determines which
operations can be applied to a datum� the layout de�
termines whether the operations can be applied in par�
allel or serially� These are two separate	 independent
notions� The set of what operations can be applied
to a datum should be independent of how �in parallel
or serially� they can be applied� A better approach
appears to be to rearrange a variable of a given type
implicitly and automatically to �t a required layout
�perhaps with a performance warning from the com�
piler��

� No Nested Parallelism

Nested parallelism occurs when a parallel pro�
gram calls a procedure or another statement which
spawns additional parallelism� This feature has been
found to be necessary for writing high�level parallel
programs���� Nevertheless	 nested parallelism is not
possible in C�� Instead	 the nested parallelism must
be pushed up to the top level of the program� This
property forces programmers to distort otherwise clear
programs	 prevents the top�down structuring of paral�
lel programs with subprograms	 and hinders reusabil�
ity� We will illustrate these problems with a somewhat
longer example�

Suppose we wish to write a program for searching
large game trees	 such as in chess or checkers� The
nodes in the game tree are board positions	 where an
edge connects two nodes if a single	 legal move leads
from one node�s position to the other�s� The task is to
write a program for expanding the game tree from a
given position down to a certain level� This situation
is typical for many search algorithms where the search
space is irregular and cannot be given a priori� A clear	
recursive outline for building and searching the tree is
as follows�

void SearchTree�position p� �

if �p	
depth � maxdepth� �

successors�GenerateMoves�p�

forall i in length�successors� do

SearchTree�successors�i��



The function SearchTree obtains a single board po�
sition as parameter and tests whether the maximum
search depth has been reached� If not	 it calls func�
tion GenerateMoves	 which generates the list of le�
gal successor positions and returns it� SearchTree
then spawns as many additional invocations of it�
self as there are successor positions� Note that there
may be many simultaneous invocations of SearchTree
operating simultaneously	 but under a synchronous
paradigm	 they will all perform their various actions	
such as calling subprograms	 in perfect synchrony�
SearchTree would also run unchanged under an asyn�
chronous paradigm�

While this program can be transformed to �t C�	
the result is not nearly as clear and concise� First	
SearchTree and GenerateMoves must be changed to
accept a vector of positions as parameters� Second	
GenerateMoves must be split into two parts� The �rst
part estimates the number of successors for each posi�
tion in the vector� These numbers are added and the
result is used to allocate a new position vector long
enough for storing all successors of the input vector
at once� The second part of GenerateMoves then �lls
in the successor positions� Finally	 the �lled vector
is passed to another invocation of SearchTree� This
transformation illustrates how the parallelism inside
GenerateMoves and SearchTree has to be marshalled
and pushed up to the calling procedure� Although
this transformation is not particularly hard to pro�
gram and becomes easier with practice	 we believe it
would be better performed by the compiler and run�
time system� Note also that after the transformation	
the idea of multiple threads operating simultaneously
has been lost	 and a compilation of the transformed

�



program for an MIMD machine might be inecient
due to the forced synchroneity�

The non�nested parallelism of C� is inappropriate
for writing clear	 maintainable	 and portable paral�
lel programs� One might argue that it is still un�
clear which forms of nested parallelism are appropriate
and how to implement them	 but that is precisely our
point� It is too early to standardize nested parallelism
out of existence with C��

� Multiple Copies of Each Function

For scalar functions	 the programmer must write
two versions� one for parallel	 the other for sequential
contexts� For instance	 suppose that we have written a
scalar function abs�x� that returns the absolute value
of an integer� It would be natural to apply abs to
parallel variables v� and v� of shape rowdim thus�

with�rowdim� v� � abs�v���

The with�statement in C� activates as many �virtual�
processors as there are elements in the given shape�
These processors operate on the given parallel vari�
ables elementwise� This notation is normally used
for all scalar operators and assignment� However	 the
presence of the call to the scalar function abs makes it
illegal� To make it legal	 the programmer must write
a second function abs that takes a parallel variable of
shape rowdim as parameter� Thus	 the programmer
must write at least two version of each function� Ad�
ditional versions are needed for additional shapes	 or
shapes must be passed as parameters and a case anal�
ysis performed inside the function� The diculties of
keeping multiple versions of the same function consis�
tent are well known to practicing software engineers�

This discussion points to a problem with the se�
mantics of the with�statement� With creates multi�
ple processors that operate in parallel	 but when they
reach a function call	 only a single call is actually per�
formed� Inside the function	 however	 the original pro�
cessors come back to life� Thus	 the parallel context
seems to be conceptually suspended for the moment of
the call	 then resumed inside the procedure� Appar�
ently	 the speci�cs of the procedure call on a SIMD
machine are re
ected in the language de�nition� A
better	 fully consistent view would be to let the with�
statement create as many processors as before	 but let
all of them execute the call of the �scalar� function�
Since the processors operate synchronously	 there is
an ecient implementation even on a SIMD machine�
A separate	 parallel version of each function need not

be written� These simpli�ed semantics also accommo�
date nested parallelism�

� Control Structures

The control constructs for loops and conditional
statements are de�ned in an awkward way and fully
synchronous execution may be too restrictive for e�
ciency� As an example	 consider the following parallel
loop in C��

while ��� � �parallel	condition
 �� �

where � �parallel	condition
 � �

statements





The intent is that multiple processors execute the
above loop simultaneously� The whole statement ter�
minates as soon as �parallel	condition
 evaluates
to false in all processors� The operator �� in the �rst
line	 an OR�reduction	 expresses this termination� It
is awkward to be forced to repeat this condition in the
second line� The careful programmer would evaluate
the condition only once and then store it into a tem�
porary	 in order to prevent unwanted side e�ects and
ineciency� The repetition could easily be avoided
and the compiler be burdened with the required code
generation� At least this is how it was in the original
C��

The language de�nition as it stands also hurts per�
formance on MIMD machines� The problem is the
overly synchronous behavior required for loops� all
iterations execute in complete lockstep	 even if each
loop operates on purely private data� This behavior
is acceptable on a SIMD machine since the hardware
forces that behavior anyway� But on MIMD machines
this could hurt performance� Suppose the loops were
allowed to run asynchronously	 then some �natural�
load balancing might occur� That is	 suppose one
processor executes the �rst iteration quickly and the
next more slowly	 while another processor exhibits the
opposite behavior and thus the two processors �nish
in about the same time� With the present language
de�nition	 the processors are forced to run fully syn�
chronously	 and hence are slowed to the speed of the
slowest one�

� Conclusion

There are many other	 small problems in C�	 which
we will not discuss further� �Among those are ��� that

�



value parameters of only single shape can be passed
to functions	 ��� that a �� b has not necessarily the
same e�ect as a � a � b	 ��� that vector operations
are de�ned for parallel dimensions	 but not serial ones	
and ��� that the language is de�ned mostly by exam�
ple and not by a precise statement of the semantics��
While we consider the old C� a �rst and signi�cant
step in the right direction	 it is dismaying to see so
many of the old problems being carried over into the
successor� It seems that elementary principles of lan�
guage design such as machine�independence	 orthogo�
nality of constructs	 consistency	 and simplicity have
not been taken into account suciently in new C��

We believe that a much simpler extension of C suf�
�ces to realize data parallelism� One needs to add
a single new statement	 namely a synchronous forall	
plus perhaps its asynchronous form� For data struc�
tures	 one needs to introduce true multidimensional
arrays plus pragmas that specify how to lay out the
data� Such extensions have been implemented success�
fully in a compiler for the language Modula��	 tar�
geting the Connection Machine��	 ��� A simple and
consistent extension of Modula�� avoids all the prob�
lems mentioned above	 without loss of eciency� One
might	 however	 call this work an uncon�rmed exper�
iment in language design and compiler construction�
But this is exactly our point� More time is needed
before we can standardize parallel programming lan�
guages�

At this time	 design and compilation of parallel lan�
guages is in an experimental phase	 as can be seen
by the numerous proposals for such languages	 but
scant reports on experience with their implementation
and use� However	 knowledge in this area is increas�
ing rapidly	 so it would be imprudent to �x a poorly
thought�out extension of a language as in
uential as
C at this time�

References

��� Guy E� Blelloch and Gary W� Sabot� Compiling
collection�oriented languages onto massively paral�
lel computers� Journal of Parallel and Distributed
Computing	 ������������	 February �����

��� W� Daniel Hillis and Guy L� Steele� Data par�
allel algorithms� Communications of the ACM	
����������������	 December �����

��� Michael Philippsen and Walter F� Tichy� Compil�
ing for massively parallel machines� In Proc� of the
Workshop on Code Generation� Schloss Dagstuhl�
Springer Verlag	 May ����� ����� to appear�

��� Michael Philippsen	 Walter F� Tichy	 and Chris�
tian G� Herter� Modula��� and its compilation�
In First International Conference of the Austrian
Center for Parallel Computation	 September �����
�under review��

��� Michael J� Quinn and Philip J� Hatcher� Data�
parallel programming on multicomputers� IEEE
Software	 pages �����	 September �����

��� Thinking Machines Corporation	 Cambridge	 Mas�
sachusetts� C� Language Reference Manual	 April
�����

�


