
Universität Karlsruhe
Fakultät für Informatik

 76128 Karlsruhe

Delegating Remote Operation
Execution in a Mobile Computing

Environment�

Februar ����

Dietmar A� Kottmann

Ralph Wittmann

Markus Posur

Universit�at Karlsruhe

Institut f�ur Telematik

Interner Bericht ����

�This work was partly supported by the German Research Council �Deutsche Forschungsgemeinschaft
DFG� within the interdisciplinary research group SFB ��� comprising mechanical engineering and com�
puter science projects under grant SFB ����A� and grant SFB ����D�	

Abstract

Remote operation execution is nowadays the most popular paradigm used to build dis�
tributed systems and applications� This success originates in the simplicity exhibited by
programming along the client�server paradigm� Unfortunately	 connectivity and bandwidth
restrictions defy the unchanged porting of this well known mechanisms to the mobile com�
puting
eld�

In this paper we present an approach that allows to develop applications which are
tailored for the speci
c requirements of mobile computing	 while retaining the simple and
well understood remote execution paradigm� The approach provides the additional bene
t
that established services could easily be used from mobile platforms� The cornerstone of
our approach is integrated linguistic support for dynamically delegating the execution
and control of remote procedure calls �RPC� to a delegate located on the
xed part of
the network� Besides presenting the language constructs	 we discuss the extensions to the
RPC�based development process and the necessary run�time support�

i

� Introduction

Performing remote operations is nowadays the prevailing paradigm for constructing dis�
tributed systems and applications Tan���� It is used in various �avors ranging from re�
mote procedure call �RPC�	 as found in OSF DCE BGH���� or in ONC Blo��� to remote
method executing in object�based systems	 like OMG CORBA Omg���� The attractive�
ness of the paradigm originates in its conceptual simplicity which is summarized under
the term client�server�style programming�� All modern integrated environments for dis�
tributed systems	 like ANSAware Ans���	 OSF DCE BGH����	 OMG OMA Omg��� or
ISO ODP ISO���	 base on this paradigm� � It would be an attractive perspective to sim�
ply put applications which base on remote operations onto mobile platforms to get real
mobile applications� Unfortunately	 mobility has impacts on distributed systems that defy
this direct approach	 c�f� FoZ��	 BAI���� In an nutshell	 mobile applications have to face
temporary disconnections	 a high degree of bandwidth variability with long periods of low
bandwidth	 while operating on resource�poor platforms� None of these constraints could
be expected to vanish through foreseeable technological progress Sat����

Using remote operations in this context has two major defects� Firstly	 remote oper�
ations are synchronous in nature	 leaving the client blocked until the operation has com�
pleted� A behavior clearly undesirable in environments that are prone to disconnections�
Secondly	 clients traditionally have complete control over the distributed computation� This
leads to executions where clients obtain information from one operation only to use �parts
of� the information as input for the next invocation� In this client�centered control philos�
ophy the client is the link that glues the pieces of an application together� Thus	 the entity
that due to limited bandwidth and occurring disconnections is physically the weakest part
plays logically the most important role for the application� On the other hand	 it is im�
portant to enable mobile clients to make use of the existing infrastructure� Consequently	
native access protocols for servers have to be retained�

In this paper we present an approach that accounts for the identi
ed prerequisites�
Mobile clients are given the possibility to specify a control policy and a corresponding in�
formation �ow for multiple remote operations� The execution is asynchronously performed
by a delegate on the
xed network� The delegate is able to return results to the client and to
invoke callback�operations on the client actively	 in case speci
ed activation conditions are
met� The delegate is represented on the client side by a trustee which performs a seamless
linguistic integration� Our approach integrates the development process of delegates and
trustees with the RPC�development cycle� However	 our approach is general enough that
it could be advantageous for any distributed computing environment which is based on
remote operation execution�

The presentation is organized as follows� After giving a systematic overview over the
problems of remote operations in a mobile computing context in section �	 we present our

�Note that client�server�style programming only refers to the idea of structuring a distributed system
in entities o
ering services and entities consuming services	 An entity is allowed to produce a service under
usage of other �remote services�	 Dedicated client� or server�machines or �programs aren�t necessary
prerequisites	

�

Client
DVI-File

PrintStatus

Ps-File

PrintStatus

DVIPS

Server

LPR

Server

Figure �� The client�server model

concept of trustees and delegates in section �� This approach enables di�erent programming
styles well suited to mobile computing� These are discussed in section �� The necessary
system support for the development process and for run�time protocols is subject to section
�� In section � we report about initial experience and give some performance
gures� Finally	
section � discusses related approaches and section � concludes with a summary and a brief
outlook�

� The Case of Remote Operations in Mobile Com�

puting

Remote operations are built around the client�server model �see
gure ��� A server typically
o�ers some operations to a community of clients� Clients then select a server that o�ers
some desired functionality�� A client can use an operation by sending an invoke message
to a suitable server� The message typically contains input parameters �e�g� data to be
printed�� After receipt of the invocation request the server performs the requested service
and
nally sends a result back to the client� Normally	 the result contains some parameters
�e�g� the print status��

As shown in
gure �	 a server can itself act as a client with respect to another server�
Such servers are called complex servers� Whether a server is complex or not is generally
invisible to the client� The client isn�t able to tell the complex server of
gure � from an
implementation where one server provides the integrated functionality to convert data from
dvi� to ps�format and to put the resulted
le to the printer�

As distributed environments grow	 so do the number of operations which are o�ered to
clients�� With this increase it becomes impossible to provide all sensible combinations of
servers as hard�coded complex servers� Thus	 clients dynamically combine servers when no
single server o�ers a desired functionality� Consider the case depicted in
gure �� A client
needs the functionality of the complex server of
gure � but only
nds a server that is able
to perform the conversion from dvi� to ps� format and another one that prints ps�
les�
When the client wants to print a dvi�
le	 it combines the two servers dynamically� How the
combination is performed is subject to the control policy coded inside the client program�

�The server selection � or binding � procedure could itself be performed via invoking a binding
procedure on a dedicated server	 Using this bootstrap mechanism only a very small set of servers has
initially to be known to the run�time system of a client	

�Note that operations are not restricted to the o
ers of conventional servers but are the general building
blocks for distributed applications	 Such application speci�c remote operations outnumber the generic
services by far	

�

Client
DVI-File

PrintStatus
& Ps-File

DVIPS

Server

Ps-File

PrintStatus

LPR

Server

Figure �� Client�centered construction of combined services

In addition	 the client governs the information �ow between di�erent servers in mapping
�parts of� the obtained result into new invocations�

The assumptions about remote operation execution	 which underlay the above discus�
sion	 could be summarized as follows�

Fast networks and servers� Invoking remote operations blocks the client� Hence	 both
the network and the server have to perform their operation reasonably fast�

Reliable communication� When either invocation or result are lost	 the client is doomed
to wait forever or has to live with the danger of orphaned computations� Thus	 the
underlying network is assumed to be reliable	 unless special application level functions
to recover from broken communication channels are developed�

Several generic mechanisms to deal with failures have been invented� The most pop�
ular ones are Exactly�Once�RPCs that rely on transactions and At�Most�Once�
RPCs that cope with several transient failures of the underlying transport system
Nel���� Fault tolerance for idempotent services is achieved with At�Least�Once�
RPCs Nel���� Additionally	 several replication techniques for RPC systems have
been explored �c�f� YJT��	 Coo����� All these mechanisms are expensive� Hence	
most RPC systems only o�er At�Most�Once�RPCs as a generic mechanism	 because
transactions are too expensive for general use� Note that this mechanism does not
defy orphaned computations in general	 so that it is no solution for networks that
are prone to disconnections� For the special but rare case of idempotent services	
At�Least�Once�RPCs are also provided by many RPC systems�

Continuous network availability� Combining operations dynamically � for client�
centered construction of combined services � relies on continuous communication
capabilities�

Homogeneous network availability� Allowing clients to combine operations dynami�
cally is only adequate when the chance of a client to reach a particularly server are
about the same as the chances for a complex server to do the same job�

�

Delegate
DVI-File

PrintStatus
& Ps-File

DVIPS

Server

Ps-File

PrintStatus

LPR

Server

Client

DVI-File

PrintStatus

Figure �� Delegating remote operation execution

All of these assumptions become invalid when one considers a mobile computing sce�
nario with mobile clients� Here	 communication between the client and server is generally
slower as communication on a
xed network	 more error prone	 subject to disconnections	
and inhomogeneous	 as the chances to reach a server from a
xed node are better than the
chances to reach the server from a mobile node� Note that this holds regardless of whether
the server is placed on the
xed network or is a mobile node itself� The latter is true	 as
communication between two mobile nodes often has to pass two error prone low bandwidth
links between the
xed network and the mobile nodes�

A countermeasure to these problems would be to increase the number of precompiled
complex servers� Following this track means that starting a client implicitly starts and
registers a huge number of complex servers on the
xed network	 one for each conceivable
combination of operations the client might invoke� regardless of the invocation�frequency�
This explosion of the number of complex servers is clearly unbearable as in the worst case
their number grows over�exponentially �in the order of n� � ignoring the additional pos�
sibility to de
ne multiple parameter�mapping combinations� in the number of application
servers �n��

We propose as an alternative the paradigm of delegating remote operation execution� In�
stead of precompiling a server for each conceivable combination the
xed network provides
delegates which have the capability to execute combined operations dynamically according
to a speci
cation provided by the client� Instead of stashing the
xed network with a huge
number of precompiled complex servers	 the client carries the speci
cation of all complex
services it eventually needs� On demand the speci
cation is uploaded to a delegate� Note
that this approach is especially suited for the case of mobile clients that visit several
xed
networks	 as each client can dynamically instantiate the services it needs�

Now executions as shown in
gure � result� The error prone low�bandwidth link from
the mobile node to the
xed network is only stressed once for the initial invocation and
once for the result message	 while the operation invocations are performed completely inside
the homogeneous
xed network� Note that there is no need to transfer the potentially big
intermediate results or parameters over the low�bandwidth link� The resulting behavior is
tailored to the requirements of mobile clients�

�

BEGIN

DviResult �� DviPs�DviFile� PsFile��

CASE DviResult�errno OF

	�

Result�errno �� Lpr�PsFile��

RETURN�Result��

 ���

Result�errno �� ��

Result�msg �� �Fatal DVIPS Error��

RETURN�Result��

END�

Figure �� A simple delegate

� Delegating Remote Operation Execution

This section discusses how linguistic support for delegating remote operations can be inte�
grated into a distributed computing environment� Although our approach is general enough
to be applicable for each remote execution mechanism	 an RPC�based solution is used for
the presentation� First	 we discuss the method to specify control policies and information
�ows for delegates� Afterwards	 trustees are introduced as a mechanism to invoke delegates
asynchronously� An extended example of how both are used is postponed to section ����

��� Delegates� Controlling Operations Remotely

Delegates have to exert control over multiple remote operations on behalf of the client�
Additionally	 they have to channel the information �ow between multiple operations	 in
mapping output parameters to input parameters of subsequent calls� Both is most easily
achieved by using an operational description�

A simple example of how delegates are de
ned is given in
gure � which de
nes the
control �ow of the printer example� For brevity type de
nitions are omitted� A more elab�
orate example could be found in section ���� An example for type de
nitions is given in
section ����

The language DIL �Delegate Instruction Language� to specify delegates comprises an
IF	 a WHILE	 a CASE	 and a FOR construct as simple control structures and a dedicated
type system that allows to catch the whole semantics of the basic RPC system� It allows
to specify arbitrary control policies and arbitrary information �ows between subsequent
operation invocations�

�

Trustee ptTrusteeDispatch PrintDvi�File� DviFile��

Result t TrusteeFetch PrintDvi�Trustee pt Trustee� int Indication��

BOOLEAN TrusteeIsReady�Trustee pt Trustee� Time t��

BOOLEAN TrusteeDiscard�Trustee pt Trustee��

Figure �� Basic features of a Trustee

��� Trustees� Asynchronous Invocation Processing

Blocking the client program until a complex service completes disquali
es the remote op�
eration execution paradigm for a broad range of applications� The natural countermeasure
is to provide a mechanism for performing operation invocations asynchronously with the
possibility to defer synchronization with the operation result to some later time�

The need for such a mechanism grows with the execution time of a remote operation�
Combining multiple operations in one delegate increases the mean time to completion and
makes a mechanism for asynchronous operation execution even more necessary�

Our approach to asynchronous operations are trustees� Trustees borrow their basic
functionality from the future concept of Cronus WFN��� but employ several important
extensions which are especially suited for the mobile computing context�

����� Trustees� The Basics�

Consider a remote procedure that prints a dvi�
le and returns a print status�

Result PrintDvi�File� DviFile��

The basic operations of the corresponding trustee are shown in
gure ��� The remote op�
eration is asynchronously invoked by calling the RPC�speci
c TrusteeDispatch operation�
This procedure immediately tries to forward the invocation over the network� Regardless
of the success of putting the message on the network the operation immediately returns
with a reference to a newly generated trustee object� This object serves as a placeholder for
the call� As placeholders are dynamically allocated multiple calls to one remote operation
could be outstanding at a time�

The reference to a trustee could be used for multiple purposes� Firstly	 if the application
decides that it won�t need the result of the operation later on	 it can notify the system that
the placeholder need not longer be maintained by calling the TrusteeDiscard operation�
Secondly	 the application can test whether a valid result has already been received via
the TrusteeIsReady operation� An optional parameter allows to specify a time span for
which the operation is allowed to block� The operation returns when a valid result has
been received or when the speci
ed time has passed� The default time span makes the

�In the remainder of this paper examples of stub procedures and interfaces will be presented using the
C programming language although the trustee abstraction is independent of C	

�

DelegateInterface PrintDvi

IMPORT � � �

USES � � �

TYPE � � �

IN

File� DviFile�

LOCAL IN � � �

OUT

Result t Result�

END�

Figure �� A delegate de
nition frame

call return immediately� Finally	 the RPC�speci
c TrusteeFetch allows the application to
block until a result has been received� This way	 synchronization with outstanding calls is
achieved�

Note that the operations TrusteeDiscard and TrusteeIsReady are generic� Only the
other two operations TrusteeDispatch �Service� and TrusteeFetch �Service� are
speci
c for each involved RPC procedure�

����� Combining Trustees with Delegates

Basically	 trustees are part of the run�time system of the client� They allow applications
to defer result handling for RPC calls to the time when the RPC has completed or when
its results are needed� Thus	 the control still conforms to the conventional client�server
paradigm �c�f�
gures � and ���

Combining trustees with delegates allows for deferred synchronization with the results
of delegated complex operations� This integrated model is based on de
ning delegates in a
delegate de
nition frame� The frame for the delegate code of
gure � is depicted in
gure
�� The corresponding trustee has the same interface as the one for the simple RPC�call of
section ����� �c�f�
gure ���

Note that a delegate that simply performs one RPC call can have the same trustee
interface as one that combines basic operations dynamically� Thus	 it is transparent to an
application which uses a trustee for deferred synchronization whether it uses a complex
delegate or a simple RPC operation�

����� Trustees � Advanced Features

The so far discussed operations of the trustee interface build an orthogonal syntactic frame�
work that enables asynchronous remote operation invocations� Still it is not su�cient to
model typical problems of the mobile computing context in a straightforward manner�

In many cases mobile nodes serve as presentation front�ends� Their integration in the

�

distributed environment allows them to access shared databases or general server facilities�
It is often the case that a user wants to delegate some task to the system and that he
trusts the system that the task will be handled correctly� The system should only disturb
him when an exceptional condition arises� Consider once again the printer example� After
invoking the print operation the system should do its job quietly	 unless the print fails� In
that case the user should be noti
ed by a message box that pops up on his display and
gives him the means to inquire what exceptional condition has occurred�

Although the desired behavior can be realized using only basic trustee functions	 this
de
es a clear and modular design of client applications� All parts of the application program
would have to be aware of the outstanding print operation to poll the trustee via the
TrusteeIsReady operation again and again	 only to
nd that in most cases the print has
been completed successfully� So all subroutines that allocate trustees would impose the
constraint of polling and deallocation onto all other routines� To enable a clearly separated
and modular design it is necessary to equip the trustee with a callback interface which can
be invoked by the delegate under certain conditions�

A callback behavior is achieved by the delegate depicted in
gure �� The correspond�
ing trustee �
gure �� enables to specify a reference to a callback function� The extended
TrusteeDispatch operation comprises the input parameters of the delegate together with
references to the local callback functions� The TrusteeFetch operation corresponds once
again to the output parameters of the delegate�

Note that the speci
ed callback function does not contain a description of the exception
directly �e�g� as a string�� Instead	 a reference to the trustee has been included� Directly
coding the exception condition into a callback parameter would also have been possible�
We used the depicted alternative to show how the callback mechanism and the return
value are used in an integrated manner� Here the callback pops up a message box	 which
enables the user to inquire the exceptional condition� In case the user wants to
nd out
what exception did occur the callback invokes the TrusteeFetch operation on the returned
trustee reference� Note also that the callback references a local variable	 namely the ref�
erence to the window system that is only valid on the client node� As there is no need to
send this reference over the network it is retained inside the trustee until needed� This is
the di�erence between the IN section and the LOCAL IN section of the delegate de
nition
framework� Both de
ne input parameter for the TrusteeDispatch operation but only the
ones de
ned in the IN section are transferred over the net� Hence	 the delegate code must
not use the variables de
ned in the LOCAL IN section	 besides as parameters for callback
functions �c�f�
gure ���

� Programming with Trustees and Delegates

In this section three basic ways to program trustees and delegates are introduced�

�

DelegateInterface dvilpr

IMPORT � � �

USES � � �

IN

File� in f�

LOCAL IN

Obj t MsgBox�

OUT

Result t Result�

CALLBACK

void OpenMsgBoxForTrustee�

Obj t� Trustee pt

��

END�

DelegateImplementation dvilpr

BEGIN

DviResult �� DviPs�in f� ps f��

CASE DviResult�errno OF

	�

Result�errno �� Lpr�ps f��

RETURN�Result��

 ���

Result�errno �� ���

Result�msg �� �Fatal DVIPS Error��

OpenMsgBoxForTrustee�MsgBox� self��

RETURN�Result��

END�

Figure �� Delegate with a callback function

��� Conventional asynchronous programming

The most simple way of using trustees and delegates is to take them as an alternative to
existing asynchronous RPC systems� How this feature can be employed is well known �c�f�
WFN��	 AnT����� The additional feature of our approach is the possibility to incorporate
complex services that are constructed from existing o��the�shelf servers� We omit the
further discussion	 as those complex servers are used in exactly the same way as monolithic
ones�

�

Trustee pt TrusteeDispatch dvilpr�

DviFile� fd�

Obj t MsgBox�

void ��OpenMsgBox��Obj t�Trustee pt�

��

Result t TrusteeFetch�Trustee pt Trustee�int Indication��

Figure �� Trustee for a delegate with a callback function

� � �

Trustee pt MyTrustee � TrusteeDispatch dvilpr�MyFile� MyMsgBox� MyCallback��

TrusteeDiscard�MyTrustee��

� � �

void MyCallback�Obj t MsgBox� Trustee pt Trustee� f
� � �

g

Figure �� Fire�and�Forget programming style

��� Fire�and�Forget RPC

Trustees and Delegates can be used for the straightforward solution of what we call
re�
and�forget problems� In those problems	 the client invokes a complex service and relies on
the system to bring the invocation to a good end and to do any necessary housekeeping
automatically� The user should only be involved when some exceptional condition occurs	
like in the motivating example for the callback facility	 presented in section ������

Take
gure � as an example� Directly after invoking the delegate of
gure � asyn�
chronously	 the program calls TrusteeDiscard on the returned trustee pointer� Hence	 the
main program does not want to use the trustee anymore� However	 the run time system
only marks the trustee as discarded	 because the delegate might invoke the callback pro�
cedure� Now two alternatives are possible� The
rst is that the delegate completes without
invoking the callback� When the run time system on the client gets this reply	 it automat�
ically deallocates the trustee and performs all additional housekeeping� Now assume the
delegate invoked the callback� When the run time system on the client gets this reply	 it
invokes the callback function	 which could synchronize onto the returned results	 through
the pointer to the trustee which is used as a parameter in the delegate code in
gure ��
Invoking the trustee from the delegate is legal because the trustee is still allocated and
only marked as being discarded� When the callback function has been completed	 the run
time system deallocates the trustee and performs all housekeeping	 as the trustee had been
marked as discarded�

This way	 the common case that one wants to invoke a remote service and only wants

��

� � �

Trustee pt MyTrustee � TrusteeDispatch dvilpr�MyFile� MyMsgBox� MyCallback��

� � �

if�TrusteeIsReady�MyTrustee��

result � TrusteeFetch�MyTrustee� ind��

TrusteeDiscard�MyTrustee��

� � �

void MyCallback�Obj t MsgBox� Trustee pt Trustee� f

� � �

g

Figure ��� Integrated Callback Processing

to be interrupted in case something goes wrong can easily be achieved with high level
linguistic support� The code that invokes the trustee never needs to poll or discard it in
the future	 as the immediate discard is postponed by the run�time system to enable later
callbacks� In case everything ends well	 the postponed discard becomes e�ective� When
an exceptional condition occurs	 the callback is invoked to report the exception� After
the callback handling completed	 the postponed discard becomes operational� This way	
housekeeping is performed at the right moment without the need to use low level code�

We believe that this style of programming is common for the mobile computing
eld	
as notebooks often serve as presentation front ends� The trustee and delegate concept is
the
rst high level linguistic support to this style of programming without the need to use
a low level interface	 like a thread library�

��� Integrated Callback Processing

The
re�and�forget programming style can be supplemented by elements of the asyn�
chronous programming paradigm� Here	 the main program can synchronize on the results
of the asynchronous invocation� Besides this exceptional conditions can be reported actively
via callbacks� A simple example for this style of programming is given in
gure ���

The trustee remains once again allocated until the TrusteeDiscard operation is in�
voked� Hence	 both the callback and the synchronization in the main code operate on a
legal trustee reference� This style of programming can for example be employed when the
main program is an interactive application itself� Here the callback can be used to report
to the user that some operation has been completed� The user can decide whether he wants
to follow the noti
cation immediately to inquire the results or to complete his current task
before looking at the results�

��

Client

Delegate-
Interperter

Application

Universal-
Interface

Trustee

Universal-
Stub

Proxy
Delgate

Native
Server

Universal-
Interface

Figure ��� Overall system architecture

� System Support

In this section the system architecture is described� Thereafter a development cycle is
pointed out which is similar to the development process in other RPC systems� A brief
description of implementation aspects of delegate proxies and trustees follows� The section
closes with an example of DIL�

��� System Architecture

The overall system architecture is depicted in
gure ��� The delegate itself is an interpreter
which executes a script downloaded with an invocation message� How these scripts can be
derived from a DIL�speci
cation is explained in the next subsection� The client side of the
architecture comprises a run�time incarnation of trustees which serve as equivalents to the
well known RPC�stub concept� The trustee communicates via an universal stub with the
proxy delegate� Invocations	 results	 callback invocations	 and interpretable delegate code
are transferred over that stub� This is described later in this section� The interpreter uses
a universal interface to mimic general remote procedure calls� This way native servers can
be accessed unmodi
ed� Note that this allows to introduce trustees and delegates into an
environment comprising many existing services�

The system consists of three parts�

� DC	 a compiler generating delegate scripts from DIL�speci
cations	

� a proxy delegate	

� a trustee run�time library�

��� The Development Cycle

RPC�based systems have become popular not only because of the simplicity of the under�
lying client�server paradigm but also because of an development cycle which allows the
integrated development of remote applications� To keep this bene
t we have to de
ne an in�
tegrated development process for systems comprising trustees and delegates� The resulting
cycle is given in
gure ���

��

service_xdr.c

service.dil

DC

service_clnt.c

CC

rpc.x

LD

service.h service.tcl

Client
Proxy

Delegate

DEVELOPMENT
APPLICATION

Figure ��� The integrated development cycle

The development process rests on the type declarations which are employed by the
client and the interface de
nition
les	 normally used by the basic RPC system for gen�
erating RPC stubs� Together with the delegate�de
nition written in DIL �Delegate In�
struction Language� they form the input of the Delegate Compiler DC� DC produces an
interpretable code which can dynamically be installed on the proxy delegate at the
xed
network� The other
les produced by DC are used in developing the client application� One
of them is a header
le which de
nes the trustee interfaces for all delegates� The other two
implementation
les code type speci
c trustee�stub routines and stubs implementing the
universal interface�

��� The Proxy Delegate

Implementing the RPC�based realization of the concepts has to be tailored tightly to the
RPC system which is employed by the servers� We chose ONC RPC as our validation
vehicle because it is easy to access basic run�time routines of the ONC package via well
documented interfaces Blo���� This is necessary to allow the proxy delegate to mimic a
real client stub via its universal stub�

As the basic code interpreter for the proxy we use Tcl Ous���� We extended the inter�
preter with code to access the universal interface	 with code that allows for the management
of explicit type information as needed by the RPC system	 and with routines that allow
the easy mimicking of RPC stubs� An example for a Tcl script produced by our compiler
DC can be found in section ����

��

ClntCall �ProcName �ServerName �Input �Input t n

Output Output t

Figure ��� RPC with Tcl

With our extensions a call to a remote procedure in Tcl looks like the fragment depicted
in
gure ��� All input and output parameters are coded into one complex parameter as
usual for ONC RPC Blo���� Each parameter is followed by its type descriptor to allow
the coding into or from the external data representation XDR Sun��� used by the RPC
system�

The Function ClntCall�� uses the explicitly given type descriptors for the parameters
to construct complex XDR
lter routines for parameter�marshalling at run�time from
basic XDR
lters that marshal simple types like integers� This way	 arbitrary clients are
mimicked at run�time	 so that native RPC servers can be accessed� Note that we cannot
simply use compiled complex XDR
lters as common RPC stubs do	 because at compile
time the set of servers that will be accessed via the proxy delegate is unknown� Hence	
using complex XDR
lters would need system support to install code dynamically�

The basic XDR
lters are dynamically combined as follows� A type descriptor for use
in the proxy delegate represents a type de
nition in a nested list structure� A symbol that
does not code a basic type like an integer for which a XDR
lter exists marks another type
descriptor� This way recursive de
nitions are structured� An example is given in
gure ���
It depicts two type de
nitions in XDR and their corresponding type descriptors generated
by DC� As the symbol exp t in u t�s descriptor does not stand for a basic type it refers to
a complex type descriptor� Note that DIL uses XDR style type de
nitions�

With these Tcl�extensions a delegate invocation proceeds as follows� After recepting
an invocation message a delegate server creates a Tcl interpreter which is initialized with
the delgate script� The script contains type descriptors which are used to unmarshall input
paramters� Thereafter the control is given to the interpreter to execute the script� Every
ClntCall�command encountered by the interpreter causes an RPC� Once again the type
descriptors are used for marshalling and unmarshalling of input parameters and results�
Finally	 the results and are marshalled and sent back to the client trustee�

��� Run�Time Support

A trustee object consists of two parts	 stubs and run�time routines� The stubs are created
by DC according to the interface de
nition written in DIL� To simplify stubs and compiler
most of the trustee tasks are handled by run�time routines� Stubs provide a convergence
layer to the library functions� The speci
c trustee functions are mapped to a small set
of run�time routines handling delegate RPC calls and results and managing callbacks�
Furthermore the run�time system takes care of allocating and releasing of trustee resources�

To allow for asynchronous invocation of trustee�operations and deferred result handling

��

union u t switch �int errno� f

	 � int status�

� � exp t member�

g�

struct exp t f

int i�

string s�	��

float f�

g�

u t funion fint f	 intg f� exp tggg

exp t fstruct fint fstring 	g floatgg

Figure ��� Type descriptions in XDR�DIL and Tcl

the trustee�code is multi�threaded� The run�time routines provide for synchronization of
callbacks and trustee operations� Being multi�threaded trustees need more support by a
operating system than the proxy delegate� Since there is no standard interface for threads
except POSIX which is not available for all platforms an independent interface is used�
Accordingly	 any operating systems supporting some kind of threads can be used by pro�
viding that interface� Using the widely held SUN�RPC and Tcl which are available on
various platforms our the delegate implementation is far�reaching portable� Currently we
have implemented our system on plattforms running OSF��	 SunOS ���	 Solaris ���	 and
Linux �������

��� Example

In this section an elaborated example is given which demonstrates how to use DIL� Recon�
sider the dvi�to�ps example depicted in
gure �� A simple DIL�description implementing
that task as a
re�and�forget RPC is shown in
gure �� and ��� DviPs and Lpr are the
native services which are accessed via the delegate� They are de
ned in the RPCL spec�
i
cation dvi�x imported by the de
nition frame� RPCL is a de
nition language used by
ONC�RPC to de
ne service interfaces and types �c�f� Blo����� A service de
nition writ�
ten in RPCL can be used with DIL without changes� This service gets in f as an input
parameter	 its type is de
ned in TYPE section� The service DviPs is called to produce a
postscript representation of the input� If that service succeeds the LPR service is called
to print the
le� If no error occurs the service is executed silently� Otherwise a callback
procedure �Alert� is invoked which may notify the error to the user� It takes a string as an
input parameter� This string is transferred to the calling trustee which invokes the callback�
Note that the native server hosts nemesis and kastor are hard coded in this example for

��

Delegate Interface PrintDvi

IMPORT

�dvi�x��

USES

DviPs�

Lpr�

TYPE

string str t���

IN

str t in f���

LOCAL IN

OUT

CALLBACK

void Alert �str t��

END�

Figure ��� DVI�PS
lter interface

Delegate Implementation PrintDvi

DECLARE

str t ps���

int result�

BEGIN

ps �� DviPs��nemesis�� in f��

IF ps � �� THEN

Alert��DVI�PS ERROR���

RETURN�NULL��

END�

result �� Lpr��kastor�� ps��

IF result � �� THEN

Alert��LPR�ERROR���

END�

RETURN�Result��

END�

Figure ��� DVI�PS
lter in DIL

brevity	 but more sophisticated name schemes can be applied�
The corresponding Tcl�script dedicated to a proxy delegate depicts
gure ��� The
rst

four lines de
ne the type descriptors for type str	 the input and output parameters � there

��

set str t fstring maxg

set arg in ffstr �g g
set arg out fg
set arg cb Alert fstr tg

set arg result funion fint f	 arg outg f� arg cb Alertggg

proc main fg f
upvar � � ��

set �� �ClntCall ProcNr � �nemesis� tcp � �� str t 	 str t�

if f� �� �� ��g f

Alert � �DVI�PS ERROR�

g

else f
set � �ClntCall ProcNr �kastor� tcp � �� str t � int�

if f� � �� ���g f

Alert � �LPR ERROR�

g

g
g

Figure ��� Delegate�script for DVI�PS
lter

is no output parameter in this example �	 and the signature of the callback procedure�
The
fth line describes the format of the result message	 a simple integer serves as a type
discriminator to let the trustee know whether he has to invoke a callback just deliver the
result parameter� The remainder of the script is a straight forward transcription of the DIL
program given above�

� Evaluation

In this section	 we assess the performance of our approach� Using an interpreter instead
of precompiled modules introduces execution overhead� Firstly	 the invocation message
contains not only the service arguments but the delegate script� Moreover	 every instruction
has to be parsed and interpreted each time it its encountered� As Tcl provides only the
string type every data object has to be converted into a string representation� This is done
at the time a call arrives at the proxy delegate� When the delegate calls a native server the
inverted conversion takes place� A delegate can only become faster when the complex service
it de
nes saves RPCs over the slow wireless link and allows to keep intermediate parameters
on the
xed net	 as in the dvips example� As the superiority of the delegate approach for
very slow low bandwidth links is obvious	 we were interested on its performance in the area
of considerable fast radio LANs� Note that this is the worst case scenario for the delegate

��

HubCompaq 486/Lite

Ethernet

Native Server

SUN SpacStation 20 SUN SpacStation 20

Intermediate Server
Proxy Delegate/

ARLANClient

Figure ��� Second Scenario

approach�
To assess performance the resulting degradation we used two di�erent scenarios� In the

rst scenario a native ONC�client with a corresponding native ONC�server were compared
to a call from the Tcl interpreter through our universal stub ClntCall to the same native
ONC�server� We measured how long a call parameterized with an array of integers lasts�
The server only printed the number of bytes received� As a mobile station we used a
Compaq ���DX��Lite Notebook equipped with � MB main memory	 MS�Windows ����	
and a ARLAN PCMCIA adapter that was con
gured to provide a � mbps radio link� The
proxy delegate was located on a SUN SparcStation �� with Solaris ���	 the native server
did run on another SUN SparcStation ��� The testbed structure is shown in
gure ���
The results are given in
gure ��� Note that this is basically an unfair comparison� The
native call only has to pass the stub on the client side and demarshalling procedure on the
server side� The delegate approach
rst has to pass the stub on the client side	 then the
demarshalling on the proxy delegate	 the interpretation inside the delegate	 the universal
stub of the delegate and
nally the demarshalling at the native server� Thus	 the delegate
approach must perform worse� It can only develop its strength when a real complex service
with intermediate parameters is used�

To compare our approach to an approach using precompiled modules	 an intermediate
server was added to the scenario� That server simply passed the calls form the client to
the other server� This result is also included in
gure ��� The comparison is once again
unfair	 as a simple pipeline module naturally has to perform better than an interpreter
that decodes and encodes the parameters� All in all	 this comparison revealed that the
interpreter approach has about half the performance of the native pipelining approach�

To infer the reason for this degradation	 we made another test that used more modern
equipment� So we compared the interpreter approach to the native approach on two mod�
ern DEC AXP �������� workstations on a lightly loaded Ethernet� The obtained results
are given in
gure ��� The
gure shows that the overhead is in the order of ���� The
overhead is bigger for small transfers	 as the interpreter imposes a basic constant overhead�
Unfortunally the lab with the AXPs is currently not equipped with a wireless link to enable
a direct comparison to
gure ���

A more elaborate interpretation of
gures �� and �� now unreveals the reasons for
the performance degradation in the
rst scenario� Firstly note	 that a native Null�RPC
between two AXPs did last about �ms	 while the native Null�RPC between the mobile

��

0

500

1000

1500

2000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

[m
s]

[bytes]

Client-Server
Client-Server1-Server2
Client-Delegate-Server

Figure ��� Comparison between delegates and compiled servers

0

5

10

15

20

25

30

0 2 4 6 8 10 12 14 16 18

[m
se

c]

[kb]

Delegate
native RPC

Figure ��� Comparison between delegates and native RPC

client and the
xed server �i�e� without delegate� did last about ���ms� The Null�RPC
with the intermediate Pipeline did cost ���ms� Hence	 marshalling and unmarshalling can
last at most ��ms on the Suns� So parts of the di�erence between the �ms and the ���ms
can be blamed to the slower workstation� However	 a di�erence of about ��ms between
the wireless Null�RPC and the Ethernet Null�RPC remains� This means that delegation
is in principle a good idea	 as the di�erence between the wireless and the
xed network
performance is worth the expense to run an interpreter on a fast workstation and delegation
reduces the number of mobile RPCs for the price of interpretation�

Secondly we compare the two
gures for a payload of �KB� The Client�Delegate�

��

Server performance is ���ms� This comprises unmarshalling and marshalling again at the
delegate� The basic overhead for installing the delegate is equal to the duration of the Null�
RPC of ���ms in the client�delegate�server scenario� The di�erence	 i�e� ���ms is due to
the processing overhead for the marshalling and unmarshalling in the client	 delegate	
and server and in addition for the interpretation overhead� When we compare this to the
complete time for an Delegate�RPC between two AXPs	 which is �ms	 it becomes clear
that most of the overhead results from the slow workstations used in
gure ���

All in all	 the so far obtained results give us a strong feeling that the performance
degradation for the delegate approach will vanish with modern hardware� Unfortunately
we are currently unable to produce the
gures for the inclusion of AXPs as proxy servers�
But we will give them in the
nal version of this paper	 as our own mobile computing lag is
currently build and will become operational at latest in November� Then we will not only
run the same tests as in
gure �� to infer the real impact of the slower hardware but also
measure break�even points for the size of intermediate parameters when a complex service
realized in a delegate becomes faster as the use of independent RPCs over the wireless link�

� Related Work

Most of the related work is found in the context of asynchronous RPC systems� An overview
of asynchronous RPC systems is given in the survey paper AnT���� As mentioned above	
our basic trustee functionality is borrowed from the futures approach of the Cronus Sys�
tem WFN���� Also	 ASTRA ATK���	 a system employing RPC as a general structuring
paradigm for interprocess communication	 is close to the basic functionality� None of the
known approaches integrates a mechanism which is similar to our callback integration�
Although	 callbacks are sometimes used to extend RPC facilities � OSF DCE BGH����
being one of the best known examples � those callbacks only provide a server with a
procedure handle on the client side� The call to the procedure and the correct handling
of the callback reference has to be programmed into the server code explicitly� Those call�
backs are generally used to request additional information from the client along an upcall
philosophy� Thus it is impossible to use o��the�shelf servers and equip them with call�
back procedures to signal certain exceptional conditions to the client� Hence	 programming
styles like the
re�and�forget approach are hard to realize� But those features make our
approach attractive for use in the mobile context� Furthermore	 the handling of both local
and remote references in the trustee is a unique feature that facilitates the task to develop
clients well tailored for the mobile computing context� Those features could be emulated in
using conventional synchronous RPC and threads �e�g� in OSF DCE BGH����� for paral�
lelism in the client� Although the functionality could be achieved	 the level of abstraction
is lower by far� Especially synchronization between the threads and integration of callbacks
has to be handcrafted for each invocation� Thus the trustee and delegate concept provides
an abstraction to keep the client programmer from steadily reinventing the wheel�

Basically	 the combination of trustees and delegates could be seen as form of agent�
based�computing �ABC	 c�f� Woo��	 WoJ����� Indeed	 the idea to ship scripts over a

��

network for dynamically installing programs on the
xed network is also found in Tele�

script Whi��	 Hou��� or the Messenger approach Tsc���� Although	 we share the central
idea to delegate a script to the
xed network and to defer synchronization on the results
until they are needed	 the known script approaches aren�t well integrated in an existing
service market and don�t provide a seamless linguistic integration� Moreover	 no integrated
development cycle is given and scripts cannot become active with respect to the client as is
possible through our callback interface� Finally	 the focus to use an generic interpreter to
dynamically build complex RPC�operations based on non�modi
ed RPC�servers	 is novel�

Modeling complex services has also been discussed in the distributed systems man�
agement community Kel���� So called complex services were employed to achieve fault
tolerance through dynamic recon
guration in case parts of the server population goes
down during an execution� Contrary to our approach	 operations aren�t combined to serve
the speci
c needs of clients� The de
nitions of complex services have to be given by an
administrator who instead writes executable programs that de
ne the mapping between
simple and complex services� Once again	 the seamless integration is missing�

Finally	 our ideas are related to work�ow management systems �c� f� CaB����� A del�
egate can be seen as an entity that implements a short time work�ow that is executed
inside the
xed network� However	 the similarities are only super
cial� Instead of spec�
ifying long�lasting work�ows which comprise several elementary business activities	 we
dynamically de
ne short combinations of existing operations� Hence	 graphical speci
ca�
tion facilities and dedicated run�time support comprising databases	 application speci
c
tools	 and groupware systems which form the core of work�ow systems are irrelevant to
our problem of delegating program execution� On the other hand	 the features which are
necessary to enable the delegation of remote operations execution in mobile computing
� namely seamless linguistic integration	 dynamic installation of operation services	 and
deferred synchronization � are irrelevant to the problem of combining business activities
to long�lasting work�ows�

	 Conclusions and Outlook

In this paper we presented an approach to delegate the execution of dynamically composed
remote operations from a mobile client to a generic proxy server on the
xed network�
This allows for combing o��the�shelf servers as needed by clients	 tailored to the speci
c
requirements of mobile computing like disconnection prone links with low bandwidth� We
discussed how two run�time entities	 the trustee on the client�side and the delegate on
the side of the
xed network	 are used to provide a homogeneous and easy to integrate
enhancement to existing distributed computing environments� Furthermore	 we reported
about our current initial prototype implementation	 basing on ONC RPC	 and our initial
experience�

One open question is the problem of whether there exist implicit methods to control
the lifetime of delegates� Although the presented explicit primitives o�er straightforward
solutions for most cases	 some programmers may have di�culties to use them correctly�

��

Performance of the proxy delegate could be improved	 if we only copied data needed
by the delegate code in its Tcl representation� Doing this requires data �ow analysis inside
DC� We plan to exploit this possibility to test whether the improvements are worth the
expense�

As delegate code is carried inside mobile clients and dynamically installed in the proxy
delegates on demand	 the concept can be exploited to carry client�speci
c complex ser�
vices into visited host networks� Our current implementation does not comprise security
measures to prevent clients form installing their delegates� De
nitely one has to include
means for authentication and accounting before qualifying the concept for everyday usage�

Finally	 we plan to assess how trustees and delegates could be integrated with replication
mechanisms that allow disconnected operations	 c�f� KiS���� When a seamless integration
becomes possible	 some invocations on trustees needn�t be forwarded to the delegates im�
mediately� Instead of following the immediate transfer philosophy	 the system could exploit
bandwidth variations to choose transfer strategies and lifetime speci
cations for delegates
according to the current situation on the network�

Acknowledgements

We are grateful to J�orn Hartroth for his detailed comments on an earlier version of this
paper� We are also extremely indebted to the team of the mobile computing laboratory of
Daimler Benz � especially to Norbert Diehl and Torsten Reigber � for allowing us to use
their facilities as our test platform�

References

�Ans��� Architecture Projects Management Ltd� ANSAware ��� Application Programmer�s

Manual� March ����

�AnT��� A� L� Anada� B� H� Tay� A Survey of Asynchronous Remote Procedure Calls� Op	
erating Systems Review� Vol� �
� No� �� April ����� pp�
�	��

�ATK��� A� L� Anada� B� H� Tay� E� K� Koh� ASTRA � An Asynchronous Remote Proce�
dure Call Facility� Proc� ��th International Conference on Distributed Computing
Systems ICDCS����� Arlington� Texas� May ����� pp� ���	���

�BAI��� B� R� Badrinath� A� Acharya� T� Imielinski� Impact of Mobility on Distributed Com�

putations� Operating Systems Review� Vol� ��� No� �� August ����� pp� �����

�BGH���� M� Bever� K� Geihs� L� Heuser� M� M�ulhh�auser� A� Schill� Distributed Systems� OSF
DCE� and Beyond� in� A� Schill Ed��� DCE 	 The OSF Distributed Computing En�
vironment
 Client�Server Model and Beyond� Springer� Lecture Notes in Computer
Science� No� ���� Berlin� ����� pp� ����

�Blo��� J� Bloomer� Power Programming with RPC� O�Reilly � Associates� Sebastopol�
California� ����

�CaB��� J� C� McCarthy� W� M� Bluestein� The Computing Strategy Report
 Work�ow�s
Progress Forrester Research Inc�� Cambridge� ����

��

�Coo��� E� C� Cooper� Replicated remote Procedure Calls� Proc� �rd Annual ACM Sympo	
sium on Principles of Distribued Computing� Vancouver� Canada� August ����� pp�
�������

�FoZ��� G� H� Forman� J� Zahorjan� The Challenges of Mobile Computing� IEEE Computer�
Vol� ��� No� �� April ����� pp� �����

�Hou��� J� v� Houdt� Personal Telecooperation Assistance� In� K� Brunnstein� E� Raubold�
Proc� �th World Computer Congress� Elsevier Science B� V� North	Holland�� Au	
gust�September ����� pp� ��	��

�ISO��� ISO�IEC CD ����
��� Information Technology � Basic Reference Model of Open
Distributed Processing� December ����

�Kel��� L� Keller� Trading of Complex Services in Distributed Systems� �th IFIP�IEEE
International Workshop on Distributed Systems� Operations � Management
DSOM����� Toulouse� France� October ����

�KiS��� J� J� Kistler� M� Satyanayanan� Position Paper
 Transparent Disconnected Oper�
ations for Fault	Tolerance� Operating Systems Review� ����� January ����� pp�
�����

�MoS��� Markus U� Mock� Alexander B� Schill� Design and Implementation of Distributed

C��� In� Peter P� Spies �Proc� Euro	Arch���� Springer�Verlag� M�unchen� October
����� pp� �
�����

�Nel��� B� J� Nelson� Remote Procedure Call� Ph�D� Dissertation� Carnegie�Mellon Univer	
sity� May ����

�Omg��� The Object Management Group Inc�� Object Management Architecture� OMG TC
Document �������� September ����

�Omg��� The Object Management Group Inc�� The Common Object Request Broker
 Archi�

tecture and Speci�cation� OMG Document No� ��������� Revision ���� ����

�Ous��� J� K� Ousterhoust� Tcl and the Tk Toolkit� Addison�Wesley Professional Computing
Series� Reading� MA� ����

�Sat��� M� Satyanayanan� Mobile Computing� IEEE Computer� Vol �
� No� �� September
����� pp� �����

�Sun��� Sun Inc� RFC ��
 XDR � External Data Representation Standard� ����

�Tan��� A� S� Tanenbaum� Distributed Operating Systems� Prentice Hall International Inc��
Englewood Cli�s� New Jersey� ����

�Tsc��� C� F� Tschudin� An Introduction to the M� Messenger Language� Technical Report
�
� Centre Universitaire d�Informatique� University of Geneva� May ����

�WFN��� E� F� Walker� R� Floyd� P� Neves�Asynchronous Remote Operations in Distributed
Systems� Proc� ��th International Conference on Distributed Computing Systems
ICDCS����� Paris� France� May�June ����� pp� ���	���

�Whi��� J� E� White� Telescript Technology
 The Foundation for the Electronic Marketplace�
General Magic White Paper� ����

�WoJ��� M� J� Wooldridge� N� R� Jennings� Agent Theories� Architectures� and Languages�
In� M� J� Wooldridge� N� R� Jennings� Interacting Agents � Theories� Architectures�
and Languages� Springer Verlag� Berlin� Lecture Notes in Computer Science� No�
���� January ����

��

�Woo��� A� Wood� Agent	Based Interaction� Internal Report� University of Birmingham�
School of Computer Science� May ����

�YJT��� K� S� Yap� P� Jalote� S� Tripathi� Fault Toerant Remote Procedure Call� Proc� �th

International Conference on Distributed Computing Systems� San Jose� California�

USA� June ����� pp� �����

��

