
Common Syntax of the DFG-Schwerpunktprogramm

\Deduktion"

Reiner H�ahnle

Fakult�at f�ur Informatik

Universit�at Karlsruhe

D-76128 Karlsruhe

reiner@ira.uka.de

Manfred Kerber

School of Computer Science

The University of Birmingham

Birmingham, B15 2TT, England

M.Kerber@cs.bham.ac.uk

Christoph Weidenbach

Max-Planck-Institut f�ur Informatik

Im Stadtwald

66123 Saarbr�ucken

weidenb@mpi-sb.mpg.de

Abstract

A common exchange format for logic problems to be used by members of the DFG-Schwerpunkt-

programm \Deduktion" is introduced. It is thought to be an internal format that can easily be parsed

such that it forms a compromise between the needs of the di�erent groups. It is not intended to be a

high-level general logic language that is easy to read or to write. The language is more general than

other popular exchange formats such as Otter or TPTP in allowing non-clausal and sorted formulas as

well as user-de�ned operators and quanti�ers. The latter feature makes it also useful for non-classical

logics.

1 Introduction

The language proposed in the following is intended to be a common exchange format for logic problem
settings. It is thought to be an internal format that can easily be parsed such that it forms a compromise
between the needs of the di�erent groups. Therefore, it is kept as simple as possible. This language is
not intended to be a high-level general logical language that is easy to read or to write.

In any case it will be necessary to provide tools that transform �les from the present syntax into other
standard formats (e.g., Otter [6] or TPTP [9]) and vice versa.

Terminal symbols are underlined or one of the following symbols `)', `(', `.', `,', or `-'.

2 Problems

What we exchange are problems. Problems are stand alone �les, with respect to possible inclusions (see
Section 6), that describe one speci�c �rst-order logic problem.

problem ::= begin problem(label).

description

logical part

fsettingsg�

end problem.

1

The description provides at least information for the identi�cation of the problem like problem's
name, author's name, version, date, and informal description (see Section 4). If the logical part contains
non-standard operators or quanti�ers they have to be explained here. The explanation should contain,
if possible, translation rules to standard �rst-order logic. Settings contain problem speci�c setting in-
formation as well as prover dependent strategic directives like restrictions on the term depth, directives
for the compiler, set-of-support etc. The logical part contains the pure problem. The problem should be
uniquely determined by this part alone.

3 The Logical Parts

Identi�ers for function, predicate and sort symbols, constants are subject to the unique name assumption
and mutually exclusive with the set of terminal symbols. The same holds for variables within the same
scope of quanti�ers.

logical part ::= fsymbol listg fdeclaration listg fformula listg�

All signature symbols as well as additional operators and quanti�ers have to be declared in advance
in the symbol list of a problem. An arity may be given in the declaration. The arity may either be
\-1", meaning arbitrary arity, or a non-negative number for some �xed arity. If no arity is given, the
symbol is declared with �xed arity according to the formula part. Therefore, symbols with varying arity
have to be declared explicitely.

symbol list ::= list of symbols.

ffunctions[func sym farityg f,func sym farityg g�].g

fpredicates[pred sym farityg f,pred sym faritygg�].g

fsorts[sort sym f,sort symg�].g

foperators[op sym farityg f,op sym faritygg�].g

fquantifiers[quant sym farityg f,quant sym faritygg�].g

end of list.

arity ::= -1 | number

The sort declarations are optional. They can be mapped to standard �rst-order logic by the usual
relativization rules. Sorts may be used as unary predicate symbols in the logical part.

declaration list ::= list of declarations.

fdeclarationg�

end of list.

declaration ::= subsort decl | term decl | pred decl

subsort decl ::= subsort(sort sym,sort sym).

sort sym ::= identifier

term decl ::= forall(var list,term expr) | term expr.

term expr ::= sort sym(term)

pred decl ::= predicate(pred symf,sort symg+).

We treat axioms and conjectures di�erently. Strategies like goal-oriented reasoning are speci�ed in the
settings part. Optionally each formula can be given a label. The list of formulas is logically interpreted
to the conjunction of its parts. Logically, the axioms list and the conjectures list form an implication:
axioms � conjectures . Therefore, the formulas to be proved should not be put in negated form in the
conjecture list.

2

formula list ::= list of axioms | list of conjectures.

fformula(fformula | cnf clause | dnf clausegf,labelg).g�

end of list.

label ::= pred expr

Formulas are either quanti�ed expressions or ground expressions.

formula ::= quant formula | log op formula | atom

cnf clause ::= forall(var list,cnf clause body) | cnf clause body

dnf clause ::= exists(var list,dnf clause body) | dnf clause body

Clauses are a subset of the set of formulas. We do not allow implicit quanti�cation, that is, formulas
and clauses must not contain free variables. All unbound simple terms are interpreted as constants.
The rationale behind this is that the interpretation of a problem should be determined by the problem
format, not by the prover. In Otter, e.g., free variables in clauses are implicitly universally quanti�ed,
while variables in formulas are implicitly existentially quanti�ed. Moreover, variables must begin with
u,v,w,..., constants with a,b,c,.... We �nd this confusing.

cnf clause body ::= or(literalf,literalg�)

dnf clause body ::= and(literalf,literalg�)

literal ::= un op(atom) | atom

Note that unit clauses are of the form `or(literal)'. The empty clause may be speci�ed as `or(false)'.

quant formula ::= quantifier(term list,formula) | quantifier(var list,formula)

quantifier ::= forall | exists | quant sym

quant sym ::= identifier

For single variables the notation is still: `forall([x],phi)'. Quanti�ers di�erent from forall and exists

have to be declared in advance. For the standard �rst-order logic quanti�ers we only allow variables in the
term list or var list. However, we can think of other quanti�ers, e.g. a modal believe operator indexed
with some agent, where a \quanti�cation" on other terms makes sense. In addition to the term list,
the var list allows the introduction of sorts.

var list ::= [variable exprf,variable exprg�]

term list ::= [termf,termg�]

variable expr ::= variable sym | sort sym(variable sym)

variable sym ::= identifier

Formulas that do not start with a quanti�er are built in the usual way.

log op formula ::= un op(formula) | bin op(formula,formula) |

n op(formulaf,formulag�)
un op ::= not | op sym

bin op ::= implies | implied | equiv | op sym

n op ::= and | or | op sym

The operators or and and are available for all arities greater than 0.

atom ::= zero op | pred expr | equation

zero op ::= true | false | op sym

op sym ::= identifier

3

We think of 0-ary connectives (truth values) as atoms.

pred expr ::= pred symf(termf,termg�)g | sort sym(term)

equation ::= equal(term,term)

pred sym ::= identifier

0-ary predicates are allowed.

term ::= constant | variable | fun sym(termf,termg�)
constant ::= identifier

fun sym ::= identifier

identifier ::= fletter | digit | special symbolg+

letter ::= a{z | A{Z

number ::= fdigitg+

digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

special symbol ::=

3.1 Example without Sorts

We start with a complete description of Pelletier's [7] problem No. 57:

begin problem(Pelletier57).

list of descriptions.

name(Problem No. 57 from the Pelletier Collection).

author(F.J. Pelletier, ``Seventy-Five Problems for Testing Automatic

Theorem Provers'', Journal of Automated Reasoning, 2(2):191--216,1986).

status(unsatisfiable).

description(This is a simple problem.).

end of list.

list of symbols.

functions[f 2,a,b,c].

predicates[F].

end of list.

list of axioms.

formula(F(f(a,b),f(b,c)),ax1).

formula(F(f(b,c),f(a,c)),ax2).

formula(forall([x,y,z], impl(and(F(x,y),F(y,z)),F(x,z))),ax3).

end of list.

list of conjectures.

formula(F(f(a,b),f(a,c)),co1).

end of list.

end problem.

4

3.2 Example with Sorts

We describe the logic part of an equality problem containing the natural numbers.

list of symbols.

functions(plus,s,zero).

sorts(even,nat).

end of list.

list of declarations.

subsort(even,nat).

even(zero).

forall([nat(x)],nat(s(x))).

forall([nat(x),nat(y)],nat(plus(x,y))).

forall([even(x),even(y)],even(plus(x,y))).

forall([even(x)],even(s(s(x)))).

forall([nat(y)],even(plus(y,y))).

end of list.

list of axioms.

formula(forall([nat(y)],equal(plus(y,zero),y)), ind start).

formula(forall([nat(y),nat(z)],equal(plus(y,s(z)),s(plus(y,z)))), ind step).

end of list.

4 Descriptions

description ::= list of descriptions.

name(text).

author(text).

fversion(text).g

flogic(text).g

status(log state).

description(text).

fdate(text).g

end of list.

log state ::= satisfiable | unsatisfiable | unknown

We allow aribitrary text that is compatible with the syntax. The logic part is mandatory, if the
problem contains non-standard operators or quanti�ers.

5 Settings

The settings contain problem and system speci�c information such as switches, lists of formulas that
are treated specially, hints for the compiler etc. The settings consist of a general setting section and
various system dependent sections. The content of the general setting section is currently restricted to
an enumeration of \hypotheses", that are formulas of the conjecture part which are compatible with the
axioms. The axioms in conjunction with the hypothesis are satis�able. The general section part is open
to extensions if needed.

For the system dependant sections we require a unique label for each system. There are no restrictions
for the content of these sections except the compatibility with the syntax.

5

settings ::= list of general settings fsetting entryg+ end of list. |

list of settings(setting label). text end of list.

setting entry ::= hypothesis(label f,labelg�)

setting label ::= KIV | LEM | PROTEIN | SATURATE | 3TAP | SETHEO | SPASS

The labels name the following systems: KIV [8], LEM [4], PROTEIN [1], SATURATE [3], 3T
A
P [2],

SETHEO [5], SPASS [10]. For example, to specify a set of support one may (i) give labels to the
formulas/clauses that have support and (ii) list these labels in a list under some keyword set of support:

list of settings(SPASS).

set of support(ax1,ax2,ax3).

precedence(a,b,c,f,F).

end of list.

6 Miscellaneous

6.1 Comments

After the `%' symbol the rest of line is ignored. Comments stretching over several lines may be enclosed
by a `/*', � � �, `*/' pair.

6.2 Includes

At any part of a problem, another �le might be included by

include(filename)

Includes are a necessary means to structue problems. However, they should be used with some care
because with \includes", problem �les are no longer stand alone documents. In order to avoid the problem
of di�erent pathname conventions on di�erent machines, only �les being in the same directory can be
included.

Acknowledgements

We would like to thank all members of the German \Schwerpunkt Deduktion" group who contributed to
this paper. Special thanks to Enno Keen and Andreas Nonnengart who proof-read several preliminary
versions of this paper.

References

[1] Peter Baumgartner and Ulrich Furbach. PROTEIN: A PROver with a Theory Extension I nterface.
In A. Bundy, editor, 12th International Conference on Automated Deduction, CADE-12, volume 814
of LNAI, pages 769{773. Springer, 1994. Available in the WWW, URL:
http://www.uni-koblenz.de/ag-ki/Systems/PROTEIN/.

[2] Bernhard Beckert, Stefan Gerberding, Reiner H�ahnle, and Werner Kernig. .The Many-Valued

Tableau-Based Theorem Prover 3T
A
P . In D. Kapur, editor, 11th International Conference on Auto-

mated Deduction, CADE-11, volume 607 of LNAI, pages 758{760. Springer, 1992. Available in the
WWW, URL: http://i12www.ira.uka.de/~threetap/.

6

[3] Harald Ganzinger and Robert Nieuwenhuis. The Saturate System 1994. http://www.mpi-
sb.mpg.de/SATURATE/Saturate.html.

[4] Birgit Heinz. Anti-Uni�kation modulo Gleichungstheorie und deren Anwendung zur Lemmagener-

ierung. PhD thesis, TU Berlin, Dec 1995.

[5] Reinhold Letz, Johann Schumann, S. Bayerl, and Wolfgang Bibel. SETHEO: A High-Performance
Theorem Prover. Journal of Automated Reasoning, 8(2):183{212, 1992.

[6] William McCune. Otter 2.0 users guide. Report ANL-90 9, Argonne National Laboratory, March
1990.

[7] Francis Je�ry Pelletier. Seventy-�ve problems for testing automatic theorem provers. Journal of

Automated Reasoning, 2(2):191{216, 1986. Errata: Journal of Automated Reasoning, 4(2):235{
236,1988.

[8] Wolfgang Reif. The KIV-approach to Software Veri�cation. In M. Broy and S. J�ahnichen, editors,
KORSO: Methods, Languages, and Tools for the Construction of Correct Software { Final Report,
volume 1009 of LNCS. Springer, 1995.

[9] Geo� Sutcli�e, Christian Suttner, and Theodor Yemenis. The TPTP problem library. In Alan
Bundy, editor, Twelfth International Conference on Automated Deduction, CADE-12, volume 814 of
Lecture Notes in Arti�cial Intelligence, LNAI, pages 252{266, Nancy, France, June 1994. Springer.

[10] Christoph Weidenbach, Bernd Gaede, and Georg Rock. SPASS & FLOTTER, Version 0.42. Sub-
mitted, available via ftp from ftp.mpi-sb.mpg.de in the directory pub/SPASS named fass.dvi, see
also the SPASS distribution in the very same directory spass.0.42.tgz, 1996.

7

