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What is it people want to hear about an implementation? Most likely
they will be content to hear that it works, or better that it works extre-
mely well. Who cares on the sun deck of a cruise ship what happens in the
engine-room? There is some excuse for this attitude: implementation is
often associated with nitty-gritty details, with cumbersome work-arounds
caused by insu�cencies of the programming language, or with genial short
cuts through several levels of abstraction in the speci�cation. This is de-
�nitely not what we want to present in this chapter. It is tempting to
join the group in their deck chairs and talk elegantly about how one would
theoretically realize an implementation, step-by-step re�ning the top le-
vel speci�cation and carefully weighing-up all design decisions. This is a
possible approach. For this time we decided on a presentation half-way bet-
ween the two portrayed alternatives. We will present runnable code, but
in an easily accessible language that also has the advantage that some of
the important procedures used in theorem proving algorithms are already
available as built-ins or library functions. We are speaking of Prolog. The
reader is invited to type the theorem proving programs he will �nd in
this chapter into his favorite Prolog system and enjoy playing around with
them.

The programs are based on, or inspired by, the the leanTAP theorem

prover [BP94]. The idea behind leanTAP is to implement logical calculi by
minimal means. This has two advantages: Firstly, the resulting programs
are small, which makes it easier to understand them. Second, they provide
an ideal starting point as they can be easily modi�ed or adapted to speci�c
needs. Furthermore, they are more than mere toy systems and surprisingly
fast.

We will provide extensive comments on these programs and in one case
also a complete soundness and correctness proof. Di�erent alternatives
for representing the tableaux and for organizing the proof search will be
considered and exempli�ed by small Prolog programs.

A draw back of this approach is that the reader will be required to
understand Prolog. But let us hasten to assure that acquaintance with
the basic ideas of Prolog will su�ce, all of which may be found e.g. on
the �rst 22 pages of [CM81]. In addition we will need in the soundness
and correctness proof a formal semantics of the underlying programming
language. To this end we will review below the basic computation model of
Prolog, the computation tree. This o�ers another possibility for the reader
to acquire an understanding for this language or to consolidate it.

The plan for this chapter is as follows: Section 1 �xes a couple of as-
sumptions we will make for discussing our approaches to implementing ta-
bleaux. This involves some Prolog-oriented issues, as well as certain points
about the tableaux calculi underlying our implementations. In Section 2 an
algorithm for deriving Skolemized negation normal form is presented. The
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input formul� for the programs given subsequently will be in Skolemized
negation normal form. Section 3 presents the �rst and simplest version
of our theorem prover. The program has been proposed in [BP94]; here
we recall it and prove its soundness and completeness. Section 4 extends
the program by a powerful heuristic called universal formul�. Building
upon a theorem prover that represents tableaux as graphs in Section 5, we
present a compilation-based approach to tableau-based deduction in Sec-
tion 6. Section 7 discusses lemmata in tableau calculi which leads us to
Binary Decision Diagrams (BDDs). Section 8 functions as a conclusion by
giving some ideas on how one can build upon the presented programs when
working towards his or her own implementation.

1 Preliminaries
There are a couple of issues one needs to consider when carrying out im-
plementations of deduction systems. Clearly, the concrete calculus that is
to be implemented and the language chosen for an implementation are of
most importance.

We have chosen to use Prolog as the implementation language used in
this chapter. The reason for this is pragmatic: Prolog is a very conveni-
ent language for implementing �rst-order reasoning, since the primitives
of Prolog are already quite close to �rst-order logic. This allows one to
program in a very elegant and short style, as we will see in the sequel.
Nevertheless there are some subtle points to be considered if we want to
obtain e�cient code:

As we want to achieve e�cient code, we will want, to take advantage
of the strengths of Prolog systems. One is that Prologs depth-�rst search
with backtracking is usually implemented very e�ciently. Fortunately, this
is also a well-suited search strategy for implementing deduction. Unfor-
tunately, Prolog's search strategy is incomplete, since it chooses whatever
comes �rst in the database instead of having a fair selection scheme. Since
we want to implement logically complete deduction systems, we will have
to overcome this drawback; one way to tackle it is switching to a bounded
depth-�rst search. The desired completeness can be obtained by successi-
vely increasing a depth bound.1

It is also important to observe that Prolog's e�ciency is strongly enhan-
ced by indexing on the �rst argument position of the clause head. Thus,
putting the right information in the �rst argument pays o�.

The Prolog code we will give in the sequel is standard Prolog (in Edin-
burgh syntax) and should run on most Prolog systems2. We assume that

1The other choice would have been to implement fairness. But given the facts that
no convincing fairness criteria are known and the di�culty in changing Prolog's search
strategy without losing e�ciency, this is not a viable alternative.

2The code was developed and tested with Sicstus Prolog , but runs without changes
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the following Prolog predicates, user de�ned or otherwise, are available:

append/3. append(L1,L2,L3) succeeds if L3 is the result of appending the
lists L1 and L2.

unify/2. unify(T1,T2) uni�es the Prolog terms T1 and T2 by sound uni-
�cation.

Logical formul� will be represented by Prolog terms as follows:

Prolog atom atomic formula
- negation
; disjunction
, conjunction
all(X,F) universal quanti�cation with

X a Prolog variable and
F the scope of quanti�cation.

Thus (p(a),all(X,(-p(X);p(f(X))))) stands for

p(a) ^ 8x(:p(x) _ p(f(x))):

Furthermore, we assume that no variable is used twice for quanti�cation
within a set of input formul�, e.g. a formula of the form

8x(q(x) ! q(x)) ^ 8x(p(x))

should be avoided. This assumption is in fact not neccessary for using the
programs we will present, but it makes them more consise and easier to
unterstand.

As we now have presented a rough idea of the means by which we will
implement deductions, let us say a word on the calculi we will implement.

We will consider theorem provers for classical �rst-order logic without
equality and will use a tableau calculus in its free-variable version Usually
tableau calculi are set up for general formul� with many logical connecti-
ves. We decided from a presentational perspective to use only formul� in
negation normal form using only universal quanti�ers.3 Arbitrary formul�
will be reduced to this format in a preprocessing step.

The issue whether preprocessing or normalization by tableau rules du-
ring tableau expansion is the better choice is not resolved at the moment,
and maybe there will never be a de�nite answer. But separating pre-
processing from the actual proof search certainly leads to a much clearer
presentation. It is of course possible to extend the implementations we will
give below to non-negation normal form formul� without preprocessing, if
one wishes to do so.

with Quintus Prolog and Eclispe; other Prolog dialects might require little changes to
our programs.

3Note, that we do not require formul� to be in prenex normal form.
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2 Preprocessing

2.1 Computing a Negation Normal Form

Recall that the conversion into negation normal form is linear w.r.t. the
length of a formula not containing equivalences4. Most operations for de-
riving negation normal form are straightforward. What is not straightfor-
ward is coming up with a good Skolemization; this is one reason we give
a complete Prolog implementation of the conversion. The second is that
we show how to optimize the negation normal form without extra cost by
changing the order of disjunctively connected formul�.

The predicate used for computing a negation normal form is

nnf(+Fml,+FreeV,-NNF,-Paths)

Fml is the formula to be transformed, FreeV is the list of free variables
occurring in Fml, NNF is bound to the Prolog term representing the com-
puted negation normal form of Fml, and Paths is bound to the number
of disjunctive paths in NNF (resp. Fml). We will see soon what this latter
information is good for.

We implement a convenient syntax for �rst-order formul�, using as
logical connectives \v" (disjunction), \&" (conjunction), \=>" (implication),
and \<=>" (equivalence).

The Prolog query we are going to use for computing the negation normal
form of a closed formula bound to Fml is nnf(Fml,[],NNF,_) 5 . The
corresponding program is given in Figure 1. The �rst clause of the predicate
nnf (lines 1{11) corresponds to the standard rules in semantic tableaux;
nothing exciting is done|we just use tautologies for rewriting formul�. For
universally quanti�ed formul�, we add the quanti�ed variable to FreeV to
compute the negation normal form of the scope (12{13).

Skolemization has to be carried out very carefully, since straightfor-
wardly Skolemizing can easily hinder �nding a proof: In the �rst edition of
[Fit90] Skolem-termsw containing all variables that appear free on a branch
are inserted; this is correct, but too restrictive: it often prevents inconsi-
stent branches from closing. The current state of the art [BHS93] is less
restrictive: It su�ces to use a Skolem-term that is unique (up to variable
renaming) to the existentially quanti�ed formula; this term only needs to
hold the free variables occurring in the formula. An ideal candidate for
such a term is the formula itself. This way of Skolemization has actually
been known for more than �fty years: it resembles the �-formul� described
in [HB39, x1]. Lines 14{16 show how this can be elegantly implemented in
Prolog.

4If the formula contains equivalences, its negation normal form becomes exponential
when computed in a naive way; more clever algorithms result in an at most quadratic
NNF [Ede92].

5The symbol , called anonymous variable, is a convenient way to name Prolog va-
riables, you don't care about
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% Rewriting logical connectives:

1 nnf(Fml,FreeV,NNF,Paths) :-

2 (Fml = -(-A) -> Fml1 = A;

3 Fml = -all(X,F) -> Fml1 = ex(X,-F);

4 Fml = -ex(X,F) -> Fml1 = all(X,-F);

5 Fml = -(A v B) -> Fml1 = -A & -B;

6 Fml = -(A & B) -> Fml1 = -A v -B;

7 Fml = (A => B) -> Fml1 = -A v B;

8 Fml = -(A => B) -> Fml1 = A & -B;

9 Fml = (A <=> B) -> Fml1 = (A & B) v (-A & -B);

10 Fml = -(A <=> B) -> Fml1 = (A & -B) v (-A & B)),!,

11 nnf(Fml1,FreeV,NNF,Paths).

% Universal Quanti�cation:

12 nnf(all(X,F),FreeV,all(X,NNF),Paths) :- !,

13 nnf(F,[X|FreeV],NNF,Paths).

% Skolemization:

14 nnf(ex(X,Fml),FreeV,NNF,Paths) :- !,

15 copy_term((X,Fml,FreeV),(Fml,Fml1,FreeV)),

16 nnf(Fml1,FreeV,NNF,Paths).

% Conjunctions:

17 nnf(A & B,FreeV,(NNF1,NNF2),Paths) :- !,

18 nnf(A,FreeV,NNF1,Paths1),

19 nnf(B,FreeV,NNF2,Paths2),

20 Paths is Paths1 * Paths2.

% Disjunctions:

21 nnf(A v B,FreeV,NNF,Paths) :- !,

22 nnf(A,FreeV,NNF1,Paths1),

23 nnf(B,FreeV,NNF2,Paths2),

24 Paths is Paths1 + Paths2,

25 (Paths1 > Paths2 -> NNF = (NNF2;NNF1);

26 NNF = (NNF1;NNF2)).

% Literals:

27 nnf(Lit,_,Lit,1).

Fig. 1. Computing Negation Normal Form

The copy term goal in line 15 is all that is needed: its result is that
the existentially quanti�ed variable X is replaced by the original scope Fml.
Note, that we cannot implement this with X=Fml: it would result in a cyclic
term.

In Sicstus Prolog copy term behaves as if it were de�ned by

copy_term(X,Y) :-

assert('copy of'(X)),

retract('copy of'(Y)).



8 Joachim Posegga & Peter H. Schmitt

If t is a prolog term with the Prolog variables X,A,B,C then the query
copy_term((X,t,[A,B,C]),(X1,Y,[A,B,C])) succeeds binding Y to a
copy of t where X is replaced by X1. The variable X1 is new, in the
sense that any subsequent binding of X does not a�ect X1. For example,
the query

copy_term(f(X),f(Y)),X=a,Y=b.

succeeds.
The free variables FreeV must appear as an argument in both parame-

ters in line 15, since we do not want to rename them.
From a logical point of view, this might look a bit odd, as we turn

predicate symbols into function symbols when Skolemizing in this way.
However, it works under the assumption that disjoint sets of predicate and
function symbols are used. This is usually the case; if not, we can simply
\wrap" the inserted scope in a new function symbol.

The next clause (17{20) is routine, besides counting disjunctive paths.
The number of disjunctive paths in a formula (i.e. the number of branches a
fully expanded tableau for it will have) is used when handling disjunctions
(12{26): we put the less branching formula to the left. That way the

number of choice points during the proof search is reduced, since leanTAP

expands the left formula �rst.
The last clause will match literals and is again straightforward.

3 A Simple and E�cient Tableaux-based Theorem
Prover

In this section we present a simple Prolog implementation of the tableau
method for formul� in Skolemized negation normal form. This is not only
a pedagogical device, it really works: type the code from Figure 2 | we

will refer to this program by the symbol leanTAP in the following | into
your favorite Prolog system and it will run extremely well at least on small

examples. A second objective of this section is the proof that leanTAP is a
correct implementation. More precisely, we will eventually show

Theorem 3.0.1.

1. The leanTAP program terminates on all inputs.

2. If the query prove(fml,h,[],[],d) to the program leanTAP returns

success as an answer, where fml is a formula, h is a list of formul�

and d is a natural number, than :fml is a logical consequence of h.

3. If :fml is a logical consequence of h then there is a natural number

d such that the query prove(fml,h,[],[],d) to leanTAP terminates

with success.
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% Conjunction:

1 prove((A,B),UnExp,Lits,FreeV,VarLim) :- !,

2 prove(A,[B|UnExp],Lits,FreeV,VarLim).

% Disjunction:

3 prove((A;B),UnExp,Lits,FreeV,VarLim) :- !,

4 prove(A,UnExp,Lits,FreeV,VarLim),

5 prove(B,UnExp,Lits,FreeV,VarLim).

% Universal Quanti�cation:

6 prove(all(X,Fml),UnExp,Lits,FreeV,VarLim) :- !,

7 \+ length(FreeV,VarLim),

8 copy_term((X,Fml,FreeV),(X1,Fml1,FreeV)),

9 append(UnExp,[all(X,Fml)],UnExp1),

10 prove(Fml1,UnExp1,Lits,[X1|FreeV],VarLim).

% Closing Branches:

11 prove(Lit,_,[L|Lits],_,_) :-

12 (Lit = -Neg; -Lit = Neg) ->

13 (unify(Neg,L); prove(Lit,[],Lits,_,_)).

% Extending Branches:

14 prove(Lit,[Next|UnExp],Lits,FreeV,VarLim) :-

15 prove(Next,UnExp,[Lit|Lits],FreeV,VarLim).

Fig. 2. A Complete and Sound Tableau Prover

In the proof of this theorem we will not deal with the logical consequence
relation directly but make use of the completeness theorem established in
a previous chapter:

:fml is a logical consequence of h
i�

there is a closed tableau for [fml j h].

A tableau T for a list L of formul� starts with a non ramifying branch B,
the nodes in B being labelled by the formul� in L in some order.

Before going into details we will brie
y outline the working principle of

the leanTAP program:
prove(Fml,[],[],[],VLim) succeeds if Fml can be proven inconsistent

without using more than VLim free variables on each branch.
The proof proceeds by considering individual branches (from left to

right) of a tableau; the parameters Fml, UnExp, and Lits represent the
current branch: Fml is the formula being expanded, UnExp holds a list of
formul� not yet expanded, and Lits is a list of the literals present on
the current branch. FreeV is a list of the free variables on the branch.
A positive integer VarLim is used to initiate backtracking; it is an upper
bound for the length of FreeV.
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We will number clauses of the leanTAP -program by the line in which
they start in the listing of Figure 2. Clause 1 handles conjunctions: the
�rst conjunct is selected, the other is put in the list of not yet expanded
formul�. Handling disjunctions, clause 3 splits the current branch and two
new goals have to be proven.

Universally quanti�ed formul� require a little more e�ort. Clause 6
uses the built-in predicate length(X,Y), which succeeds if X is a list of
length Y. The symbol \+ denotes negation in Sicstus Prolog. The built-in
predicate copy_term has already been explained above.

Application of clause 6 initiates backtracking if the depth bound VarLim

is reached. Otherwise, we generate a \fresh" instance of the formula with
copy_term, without renaming the free variables in FreeV. The original 
-
formula is stored for subsequent use, and the renamed scope becomes the
current formula.

Clause 11 closes branches; it is the only one which is not determinate.
Note that it will only be entered with a literal as its �rst argument. Neg is
bound to the negated literal and sound uni�cation is tried against the lite-
rals on the current branch. The clause calls itself recursively and traverses
the list in its second argument; no other clause will match since UnExp is
set to the empty list. Clause 11 incorporates the design decision to look
for complementary formulas only at the level of literals. This su�ces for
completeness, but closure with arbitrary complementary formulas can be
faster.6

The last clause is reached if the current branch cannot be closed. We
add the current formula (always a literal) to the list of literals on the branch
and pick a formula waiting for expansion.

3.1 Proving Completeness & Correctness of leanT
A
P

To reason about the execution of the program leanTAP we need an ope-
rational semantics of Prolog as a programming language. We will use for
this purpose the computation tree, TP , associated with a Prolog program
P . This concept will be explained in detail below. Computation trees are
a very simple model for an operational semantics of Prolog and other de-

scriptions are available, see e.g. [BR94]. But leanTAP uses the cut \!" only
in obvious ways, negation only in line 7 and none of the meta programming
features at all. Only the \->" construct in line 12 may not be completely
standard. Thus, the overhead for a deeper operational model does not pay
o�.

To begin our explanation of the concept of the computation tree, TP , we
remark that the nodes of this tree are labelled by the states of computation
that arise during the execution of a Prolog program P . At this level of

6As an example, take �^:�, where � is an arbitrarily complex formula. In practice,
however, such phenomena occur very rarely.
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abstraction a state of computation consists of a list, goallist, of atomic
formul�, called goals, and a substitution � of the Prolog variables occurring
in this list. If a goal list [F1; : : : ; Fk] and a substitution � are attached to
a node n, then it is really the list of formul� [�(F1); : : : ; �(Fk)] that we
consider. But it will prove convenient to separate this information into a
formula part and a substitution part.

Now we turn to the question, what are the successor nodes of a node n
labelled with a pair (goallist; �)? Among the list of goals still to be solved
Prolog always chooses the �rst one. Putting aside for the moment the case
of the empty list of goals we write goallist = [goal j restgoals]. An attempt
is made to unify �(goal) with the head of a clause in the program P ; to
be precise the variables in the clause are �rst renamed to guarantee that it
has no common variables with �(goal). Assume that a most general uni�er
� exists for �(goal) and the head head of a clause head:- body 2 P , then
there will be a successor node n1 of n labelled with (body+restgoals; ���).
Here, \+" denotes the concatenation of two lists and � composition of
substitutions. For each successful uni�cation a successor node of n will
be created in this way from left to right in the order of appearance in P .
Branches in TP will always be called computations to avoid confusion with
branches in other tree structures, e.g. branches in a tableau. A computation
terminates successfully if it is a �nite branch in TP and its last node nf is
labelled with the empty list of goals. The substitution in the label of nf is
called the answer substitution of the computation. A computation fails if
its last node is labelled with ([goal j restgoals]; �), such that �(goal) is not
uni�able with the head of any clause in P . The root of TP is labelled with
the initial list of goals, goallist0, i.e. the query entered by the user, and the
empty substitution. Since the shape of the computation tree also depends
on goallist0, we should strictly speak of the computation tree TP;query for
a program P and a query query. We will use TP whenever query is clear
from the context.

The computation tree provides only a static picture of the evaluation of
a Prolog program. The dynamic behaviour is easily explained: evaluation
starts with the root node of the tree. Whenever there is branching, Prolog
chooses the leftmost continuation. If a computation fails, Prolog backs up
to the next branching point and then continues along the leftmost con-
tinuation that has not yet been explored. This is called backtracking in
Prolog terminology. If all backtracking alternatives at all branching points
have been exhausted without reaching the empty list of goals the evaluation
fails. Of course there is, as with all programming languages, the possibility
that your program was not written carefully enough and evaluation runs
into an in�nite loop.

After this general description of computation trees we will take a closer

look at the computation trees associated with the leanTAP program. The
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root node will be labelled with the one-element goal list

[prove(fml,h,[],[],d)]

with fml being a formula, h a list of formul� and d a natural number. Any
node n with goal list

[prove((fml1,fml2),h,lits,freev,d) | Restgoals ]

will have a successor node arising from clause 1. The same goal also uni�es
with the head of the clauses 11 and 14 and there should be corresponding
successor nodes in the computation tree. This is the right time to explain
the meaning of the symbol \!", called cut. When \!" is reached during the
evaluation of the body of a clause with head head all alternative clauses that
satisfy head will be cut o�. In the case at hand here there is consequently
no branching at node n in the computation tree. The same remark applies
to nodes labelled with

[prove((fml1;fml2),h,lits,freev,d) | Restgoals ].

The cut in clause 3 prevents branching. Note also that this time the length
of the list of goals is increased. The universal quanti�er case requires more
explanations. Here we look at a node n labelled with

[prove(all(X,fml),h,lits,freev,d) | Restgoals]

and clause 6 is called. \+length(freev,d) succeeds if the length of the list
freev is strictly less than the number d.7 length/2 is a built-in predicate
in most Prolog systems. It may not be available in your system and you will
have to program it yourself. The same may also be true for the predicate
copy_term/2. The append predicate has already been mentioned above.
Clause 6 is the only clause that changes the value of the fourth argument of
the prove predicate. Because of the cut \!" in the body of clause 6 node
n has only one successor node. Since the input formul� do not contain
existential quanti�ers or negation signs in front of composite subformul�
it only remains to consider nodes labelled with

[prove(fml,h,lits,freev,d) | Restgoals ]

for fml a literal. These nodes may have two successors, the �rst and left-
most arising from an application of clause 11 and the second arising from
clause 14. We only comment on clause 11. A goal of the form G1 -> G2

is resolved by Prolog's evaluation mechanism by �rst calling goal G1. If
this fails, G1 -> G2 also fails. In the special case of clause 11 this will
never happen, see below. If G1 succeeds then the goal G2 is called. On
backtracking only alternative solutions to G2 are considered, G1 is not
considered again. This is crucial in the case of clause 11. Here G1 =
(fml = -Neg ; -fml = Neg) is a disjunctive goal: �rst (fml = -Neg) is
tried and only if this fails is (-fml = Neg) considered. If fml is a positive

7Recall that \n+" denotes Prologs negation as failure.
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input formula F = (F1; F2)
with F1 = (p; (q; r))
and F2 = (F21;F22)
with F21 = (�p;�q)
and F22 = (�p;�r)

1 hprove(F; []; [])i
2 hprove(F1; [F2]; [])i
3 hprove(p; [F2]; []); prove((q; r); [F2]; [])i
4 hprove(F2; []; [p]); prove((q; r); [F2]; [])i
5 hprove(F21; []; [p]); prove(F22; []; [p]); prove((q; r); [F2]; [])i
6 hprove(�p; [�q]; [p]); prove(F22; []; [p]); prove((q; r); [F2]; [])i
7 hprove(F22; []; [p]); prove((q; r); [F2]; [])i
8 hprove(�p; [�r]; [p]); prove((q; r); [F2]; [])i
9 hprove((q; r); [F2]; [])i
10 hprove(q; [r; F2]; [])i
11 hprove(r; [F2]; [q])i
12 hprove(F2; []; [r; q])i
13 hprove(F21; []; [r; q]); prove(F22; []; [r; q])i
14 hprove(�p; [�q]; [r; q]); prove(F22; []; [r; q])i
15 hprove(�q; []; [�p; r; q]); prove(F22; []; [r; q])i
16 hprove(F22; []; [r; q])i
17 hprove(�p; [�r]; [r; q])i
18 hprove(�r; []; [�p; r; q])i
19 hi

We have suppressed the last two arguments of the prove predicate since
they are not relevant for propositional formulas.

Fig. 3. A successful computation for the leanTAP program with a propo-
sitional input formula

literal the �rst subgoal fails and Neg gets bound to -fml, which is the dual
of fml. If fml is a negative literal, -fml0, then the �rst subgoal succeeds
binding the Prolog variable Neg to fml0, the dual of fml. Without the
Prolog-implication \->", backtracking would call the second subgoal and
this would yield the unwanted solution Neg = -fml. Since the disjunctive
goal in front of the \->" sign in the body of clause 11 succeeds exactly
once we will not mention it in the computation tree. The leftmost succes-
sor node will instead be labelled with the goal sequence whose head is the
disjunctive goal

(unify(Neg,L) ; prove(Lit,[],Lits,_,_))

where the substitution of this node binds Neg to the dual of the literal
fml. If unify(Neg,L) succeeds then clause 11 has been successful and
Prolog�s evaluation mechanism will start to work on the next goal in the
sequence restgoals. The answer substitution is the most general uni�er of
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the two literals. On backtracking all possible most general uni�ers bet-
ween lit and some literal in the list of literals lits will be produced. If
unify(Neg,L) fails then the clause on line (11) will recursively be called
with the third argument Lits instead of [Lit | Lits]. Note also that the
second argument is now set to [].
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1

2

3

fail 4

5

6

7

8

� �

unify(p;p) �

9

10

fail 11

� 12

unify(�r; q) prove(r; []; []) 13

fail fail 14

� 15

unify(p;r) unify(q;�p)

fail prove(�p; []; [q]) fail prove(�q; []; [r; q])

unify(p;q) prove(�p; []; []) unify(q; r) prove(�q; []; [q])

fail fail fail unify(q; q)

16

17

18

Numbers refer to the nodes in �gure 3. 19

Fig. 4. The computation tree for the leanTAP program with a propositional
input formula
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input formula F = (F1; F2; F3)
with F1 = p(a)
and F2 = �p(f(f(a)))
and F3 = all(X; (�p(X); p(f(X)))

1 hprove(F; []; []; [];2)i
2 hprove(p(a); [�p(f(f(a))); F3 ]; []; []; 1)i
3 hprove(�p(f(f(a))); [F3]; [p(a)]; [];1)i
4 hprove(F3; []; [�p(f(f(a))); p(a)]; []; 1)i
5 hprove((�p(Y ); p(f(Y ))); [F3]; [�p(f(f(a))); p(a)]; [Y ]; 1)i
6 hprove(�p(Y ); [F3]; [�p(f(f(a))); p(a)]; [Y ]; 1);

prove(p(f(Y )); [F3]; [�p(f(f(a))); p(a)]; [Y ]; 1)i
7 hprove(p(f(a)); [F3]; [�p(f(f(a))); p(a)]; [a]; 1)i
8 hprove(F3; []; [p(f(a));�p(f(f(a))); p(a)]; [a]; 1)i
9 hprove((�p(Z); p(f(Z))); [F3 ]; [p(f(a));�p(f(f(a))); p(a)];

[Z; a]; 1)i
10 hprove(�p(Z); [F3]; [p(f(a));�p(f(f(a))); p(a)]; [Z; a]; 1);

prove(p(f(Z)); [F3]; [p(f(a));�p(f(f(a))); p(a)]; [Z; a]; 1)i
11 hprove(p(f(f(a))); [F3]; [p(f(a));�p(f(f(a))); p(a)]; [f(a); a]; 1)i
12 hi

Fig. 5. First-order example of a successful leanTAP computation

Let us consider as a speci�c example the leanTAP proof of (p_(q^r)) !
((p _ q) ^ (p _ r)), which is just one half of the distributive law of proposi-

tional logic. The query submitted to leanTAP is prove(F; []; [];X; d) where
F is the negation of the formula to be proved, explicitely given in Figure
3. In this and the following �gures of computation trees we only show
goals of the form prove(fml; h; lits; varlist; d), and sometimes also of the
form unify(l1; l2). A successful computation of the corresponding compu-
tation tree is shown in Figure 3. To prevent the picture from becoming
too confusing we did not show the failed computations to the left of the
successful path nor the branchings to the right that were not explored.
This is (almost) made up for in Figure 4 on page 14. Figure 5 shows the

computatation tree for leanTAP with the �rst-order input formula

p(a) ^ :p(f(f(a))) ^ 8x(p(x) ! p(f(x)))

Proof. Theorem 3.0.1, part 1
By de�nition any computation tree is �nitely branching. Thus a computa-
tion tree is �nite if all its computations are �nite. Let T = T

leanTAP ;query
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for query = prove(fml,h,[],[],d). By gs(n) = hg1; : : : ; gki we denote
the goal sequence attached to node n in T. For each individual goal g =
prove(fml; h; lits; varlist; d) we de�ne a complexity measure c(g) which is
the quadruple hc1(g); c2(g); c3(g); c4(g)i of the numbers ci(g) de�ned below
ordered lexicographically with c1(g) as the leading component.

c1(g) = d� length(varlist),
c2(g) = total number of logical connectives in fml and h,
c3(g) = length of h,
c4(g) = length of lits.

Since nodes in the computation tree are labeled by goal sequences rather
than single goals we need to extend the complexity measure to lists gs =
hg1; : : : ; gki of goals. We do this by setting c(gs) = hc(g1); : : : ; c(gk)i and
de�ning a partial ordering � on lists of quadruples of natural numbers.

De�nition 3.1.1 (�).

The relation � is the least transitive relation satisfying the following three
conditions:

hc2; : : : ; cni � hc1; c2; : : : ; cni

he1; c2; : : : ; cni � hc1; c2; : : : ; cni if e1 < c1

he1; e2; c2 : : : ; cni � hc1; c2 : : : ; cni if e1 < c1 and e2 < c1

A goal sequence gs1 is of smaller complexity than goal sequence gs2 i�

c(gs1) � c(gs2)

The crucial observation, which is easily checked by looking at the leanTAP

program, is that for any application of a program clause leading from the
goal sequence gs1 to the immediate successor gs2 we have c(gs2) � c(gs1).
Thus �niteness of computations will follow when we can show that � does
not allow in�nite descending chains.

Lemma 3.1.2 (Wellfoundedness of �).

The ordering � on lists of quadruples of natural numbers does not allow

in�nite descending chains.

Proof.

Assume to the contrary that an in�nite descending chain s1 � : : : sn �

sn+1 : : : exists. Each element si in this chain is a list. Let m be the least
number occuring as the length of some si. We must have m > 0 since
the empty list hi, which is the least element with respect to �, cannot
occur among the si. Choose i0 such that si0 = hs01; : : :s

0
mi has length m.

We consider si = hsi1; : : :s
i
r ; s

0
2; : : : s

0
mi and sj = hs

j
1; : : : s

j

k; s
0
2; : : : s

0
mi for

j > i � i0. By choice of m and i0 we must have r; k > 0. It is easily checked
that all elements sj1; : : : s

j
k are strictly smaller with respect to < than all

elements si1; : : :s
i
r . From this it follows that the �rst elements in the lists
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si with i � i0 form a descending chain contradicting the well-foundedness
of the lexicographical ordering on quadruples of natural numbers.

We now turn to the proof of correctness and completeness. for both parts
we will use the fact that the tableaux that can be reached from an initial
set ffmlg [ h 8 of formul� can be retrieved from the goal sequences in
the computation tree starting with prove(fml; h; []; []; d). It turns out that
this is not directly possible for all nodes. If at a node n execution of
clause 11 is possible two successor nodes will be created, one corresponding
to the unify(l1; l2) predicate in the body of the clause and the other to
the prove(fml; []; lits; varlist; d) predicate. Nodes of the second type will
be called exception nodes. At exception nodes the correspondence with the
tableau structure breaks down. We �rst associate with every non-exception

node n of the computation tree for a leanTAP -program the structure tab0(n)
and secondly de�ne a tableau structure (tab(n); �(n)) for all nodes n.

For our purposes a tableau will simply be a set of branches and a branch
is simply a set of formul�.

De�nition 3.1.3 (Tableau at nodes of the computation tree).

Let n be a node in the computation tree with attached goal sequence
gs(n) = hg1; : : : ; gri with gi = prove(fmli; hi; litsi; varlist; d) Then

branch(gi) = ffmlig [ hi [ litsi
tab0(n) = fbranch(gi) j 1 � i � rg

The de�nition of tab(n) and �(n) proceed by induction on the nodes in T .
For the root node n0 we have

tab(n0) = tab0(n0)
�(n0) = ;

If node n1 is reached from node n with gs(n) = hg1; : : : ; gri by an applica-
tion of the unify goal in the body of clause 11 then

tab(n1) = tab0(n1)
�(n1) = �u � �(n)

Here �u is the most general uni�er computed in the successful execution of
unify. If node n1 is an exception node reached from n then

tab(n1) = tab(n)
�(n1) = �(n)

In all other cases where node n1 is reached from node n

tab(n1) = tab0(n1)
�(n1) = �(n)

8Strictly speaking h is a list, we assume without mentioning that h is converted into
the set of its elements whenever h is used as an argument for a set theoretic operation
like [.
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Lemma 3.1.4. For every node n in the computation tree of the query

prove(fml; h; []; []; d) there is a tableau T for ffmlg[h such that the tableau

�(n)(tab(n)) contains all open branches of T .

Proof. (of the lemma)
The proof proceeds by induction on the nodes in the computation tree and
is obviously true for the root node. Let n be a node and T a tableau such
that �(n)(tab(n)) contains all open branches of T . When n1 is reached
from n by a program clause 1, 3 or 6 then �(n1)(tab(n1)) contains all open
branches of the tableau T1, T3 or T6 respectively, where Ti is reached from
T by an application of an �, � or 
 rule respectively. If n1 is reached from
n by program clause 14 tab and � remain unchanged and there is nothing
to show. The same is true when n1 is an exception node. It remains to
consider the case when n1 is reached from n by the unify predicate in
the body of program clause 11. If g =prove(fml; h; lits; varlist; d) is the
leftmost goal in gs(n) then tab(n1) = tab(n) n fbranch(g)g. But since
�u(branch(g)) is closed the statement of the lemma remains true for node
n1.

Proof. (Theorem 3.0.1 Part 2)

When leanTAP terminates successfully at node n then tab(n) is the empty
set. This implies by the previous lemma that there is a tableau for the

initial set of formul� with no open branches. Thus correctness of leanTAP

is proved.

Proof. Theorem 3.0.1 (Part 3).
This part of the proof starts from the assumption that the formula F

is a logical consequence of the list of formul� H. Thus there exists a
closed tableau T for [F j H]. This T may, on the face of it, not match

very well with the tableau that the leanTAP program tries to construct.
From the completeness proof of the tableau calculus (see e.g. [Fit90] ) we
know already more: not only does there exist a closed tableau, but every
fair expansion strategy will eventually produce a closed tableau. It thus

remains to show the tableaux (tab(n); �(n) that are associated to leanTAP�s
computation tree constitutes a fair tableau search strategy.
Proof sketch:

There are only two kinds of branching points in the computation tree of

leanTAP . The �rst re
ects the alternatives to solve a goal of the form
prove(lit; h; lits; varlist; d) where lit is a literal. Either clasue 11 or
clause 14 are applicable. Clause 11 is tried �rst and if this does not
lead to successful termination �niteness of the computation tree will force
backtracking and clause 14 will be taken. This shows that for any node
n and any branch b 2 tab(n) any formula fml 2 b, that is not a literal,
will eventually be expanded, unless the computation has in the meantime
already ended successfully.
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The second kind of branching points occur in the execution of the body
of clause 11; there the alternative to unify lit with the �rst element in the
list lits or to shorten the list lits arises. First uni�cation is pursued. If
this does not lead to successful termination �niteness of the computation
tree again forces the second alternative to be considered. In this way all
possibilities to close a branch will be explored.
It remains to observe that by increasing the bound d in the initial query

to the leanTAP -program the number of occurences of a particular universal
formula on each branch may be arbitrarily increased.

Altogether this shows that leanTAP pursues a fair search strategy.

4 Including Universal Formul�
There are many known heuristics which can be included into a tableau-
based theorem prover. Including heuristics usually means either strengthe-
ning the underlying calculus for gaining shorter proofs, or directing the
proof search in order to avoid useless search. Both are not universally
good ideas: the fact that proof lengths decrease does not say anything on
the di�culty of actually �nding these shorter proofs, and guiding the proof
search usually involves some e�ort for computing the particular guidelines.
Heuristics are not a panacea: one must carefully analyze whether it really
pays o� to include a concrete heuristic. The more focussed an application
of a theorem prover, the better the chances that appropriate heuristics
increase the e�ciency of an implementation.

From some heuristics, however, most application areas bene�t and it is
generally a good idea to give them at least a try. One of these domain-
independent heuristics is called universal formul�. The idea behind it is
the following:

Universally quanti�ed formul� are often used more than once for clo-
sing a tableau, and each time a di�erent substitution for the free variables
is needed. The standard procedure in semantic tableaux for this is to ap-
ply the 
-rule to the corresponding formul� more than once and generate
several instances of them. Each instance contains di�erent free variables,
which can be bound di�erently for closing branches. The problem is that
the more instances of 
-formul� are created, the bigger the tableau (i.e.
the search space) grows. Here it helps to recognize \universal" formul�;
these can be used arbitrarily often in a proof with di�erent substitutions
for some of their free variables.

De�nition 4.0.1. Suppose � is a formula on some tableau branch B. � is
universal with respect to the variable x if the following holds for every
model M and every ground substitution �:

If M j= B�, then M j= ((8x)�)�:
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(:p(a) _ :p(b)) ^ (8x p(x))

:p(a) _ :p(b)

8x p(x)

p(X)

:p(a) :p(b)

Fig. 6. An Example for the use of Universal Formul�

Notational agreement: If we want to refer to a variable x which is universal
w.r.t. a certain formula on some branch, and it is clear which branch and
formula are meant, we will simply write \the universal variable x" in the
sequel.

A more detailed discussion of universal formul� can be found in [BHG+96];
we give a slightly simpli�ed account here. Figure 6 gives an example: The
variable X is universal to both branches and thus they can be closed wi-
thout applying the 
-rule again.

The problem of recognizing universal formul� is undecidable in general.
However, a wide and important class of universal formul� can be recognized
quite easily: assume there is a sequence of tableau rule applications that
does not contain a disjunctive rule (i.e. the tableau does not branch). All
formul� that are generated by this sequence are universal w.r.t. the free
variables introduced within the sequence. Substitutions for these variables
can be ignored, since the sequence could be repeated arbitrarily often for
generating new copies of these variables | without generating new bran-
ches.

Including this optimization in the previously discussed implementation
is not a major undertaking: we simply collect a list of \universal" variables
for each formula. For this, the arity of prove is extended from 5 to 7:

prove(Fml,UnExp,Lits,DisV,FreeV,UnivV,VarLim)

UnivV and DisV are new parameters, the use of all others remains un-
changed. UnivV is a list of the universal variables in the current formula
Fml. DisV represents something like their counterpart: it is a Prolog term
containing all variables on the current branch which are not universal in
one of the formul� (we will call these the \disjunctive variables").9 Each

9To be precise: DisV holds the variables which are not universal w.r.t. a formula
on the current branch, whereas UnivV holds the variables universal w.r.t. the current
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% Conjunction:

1 prove((A,B),UnExp,Lits,DisV,FreeV,UnivV,VarLim) :- !,

2 prove(A,[(UnivV:B)|UnExp],Lits,DisV,FreeV,UnivV,VarLim).

% Disjunction:

3 prove((A;B),UnExp,Lits,DisV,FreeV,UnivV,VarLim) :- !,

4 copy_term((Lits,DisV),(Lits1,DisV)),

5 prove(A,UnExp,Lits,(DisV+UnivV),FreeV,[],VarLim),

6 prove(B,UnExp,Lits1,(DisV+UnivV),FreeV,[],VarLim).

% Universal Quanti�cation:

7 prove(all(X,Fml),UnExp,Lits,DisV,FreeV,UnivV,VarLim) :- !,

8 \+ length(FreeV,VarLim),

9 copy_term((X,Fml,FreeV),(X1,Fml1,FreeV)),

10 append(UnExp,[(UnivV:all(X,Fml))],UnExp1),

11 prove(Fml1,UnExp1,Lits,DisV,[X1|FreeV],[X1|UnivV],VarLim).

% Closing Branches:

12 prove(Lit,_,[L|Lits],_,_,_,_) :-

13 (Lit = -Neg; -Lit = Neg ) ->

14 (unify(Neg,L); prove(Lit,[],Lits,_,_,_,_)).

% Extending Branches:

15 prove(Lit,[(UnivV:Next)|UnExp],Lits,DisV,FreeV,_,VarLim) :-

16 prove(Next,UnExp,[Lit|Lits],DisV,FreeV,UnivV,VarLim).

Fig. 7. leanTAP with Universal Variables

unexpanded formula in UnExp will have the list of its universal variables
attached. The Prolog functor \:" is used for this purpose.

The prover is now started with the goal

prove(Fml,[],[],[],[],[],VarLim)

for showing the inconsistency of Fml. We will discuss the extended program
by explaining the di�erences to our previous version.

All universal variables of a conjunction are universal for each component
(lines 1 and 2 in Figure 6).10

When dealing with disjunctions (3{6), we exploit universality of va-
riables and rename these variables on both branches. Experiments have
shown that for most examples it is best to only rename the variables in the
literals. We could also rename the universal variables in UnExp, but this
requires an extra e�ort which does not pay o� in many cases.

Besides this, disjunctions also destroys universality: the universal va-
riables of a disjunction are therefore not universal to its components. The

formula.
10The implementation given here results in both conjunctions sharing universal va-

riables. This is correct but not necessary: the variables could be renamed in one
conjunct.
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| ?- prove((all(X,p(X)),(-(p(a));-(p(b)))),[],[],[],[],[],1) .

Call: prove((all(X1,p(X1)),(-(p(a));-(p(b)))),[],[],[],[],[],1)

Call: prove(all(X1,p(X1)),[[]:(-(p(a));-(p(b)))],[],[],[],[],1)

Call: prove(p(X2),[[]:(-(p(a));-(p(b))),[]:all(X1,p(X1))],[],

[],[X2],[X2],1)

Call: prove((-(p(a));-(p(b))),[[]:all(X1,p(X1))],[p(X2)],

[],[X2],[],1)

Call: prove(-(p(a)),[[]:all(X1,p(X1))],[p(X2)],[]+[],[X2],[],1)

Exit: prove(-(p(a)),[[]:all(X1,p(X1))],[p(a)],[]+[],[a],[],1)

Call: prove(-(p(b)),[[]:all(X1,p(X1))],[p(X3)],[]+[],[a],[],1)

Exit: prove(-(p(b)),[[]:all(X1,p(X1))],[p(b)],[]+[],[a],[],1)

Exit: prove((-(p(a));-(p(b))),[[]:all(X1,p(X1))],[p(a)],

[],[a],[],1)

Exit: prove(p(a),[[]:(-(p(a));-(p(b))),[]:all(X1,p(X1))],[],

[],[a],[a],1)

Exit: prove(all(X1,p(X1)),[[]:(-(p(a));-(p(b)))],[],[],[],[],1)

Exit: prove((all(X1,p(X1)),(-(p(a));-(p(b)))),[],[],[],[],[],1)

Fig. 8. Trace of problem shown in Fig. 6.

tableau is split and these variables become non-universal on both resulting
branches. We therefore add them to DisV by creating a new Prolog term11.
Universal variables of other formul� on the right-hand branch are renamed
by copy term. This allows universal variables to be instantiated di�erently
on the two resulting branches.

When introducing a new variable by the quanti�er rule (7-11), this
variable becomes universal for the scope (it may loose that status if a
disjunction in the scope is expanded, see above).

The next clause (lines 12{14) remains unchanged, besides having two
more parameters.

Recall that the sixth parameter of prove holds the universal variables
of the current formula (not of the whole branch). Thus, when extending
branches in the last clause we must change this argument.

Figure 8 shows a trace of the program when run on the example in
Figure 6.

4.1 Performance

It is interesting to compare the performance of the two programs we have
presented in Figures 2 and 7. Table 1 gives the respective �gures for some
of Pelletier's problems [Pel86]. The negated theorem has been placed in
front of the axioms and the program of Figure 1 for computing negation
normal form was applied as a preprocessing step.

11We could use a list, but creating a new term by \+" (an arbitrary functor) is faster.
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Table 1. Performance of the programs given in Figure 6/Figure 7 for Pel-
letier's problem set (the runtime has been measured on a SUN SPARC 10
workstation with SICStus Prolog 2.1; \0 msec" means \not measurable").

No. Limit Branches Closings Time
VarLim closed tried msec

32 3/3 10/10 10/10 10/10
33 1/1 11/11 11/11 0/10
34 ??/5 {/79 {/79 1/109
35 4/2 1/1 1/1 0/0
36 6/6 3/3 3/3 0/0
37 7/7 8/8 8/8 9/30
38 4/4 90/90 101/101 210/489
39 1/1 2/2 2/2 0/0
40 3/3 4/4 5/5 0/0
41 3/3 4/4 5/5 0/9
42 3/3 5/5 5/5 9/19
43 5/5 18/18 18/18 109/179
44 3/3 5/5 5/5 10/19
45 5/5 17/17 17/17 39/79
46 5/5 53/53 63/63 59/189

Some of the theorems, like Problem 38, are quite hard: the 3T
AP prover

[BGHK92a], for instance, needs more than ten times as long. Schubert's
Steamroller (Pelletier No. 47) cannot be solved; this is no surprise, since
the problem is designed for forward chaining systems based on conjunctive
normal form. It can only be proven in tableau-based systems if good heu-
ristics for selecting 
-formul� are used. Using a queue, as in our case, is
not su�cient. We console ourselves with Problems No. 34 and 38, which
are barely solvable in a comparable time by CNF-based provers unless so-
phisticated algorithms for deriving conjunctive normal forms are applied.
Pelletier No. 34 (also called \Andrews Challenge") is not solvable without
universal formul�, either. This example demonstrates the usefulness of the
heuristic for complex problems. The use of universal formul�, however, also
has disadvantages: the runtime for other problems (like 38) increased, as
there is some overhead involved with maintaining universal variables.12

12The overhead, however, is not dramatic: in practice, an implementation is slowed
down by a constant factor of about 2. On the other hand, exploiting universal formul�
can result in an exponential speedup.
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5 Tableaux as Graphs
Taken literally, the theoretical treatment of semantic tableaux seems to
suggest that tableaux are trees. However, the programs presented so far as
well as the completeness proof consider tableaux as sets of branches. One
standard approach to improve an implementation is to look for e�cient
data structures. Using trees would be an impovement over sets of branches,
but acyclic graphs are even better. Since graphs use structure sharing, i.e.
multiple occurences of the same subtree are replaced by pointers to only
one occurence of the subtree, they allow for a very compact representation
of the branches of a tableau which may in extreme cases be exponentially
smaller than a tree representation.

This section investigates such a graphical representation of tableaux.
The underlying idea is to reduce the amount of computation required du-
ring deduction by moving some of the e�ort for expanding formul� into
preprocessing. The preprocessing computes a graph representation of a
partially extended tableau, where �- and �-formul� are already fully ex-
panded and need not be considered during the proof search any more.

We begin with an explanation of the syntax used to describe graphs.
The simplest tableau graph consists of one node labeled with the atom \1".
This atom is used as a marker for the end of branches, i.e. it is the last
entry in all branches of a tableau graph. If F and G are graphs, then F _G
will be the graph with a top node labeled with the connective _ from which
two edges lead to the top nodes of graph F and graph G respectively. In
addition we will use the graph constructor ^ which is particular to the class
of graphs considered here. If F and G are graphs then F ^G denotes the
graph obtained from G by adding a new top node n0 above the original top
node of G. Node n0 is labeled by F . This o�ers the possibility to represent
graphs inside of graphs and we use it for treating universal quanti�ers.

The following function maps a formula in negation normal form into a
graphical representation of its partially expanded tableau:

De�nition 5.0.1. (Mapping Formul� to Tableau Graphs)
Let F be a �rst-order formula in Skolemized negation normal form, and let
\1" denote the atomic truth constant13

tgraph(F )
def

=

8>>><
>>>:

F ^ 1 if F is a literal

tgraph(A)
h

1

tgraph(B)

i
if F = (A ^B)

tgraph(A) _ tgraph(B) if F = (A _B)
(8x tgraph(F 0)) ^ 1 if F = 8x F 0

where

13W.l.g. we assume that \1" does not occur in F .
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_

p q

_

r s

1

(p _ q) ^ (r _ s)

p(a)

8x

_

:p(x) p(f(x))

1

:p(f(f(a)))

1

p(a) ^ 8x (:p(x) _ p(f(x))) ^ :p(f(f(a)))

Fig. 9. Sample Tableau Graphs.

F
h
G

G0

i
def

=

8<
:

A ^ (B
�
G
G0

�
) if F = A ^B

(A
�
G
G0

�
) _ (B

�
G
G0

�
) if F = A _B

G0 if F = G

The replacement function used to deal with a conjunctions A ^B has
the e�ect of appending the graph for B at the end of all branches of the
tgraph(A).

Universally quanti�ed formul� are represented by deriving a represen-
tation for a fully expanded tableau of the scope of the formula and putting
it into one node together with a reference to the quanti�ed variable. In this
way we use nesting of graphs for treating quanti�ed formul�. Note that
an application of the replacement mapping does never touch these nested
graphs.

Figure 9 contains two examples. The left tableau graph shows the
principle of structure sharing: the graph is smaller than a fully expanded
tableau for the formula below, but the paths in the graph correspond to
the branches of such a tableau. The graph on the right-hand side is a
tableau graph with a universally quanti�ed formula: the quanti�ed formula
is represented as a subgraph.

It may at �rst seem di�cult to realize structure sharing in Prolog since
it does not support the use of pointers. The key to the solution is to use
di�erence lists for the implementation of the replacement operation: lite-
rally, an expression \F

�
1
G

�
" means that each occurrence of \1" is replaced
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% Conjunction:

1 tgraph((A,B),GraphA/GraphEnd):-!,

2 tgraph(A,GraphA/GraphB),

3 tgraph(B,GraphB/GraphEnd).

% Disjunction:

4 tgraph((A;B),(GraphA;GraphB)/GraphEnd) :-!,

5 tgraph(A,GraphA/GraphEnd),

6 tgraph(B,GraphB/GraphEnd).

% Universal Quanti�cation:

7 tgraph(all(X,F),(all(X,GraphF),TEnd)/TEnd):- !,

8 tgraph(F,GraphF/true).

% Literals:

9 tgraph(Literal,(Literal,End)/End).}

Fig. 10. Implementing De�nition 5.0.1

by an instance of G. If instead of 1 we use a Prolog variable X then
assigning G to X will have the same e�ect. Figure 10 shows a literal trans-
lation of De�nition 5.0.1 into Prolog. A goal tgraph(Fml,G1) will succeed
with binding G1 to a tableau graph for Fml. Note, that the computation
of tgraph(Fml,G1) requires only linear e�ort w.r.t. to the length of the
input formula Fml. For the propositional formula in Figure 9 the tgraph

procedure outputs the term

G = (p; ((r; ); (s; )); (q; ((r; ); (s; ))

which seems to duplicate the subterm ((r; ); (s; )), but this happens only
when the term is printed. Internally it is represented something like

G = X1;X2 Z = (Z1;Z2)
X1 = (p; Z) Z1 = (r; )
X2 = (q; Z) Z2 = (s; )

Figure 11 lists a prover that takes such a tableau graph as input. More
precisely, the branch end markers will �rst be set to true and the di�erence
list construct will be removed. The combination of the two programs thus
looks like

tgraph(Fml,Graph/true) , gprove(Graph,[],[],[],d)

For showing that the original formula is inconsistent, we must check that
each path in the represented tableau is closed. This is done by recursively
descending the graph and constructing paths. A path is closed if there
exists a substitution that generates a contradiction within the literals of
the path. The proof search succeeds when all paths are closed.
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1 memberunify(X,[H|T]) :- unify(X,H);memberunify(X,T).

% Disjunction:

2 gprove((A;B),Gammas,Lits,FreeV,VarLim) :- !,

3 gprove(A,Gammas,Lits,FreeV,VarLim),

4 gprove(B,Gammas,Lits,FreeV,VarLim).

% Noticing Universal Quanti�cation:

5 gprove((all(X,Gr),Rest),Gammas,Lits,FreeV,VarLim) :- !,

6 gprove(Rest,[all(X,Gr)|Gammas],Lits,FreeV,VarLim).

% Applying Universal Quanti�cation:

7 gprove(true,[all(X,Gr)|Gammas],Lits,FreeV,VarLim) :- !,

8 \+ length(FreeV,VarLim),

9 copy_term((X,Gr,FreeV),(X1,Gr1,FreeV)),

10 append(Gammas,[all(X,Gr)],Gammas1),

11 gprove(Gr1,Gammas1,Lits,[X1|FreeV],VarLim).

% Closing Branches:

12 gprove((Lit,Rest),Gammas,Lits,FreeV,VarLim) :-

13 (Lit = -Neg; -Lit = Neg) -> memberunify(Neg,Lits)

14 ; gprove(Rest,Gammas,[Lit|Lits],FreeV,VarLim).

Fig. 11. Deduction With Tableau Graphs

If a path cannot be closed, we must perform the equivalent of ap-
plying a 
-rule in a standard tableau; recall that universally quanti�ed
formul� are represented as nested subgraphs, which contain a tableau for
the scope of the quanti�ed formula. We can simulate the application of a

-rule by appending a copy of the subgraph to the branch we are currently
considering14. We implement this by collecting the entry-points to such
subgraphs until we end up at the end of a branch. If it is not closed, we
select one of the subgraphs for expansion.

The implementation shown in Figure 11 uses the predicate

gprove(TGraph,Gammas,Lits,FreeV,VarLim)

where TGraph is a tableau graph, computed by the predicate tgraph/2

as explained above. VarLim limits the number of free variables on every
branch during the proof search (analogously to the previous programs).
The other arguments, which are initially set to the empty list, represent
the currently considered branch: Gamma will hold all universally quanti�ed
sub-tableau graphs that are valid on the current branch, and Lits will hold
all literals on it. Free variables that have been introduced are collected in
FreeV.

14In more formal notion this means: if 8x� is on a branch, we conjunctively add �0

to it, where �0 is a copy of � with x being renamed. This is correct, as (8x�)! �0 is
valid.
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The procedure for proving that the tableau graph given as input is
inconsistent mainly consists of expanding the individual branches or paths
in the graph. The �rst and the last clauses shown in Figure 11 work in a

way similar to that explained in previous versions of the leanTAP program:
the �rst clause corresponds to the implementation of a �-rule, whilst the
last one closes a branch. Just for a change, we have encoded the latter
clause slightly di�erently using a predicate memberunify/2: it does what
its name suggests: namely implements the standard member predicate, but
using sound uni�cation.

The only part in the program that is a bit tricky are clauses 5 and
7: these implement the treatment of universally quanti�ed formul�. As
it is a good heuristic to postpone the expansion of 
-formul� as long as
possible, we �rst just collect them in Gamma when decending a branch in the
tableau graph. This is what the second clause does in a quite obvious way.
Whenever we reach a leaf (denoted by true) of a branch, the subgraphs
representing 
-formul� come in again: program clause 7 selects the �rst
one in the list unless the limit for free variables is reached (line 8) and
replaces all free variables in the subgraph (line 9). For fairness reasons, the
formula just expanded is moved to the end of the list Gammas (line 10), and
the proof search continues with one more free variable on the branch.

The program is textually not much smaller than the previous version
working with sets of branches as the data structure for tableaux, but there
is less work to be carried out during the proof search. On the other hand
one cannot expect too much of a speed up, since during proof search all
branches have to be considered, no matter how succinctly they have been
represented. We have observed a typical increase of the performance of the
graphical version of about 25%. The main reason for this is that multiple
expansion of formul� is avoided and less applications of tableau rules are
needed. As an example consider a formula of the type (A _B) ^ (C _D).

leanTAP will expand one of the conjuncts twice. This is avoided here.

6 Compiling the Proof Search
The tableau graphs introduced in the last section provide a very compact
representation of fully expanded tableaux; they can also be used for further
preprocessing, like computing information about contradictory literals in
advance, applying propositional simpli�cations, etc. One optimization we
will further investigate is the compilation of semantic tableaux.

Compilation-based provers have been introduced by Stickel [Sti88]; the
idea of this approach is to translate formul� into executable programs that
carry out the proof search during run time; it is well known that this
can increase the e�ciency of the proof search considerably. The reason is
basically the following: rather than using a meta-interpreter that handles
tableaux (or representations thereof), we compile this interpreter down into
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the language we used for implementing the meta-interpreter. The result is
a program that carries out the proof search for a particular set of axioms,
in contrast to the meta-interpreter, which must be able to handle any set
of axioms. This is directly comparable to interpreter and compilers in stan-
dard programming languages: Whilst an interpreter must be able to handle
any program in the language, the result of compiling it is machine code for
one particular program, and therefore potentially much more e�cient.

1 % Auxiliary predicate that instantiates a list of variables

2 % to a list of integers.

3 %

4 instantiate(_,[]).

5 instantiate(N,[N|Tail]) :- N1 is N + 1,instantiate(N1,Tail).

6

7 tgraph(Formula,Graph) :-

8 tgraph(Formula,IDs/[],Graph/(0:true)),

9 instantiate(1,IDs).

10

11 tgraph((A,B),IDs/IDsTail,GrA/GrEnd):-!,

12 tgraph(A,IDs/IDsB,GrA/GrB),

13 tgraph(B,IDsB/IDsTail,GrB/GrEnd).

14

15 tgraph((A;B),[N|IDs]/IDsTail,(N:(GrA;GrB))/GrEnd) :-!,

16 tgraph(A,IDs/IDsB,GrA/GrEnd),

17 tgraph(B,IDsB/IDsTail,GrB/GrEnd).

18

19 tgraph(all(X,F),[N|IDs]/IDsT,

20 (N:(all(X,GrF),GrEnd))/GrEnd) :-!,

21 tgraph(F,IDs/IDsT,GrF/(0:true)).

22

23 tgraph(Literal,[N|IDs]/IDs,(N:(Literal,End))/End).

Fig. 12. Deriving Tableau Graphs With Labelled Nodes

Compilation-based approaches to theorem proving are usually carried
out for model elimination-based calculi, only. They work by mapping for-
mul� in clausal form into Prolog programs, thus taking advantage of the
fact that Prolog programs are Horn clauses. The resulting programs can be
understood as logical variants of the clauses they have been generated for,
where all contrapositives of the clauses have been created15. The approach
presented here works di�erently; its principle was described in [Pos93a] and
builds upon the following idea:

Instead of using a program as gprove for descending the graphically
represented tableau, we generate a program that performs the search pro-

15Variants exist that avoid the use of contrapositives, but require a more complex
deduction algorithm [BF94].
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1

2 : p 3 : q

4

5 : r 6 : s

0 : true

(p _ q) ^ (r _ s)

1 : p(a)

2 : 8x

3

4 : :p(x) 5 : p(f(x))

0 : true

6 : :p(f(f(a)))

0 : true

p(a) ^ 8x (:p(x) _ p(f(x))) ^ :p(f(f(a)))

Fig. 13. Sample labeled Tableau Graphs.

cedure. Thus, we move from interpreting the graphical representation of a
tableau to compiling it into a program and executing the generated code.
This is the main di�erence from compilation-based model-elimination men-
tioned above: the latter transforms clauses into declaratively equivalent
Prolog clauses, whereas our approach generates a procedurally equivalent
Prolog program. This can, in principle, be carried out in any high-level
programming language. We will, however, follow the line of this chapter
and describe how to program a compiler in Prolog that generates Prolog
programs.

Before we explain the idea of the compilation procedure we need a
preparatory step: we have to extend the tableau-graph generation of Figure
10 by adding labels to the nodes in the graph. These will eventually serve
as unique names for the generated Prolog clauses, and are necessary to
control the search process and avoid duplication of Prolog clauses.

Figure 12 shows how the program for deriving tableau graphs from
Figure 10 can be extended to generating graphs with labels; it works in
the same way as the previous program, but additionally collects a list of
Prolog variables. When the construction of the graph is completed proce-
dure instantiate/2 instantiates these variables to integers starting with
1. These lists of integers will serve as labels. In principle, it does not
matter what sort of labels are used; integers are just a convenient choice.
Note, that the label 0 is used as the label of the leaf true. The formulas
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from Figure 9 yield the result

G =

1:(2:(p,4:(5:(r,0:true);6:(s,0:true)));

3:(q,4:(5:(r,0:true);6:(s,0:true)))

respectively

G =

1:(p(a),2:(all(X,3:(4:(-(p(X)),0:true);5:(p(f(X)),0:true))),

6:(p(f(f(a))),0:true)))

for the tgraph-procedure. A graphical representation of these outputs is
shown in Figure 13.

Figure 18 lists a program that compiles labelled tableau graphs into
Prolog programs. Its main predicate is comp/3. For a labelled tableau
graph ltgraph the call comp(ltgraph,X,Y) produces a Prolog program
Pltgraph. Technically this is achieved by using the built-in assert predi-
cate that adds the clauses of Pltgraph to the global database. The second
and third arguments of comp are occupied by uninstantiated variables at
the �rst call. They implement a sophisticated encoding to pass variable
bindings between the generated Prolog clauses and will be explained in
detail below. To explain the program in Figure 18 we have to describe the
Prolog program Pltgraph it produces and the workings of the compiling
program itself. It makes sense to look at the produced Prolog code �rst.
The main predicate in Pltgraph is

node(+Id,+Binding,+Path,+MaxVars,+Gamma).

where

Id is the label16 (identi�er) of the corresponding node in the tableau graph.

Binding is a list of bindings for the variables in the tableau graph. As
Prolog clauses are, by de�nition, variable disjoint, it is used to pass
the variable bindings through the node-clauses at run time. The use
of this parameter is a bit tricky, we will discuss it below.

Path is the path that has been constructed so far.

MaxVars, the maximal number of free variables we want to allow.

Gamma is a list of labels of nodes which contain universally quanti�ed sub-
graphs.

The node/5 clauses will succeed if the tableau graph below its label is
inconsistent. This test is performed by considering the individual paths in
the graph and by showing that all of them can be closed with a common
substitution for the free variables appearing in the paths.

16These labels appear as the �rst argument, since most Prolog systems perform inde-
xing on the �rst argument of a clause. Thus, the identi�er is at the right position to
allow fast access to clauses by their labels.
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The Binding-parameter will be instantiated to a list: for each univer-
sally quanti�ed variable in the initial tableau graph, there is a �xed position
in the list that holds the current binding for the corresponding variable.
The variable that was �rst encountered will always correspond to the �rst
position in the binding list, the second encountered variable to the second
position and so on. The third, forth and �fth arguments are used as in
gprove: the argument Path holds the current path in the considered ta-
bleau (as a list of literals), MaxVars limits the number of free variables on
a branch, and Gamma collects applicable 
-formul�.

1 close(Lit,[L|Lits]) :-

2 (Lit = -Neg; -Lit = Neg) ->

3 (unify(Neg,L); close(Lit,Lits)).

4

5 start(N) :- node(1,_,[],N,[]),!.

6

7 node(0,B,P,MaxVars,[Id|Gamma]):-

8 MaxVars > 0, MaxVars1 is MaxVars - 1,

9 append(Gamma,[Id],NewGamma),

10 node(Id,B,P,MaxVars1,NewGamma).

11

12 node(1, A, B, C, D) :-

13 ( close(p(a), B)

14 ; node(2, A, [p(a)|B], C, D) ).

15 node(2, A, B, C, D) :-

16 node(6, A, B, C, [3|D]).

17 node(3, [_|E], A, B, C) :-

18 node(4, [D|E], A, B, C),

19 node(5, [D|E], A, B, C).

20 node(4, [D|E], A, B, C) :-

21 ( close(-(p(D)), A)

22 ; node(0, [D|E], [-(p(D))|A], B, C) ).

23 node(5, [D|E], A, B, C) :-

24 ( close(p(f(D)), A)

25 ; node(0, [D|E], [p(f(D))|A], B, C) ).

26 node(6, [D|E], A, B, C) :-

27 ( close(-(p(f(f(a)))), A)

28 ; node(0, [D|E], [-(p(f(f(a))))|A], B, C) ).

Fig. 14. Prolog Code for p(a) ^ 8X(p(x) ! p(f(X))) ^ :p(f(f(a)))

Figure 14 gives the generated Prolog code for our running example:
Lines 1{11 are not generated by the comp-procedure. They are part of the
node-de�nition independently of the input graph. Lines 1{3 de�ne close,
a simple predicate which closes branches. Line 5 de�nes the top level
predicate for starting the proof search, where the only parameter serves as
a gamma limit. The clause starting in line 7 de�nes the action of the search
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procedure when a leaf of the tableau graph is reached. If the current path
can be closed the calling goal succeeds. If MaxVars is reached the goal fails.
Otherwise the next universally quanti�ed subgraph from the list Gamma is
enter at its top node.

Lines 12{28 is the compiled code for the tableau graph in Figure 13: the
clauses node(1,: : :) and node(6,: : :) correspond to p(a) and p(f(f(a)))
in the graph. The universally quanti�ed subgraph is implemented by
the clause node(2,: : :). node(3,: : :) implements the disjunction, and
node(4,: : :) and node(5,: : :) correspond to the literals in the disjunct.

The trace of the program from Figure 14 for Maxvars = 2 is shown in
Figure 15

In our running example there is only one variable, this is not enough
to see how the bindings parameter works in general. Let us consider as
a second example the labelled tableau graph in Figure 16 and the prolog
programm that is compiled from it in Figure 1717.

The binding parameter will in this case be a three-element list which
holds the bindings of the universal variables X,Y ,Z of the input formula. In
lines 12 and 15 of Figure 17 the �rst element of the binding list is accessed
and used to instantitate p(X) respectively q(X). In lines 23 and 26 the �rst
two positions are accessed, and the second position is used to instantiate
q(Y ) respectively r(Y ). Finally in lines 34 and 37 all three positions are
accessed, but only the third position is used to instantiate r(Z) respectively
p(f(Z)). The �rst two positions are passed on to the subsequent calls of
the predicate node.

The open tail R avoids annecessary overhead, if only the �rst variable
is needed the remaining positions will be lumped together in the remaining
list R and passed on without change.

In line 9 of Figure 17 the Prolog variable that occupies the �rst position
in the binding list does not occur in the body of the clause. The value
of will not be passed on to the calls of node(5,[A|R],X3,X4,X5) and
node(6,[A|R],X3,X4,X5). Instead, a new variable A is introduced. This
is exactly the e�ect of a 
-rule application for variableX. This also explains
why the length of the binding-list equals the number of quanti�ed variables
in hte original tableau graph no matter how often the 
-rule is invoked. In
lines 20 and 31 the same happens for the second and third variable, in our
case Y and Z. Note that the values of the other positions of the binding
list are passed on unchanged.

Now we have a look at the compilation program, see Figure 18 on page
37. Its main predicate is

comp(+TableauGraph,+BindIn,+BindOut),

17For brevity we have omitted that part of the code that does not depend on the input
graph, cf. Figure 14
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1 C: start(2)

2 C: node(1,X,[],2,[])

3 C: close(p(a),[])

3 F: close(p(a),[])

3 C: node(2,X,[p(a)],2,[])

4 C: node(6,X,[p(a)],2,[3])

5 C: close(-(p(f(f(a)))),[p(a)])

5 F: close(-(p(f(f(a)))),[p(a)])

5 C: node(0,[Y|Z],[-(p(f(f(a)))),p(a)],2,[3])

9 C: node(3,[Y|Z],[-(p(f(f(a)))),p(a)],1,[3])

10 C: node(4,[U|Z],[-(p(f(f(a)))),p(a)],1,[3])

11 C: close(-(p(U)),[-(p(f(f(a)))),p(a)])

11 E: close(-(p(a)),[-(p(f(f(a)))),p(a)])

10 E: node(4,[a|Z],[-(p(f(f(a)))),p(a)],1,[3])

26 C: node(5,[a|Z],[-(p(f(f(a)))),p(a)],1,[3])

27 C: close(p(f(a)),[-(p(f(f(a)))),p(a)])

27 F: close(p(f(a)),[-(p(f(f(a)))),p(a)])

27 C: node(0,[a|Z],[p(f(a)),-(p(f(f(a)))),p(a)],1,[3])

31 C: node(3,[a|Z],[p(f(a)),-(p(f(f(a)))),p(a)],0,[3])

32 C: node(4,[W|Z],[p(f(a)),-(p(f(f(a)))),p(a)],0,[3])

33 C: close(-(p(W)),[p(f(a)),-(p(f(f(a)))),p(a)])

33 E: close(-(p(f(a))),[p(f(a)),-(p(f(f(a)))),p(a)])

32 E: node(4,[f(a)|Z],[p(f(a)),-(p(f(f(a)))),p(a)],0,[3])

50 C: node(5,[f(a)|Z],[p(f(a)),-(p(f(f(a)))),p(a)],0,[3])

51 C: close(p(f(f(a))),[p(f(a)),-(p(f(f(a)))),p(a)])

51 E: close(p(f(f(a))),[p(f(a)),-(p(f(f(a)))),p(a)])

50 E: node(5,[f(a)|Z],[p(f(a)),-(p(f(f(a)))),p(a)],0,[3])

31 E: node(3,[a|Z],[p(f(a)),-(p(f(f(a)))),p(a)],0,[3])

. . . .

1 E: start(2)

C = Call, E = Exit, F = Fail

Fig. 15. Trace of the program from Figure 14

where TableauGraph is a tableau graph with the leaf 0:true and BindIn

and BindOut are initially the empty list.
We will refer to the binding list in the head of a node-clause as the

inbound binding, and the to binding list in the body of a node-clause as
the outbound binding. The compiling predicate comp constructs both lists
while descending the tableau graph; the lists for inbound and outbound
binding are passed through the calls of comp without the trailing Prolog
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1 : p(a)

2 : �(p(f(a))

3 : 8X

4

5 : �p(X) 6 : q(X)

0 : true

7 : 8Y

8

9 : �q(Y ) 10 : r(Y )

0 : true

11 : 8Z

12

13 : �r(Z)) 14 : p(f(z))

0 : true

0 : true

p(a) ^ :p(f(a)) ^ 8X(:p(X) _ q(X))
8Y (:q(Y ) _ r(Y )) ^ 8Z(:r(Z) _ p(f(Z)))

Fig. 16. Third example of a labelled tableau graph.

variable for a possible tail. The position of a variable's binding in the list
is determined by the order in which the variables occur in the input graph.
The only place where new variables are introduced is when compiling a
universally quanti�ed node. Then, the inbound and outbound lists are
extended by one slot at their ends (lines 17,18 of Figure 18).

Line 1 terminates the recursion if a leaf is reached. The clause in line 3
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1 node(1,X2,X3,X4,X5) :- (close(p(a),X3);

2 node(2,X2,[p(a)|X3],X4,X5)).

3

4 node(2,X2,X3,X4,X5) :- (close(-(p(f(a))),X3);

5 node(3,X2,[-(p(f(a)))|X3],X4,X5)).

6

7 node(3,X2,X3,X4,X5) :- node(7,X2,X3,X4,[4|X5]).

8

9 node(4,[_|R],X3,X4,X5) :- node(5,[A|R],X3,X4,X5),

10 node(6,[A|R],X3,X4,X5).

11

12 node(5,[A|R],X3,X4,X5) :- (close(-(p(A)),X3);

13 node(0,[A|R],[-(p(A))|X3],X4,X5)).

14

15 node(6,[A|R],X3,X4,X5) :- (close(q(A),X3);

16 node(0,[A|R],[q(A)|X3],X4,X5)).

17

18 node(7,X2,X3,X4,X5) :- node(11,X2,X3,X4,[8|X5]).

19

20 node(8,[A,_|R],X3,X4,X5) :- node(9,[A,B|R],X3,X4,X5),

21 node(10,[A,B|R],X3,X4,X5)).

22

23 node(9,[A,B|R],X3,X4,X5) :- (close(-(q(B)),X3);

24 node(0,[A,B|R],[-(q(B))|X3],X4,X5)).

25

26 node(10,[A,B|R],X3,X4,X5) :- (close(r(B),X3);

27 node(0,[A,B|R],[r(B)|X3],X4,X5)).

28

29 node(11,X2,X3,X4,X5) :- node(0,X2,X3,X4,[12|X5]).

30

31 node(12,[A,B,_|R],X3,X4,X5) :- node(13,[A,B,C|R],X3,X4,X5),

32 node(14,[A,B,C|R],X3,X4,X5).

33

34 node(13,[A,B,C|R],X3,X4,X5) :- (close(-(r(C)),X3);

35 node(0,[A,B,C|R],[-(r(C))|X3],X4,X5)),

36

37 node(14,[A,B,C|R],X3,X4,X5) :- (close(p(f(C)),X3);

38 node(0,[A,B,C|R],[p(f(C))|X3],X4,X5)),

Fig. 17. Code for third example of a labeled tableau graph

succeeds if a node-clause with the same id-number has already been added.
No further action will follow in this case.

Lines 6{13 compile a disjunction: in 6 and 7, we append a tail to the
inbound and outbound binding and assert a node-clause which implements
a disjunction: two goals that correspond to both generated branches must
be solved. After asserting the clause, we continue to compile both disjuncts.

Lines 16{22 compile universally quanti�ed subgraphs; we generate in-
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1 comp(0:true,_,_):- !.

2

3 comp((Id:_),_,_) :- clause(node(Id,_,_,_,_),_),!.

4

5 % Disjunctions:

6 comp(Id:((LeftId:Left);(RightId:Right)),BindIn,BindOut):-!,

7 append(BindIn,BTail,BI),

8 append(BindOut,BTail,BO),

9 assert((node(Id,BI,P,MaxVars,Gamma) :-

10 node(LeftId,BO,P,MaxVars,Gamma),

11 node(RightId,BO,P,MaxVars,Gamma))),

12 comp(LeftId:Left,BindOut,BindOut),

13 comp(RightId:Right,BindOut,BindOut).

14

15 % Univ. quantification:

16 comp(Id:(all(X,(ScId:Scope)),SuccId:Succ),BindIn,BindOut):-!,

17 append(BindIn,[_],ScBindIn),

18 append(BindOut,[X],ScBindOut),

19 assert((node(Id,Bind,P,MaxVars,Gamma) :-

20 node(SuccId,Bind,P,MaxVars,[ScId|Gamma]))),

21 comp(ScId:Scope,ScBindIn,ScBindOut),

22 comp(SuccId:Succ,ScBindOut,ScBindOut).

23

24 % Literals:

25 comp(Id:(Lit,SuccId:Succ),BindIn,BindOut) :-!,

26 append(BindIn,BTail,BI),

27 append(BindOut,BTail,BO),

28 assert((node(Id,BI,Path,MaxVars,Gamma):-

29 close(Lit,Path)

30 ;node(SuccId,BO,[Lit|Path],MaxVars,Gamma))),

31 comp(SuccId:Succ,BindOut,BindOut).

Fig. 18. Compiling Tableau Graphs

bound and outbound bindings for compiling the scope of the universal
quanti�cation, as discussed above. The compiled code for the current ta-
bleau graph node does not use these: the only action we perform is to
add the address of this node to the list Gamma, and continue by calling the
node after the universally quanti�ed subgraph. Thus, at runtime, we do
not enter the universally quanti�ed subgraph on the �rst transversal of the
graph, but just \jump" over it ignoring its contents. The actual renaming
of the quanti�ed variable takes place if we enter the code for the subgraph
during runtime: line 21 calls the compiler for this subgraph, which will
generate the corresponding code. Line 22 calls the compiler for the next
node after the subgraph. Note, that the changed inbound and outbound
binding is only relevant for compiling these clauses. The current clause
we compile does not refer to any variables, so it is su�cient to pass the
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bindings with a simple Prolog variable. Here, it is called Bind.
The purpose of the last clause is again quite obvious: when compiling

a literal, we either close the current branch or (if this fails) call the clause
for the next node.

Compiling formul� into Prolog code yields another speedup compared
to the version dealing with tableau graphs: depending on the quality of
your Prolog compiler, speed can easily double. An interesting point is
that the compilation principle can be integrated into the \interpreting"
versions of our tableau provers: One could, for instance, compile theories
that are often used in advance and load the corresponding Prolog code
when required.

Compilation is a powerful technique for theorem provers, but it also
has its limits. It is important to understand that it does not increase the
e�ciency of a calculus, but \just" the e�ciency of its implementation. For
achieving the former we must modify the underlying calculus; one possible
way is by using lemmata.

7 Including Lemmata
Lemmata will be treated extensively in another chapter of the forthcoming
Handbook of Tableau-based Methods in Automated Deduction. Here, we
will treat the technical aspects of including lemmata into the proof search,
after having recalled the basic idea behind lemmata.

7.1 What are Lemmata?

Lemmata can be seen as one way to strengthen a tableau calculus. Alt-
hough the use of lemmata can shorten proofs, this does not mean that the
shorter proofs are also easier to �nd. In a sense, this reduces the depth
of the search space for the price of broadening it. However, if we consider
certain classes of theorems that have exponential proof length (like, for in-
stance, the pigeon-hole formul�), including lemmata is often the only way
to cope with such problems.

There are two perspectives from which one can look at lemmata; one
is the truth table point of view, the other is a more \operational" point
of view. The former is illustrated in Figure 19: Part a) gives the truth
table for the usual treatment of disjunction in a tableau calculus, Part b)
for a disjunction with lemmata. Each of the two branches in a tableau
resulting from expanding a disjunction corresponds to one of the shaded
areas in the truth table. In a), the entry where both subformul� are true
(the bottom-right entry) is covered twice: this means, that this entry in
the truth table is \covered" by two branches.

This entry is covered only once with a disjunction rule with lemmata.
In terms of tableaux, this means that we add the information that the
other disjunct is false to one branch when decomposing a disjunction. By
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Fig. 19. Lemmata from the Truth-table Point of View.
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Fig. 20. Lemmata from an Operational Point of View

this, we cover each entry only on one branch. Thus, the information on
branches is more speci�c than in the case above: no interpretation for the
two disjuncts will satisfy both branches. The di�erence also becomes clear
if we consider a fully expanded tableau for a given formula: Whilst with
the standard rule for disjunctions, all paths form a DNF for the formula,
we will get an XOR-normal form if lemmata are included.

Figure 20 presents this semantic consideration from another, more ope-
rational point of view: here, a lemma can be seen as a shorthand for a
subproof, which would have to be carried out multiply during the proof if
we did not use lemmata. As such subproofs can be arbitrarily complex,
lemmata can considerably decrease the length of proofs.

7.2 Integrating Lemmata into our Framework

Lemmata are easily included into a tableau calculus by modifying the �-
rules according to Figure 19: the right branch will hold the negation of the
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disjunct that went to the left, i.e., we recall on the right branch that the left
branch is closed.18. Unfortunately, this has two nasty side e�ects: Firstly,
it is not a very good representation, as one disjunct appears twice in the
expansion: We would need to represent a formula and its corresponding
lemma separately. Secondly, we cannot restrict a prover to negation normal
form anymore, since the required negation for building the lemma would
destroy the normal form during run time.19

Fortunately, there are well known solutions to this problem: we can take
out the screw driver and manipulate the basic representation underlying our
prover: instead of building upon the disjunctive normal form-representation
for tableaux, we change to an if-then-else representation:

De�nition 7.2.1. The set of if-then-else expressions SH is the smallest
set such that:

1. f0; 1g � SH

2. If A is atomic and B
�
;B+ 2 SH then sh(A;B

�
;B+) 2 SH.

3. If B;B
�
;B+ 2 SH, then sh((8x B);B

�
;B+) 2 SH

The semantics of sh(A;C;B) is de�ned as: if A then B else C, i.e.: (A ^

B) _ (:A ^C).

De�nition 7.2.1 de�nes a class of formul� which, when represented gra-
phically, are called BDDs or Binary Decision Diagrams20. These formul�
are built solely by atomic formul�, an if-then-else{connective and the ato-
mic truth constants 1 and 0.

BDDs are usually de�ned for propositional logic, only. For handling
quanti�ers, we use nested if-then-else-expressions, analogously to tableau
graphs in De�nition 5.0.1. As with tableau graphs, we can easily map
�rst-order formul� into BDDs:

De�nition 7.2.2. Let F be a �rst-order formula in Skolemized negation
normal form; then

18Note, that this does not require that the left branch is actually closed before pro-
ceeding with the right branch.

19The latter point can be resolved if lemma generation is moved into preprocessing,
e.g. if we extended the derivation of negation normal form appropriately. However, the
problem of considerably increasing the size of tableaux remains.

20Note, that the notion \BDD" is often used in the literature to refer to ordered,
reduced BDDs (ROBDDs); this is not meant here: we use non-ordered, and non-reduced
BDDs. ROBDDs are considered in a later section (7.3).
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Fig. 21. BDD and Tableau for A _ (B ^C)

f2Sh(F ) =

8>>>>>>><
>>>>>>>:

f2Sh(A)
h

1
f2Sh(B)

i
if F = A^B

f2Sh(A)
h

0
f2Sh(B)

i
if F = A_B

sh((8x f2Sh(A)); 0; 1) if F = 8x A

sh(F; 0; 1) or sh(F; 1; 0) if F is a Literal

Figure 21 shows the BDD f2Sh(A _ (B ^ C)) and a corresponding ta-
bleaux with lemmata. If we apply the same trick as used for tableau graphs
to BDDs, we can derive a graphical representation instead of a tree: the re-
placement operation is carried out analogously to that which was explained
for De�nition 5.0.1 by repacing edges, rather than nodes.

The motivation for BDDs is to handle lemmata in a better way than
by modifying the �-rule; the paths to 1-leaves in BDDs are indeed nothing
but a representation of branches in a tableau with disjunctive rules that
incorporate lemmata. The reader is invited to verify this by examining
Figure 21.

It is beyond the scope of this chapter to formalize this in detail, so
we will just give the basic idea (see [Pos93b] for details), restricted to
propositional logic: The key to understanding it is to compare branches in
fully expanded tableaux to paths in BDDs:

Assume we have a fully expanded tableau F for a propositional formula
F ; we can then interpret the branches in F as conjunctions of literals.
Then, the disjunction of all branches in F is a DNF for F .

Paths in BDDs can be regarded analogously: In propositional logic, each
node in a BDD is labelled with an atomic formula. Thus, a path can be seen
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as a sequence of signed atoms. The signs denote which \exit" was chosen
at each node: if the then-part was used, the sign is positive, otherwise it is
negative. Analogously to branches in tableaux, we can regard these paths
as a conjunction of literals, where the sign attached to the atoms denotes
whether the literal is negated or not. The di�erence to tableaux is that
there are two kinds of paths, namely paths to 1-leafs and paths to 0-leafs.
The paths to 1-leaves play the same role as the branches in tableaux, i.e.,
they are a DNF for the underlying formula. The 0-paths, however, build a
DNF for the negated formula, i.e., the conjunction of all 0-paths in f2Sh(F )
is a DNF for :F .

To summarize, tableaux represent models of formul�, whilst BDDs re-
present models and counter models. Note, that both our graphical re-
presentation for fully expanded tableaux (cf. Def. 5.0.1) and BDDs (Def.
7.2.2) can be computed linearly w.r.t. to the length of the negation normal
form of a formula. With BDDs, we thus get the additional information of
counter models more or less \for free".

It remains to show that BDDs actually ful�ll their intended purpose,
i.e. that they represent tableau with lemmata. We shall argue informally:
Figure 20 shows how lemmata can be integrated when decomposing dis-
junctions in a tableau calculus; we add the negated left conjunct to the
right branch. This means, the right branch will contain information about
all counter models of the left disjunct when the tableau is fully expanded.
The disjunction rule for computing a BDD for a formula acts similarly:
for A _B, f2Sh(B) is inserted for the 0-leaf of f2Sh(A). As the 0-paths of
f2Sh(A) represent counter models of A, the 1-paths of the resulting graph
will contain these. It is not very hard to show formally that the 1-paths
of a BDD for a formula F are identical to the branches in corresponding
tableau for F : by induction over the structure of F , we relate 1-paths to
branches of a tableau for F , and 0-paths to branches of a tableau for :F .
The proof is left as an exercise to the reader.

When implementing deduction based on BDDs, the �rst step required
is to translate formul� into the graphs. Based on the mapping given in
De�nition 7.2.2, we can implement this very elegantly in Prolog; Figure 22
shows a simple program which is nearly a literal translation of De�nition
7.2.2:

We use the prolog if-then-else construct \... -> ... ; ..." to
denote if-then-else. The clause

f2bdd(Formula,True,False,BDD)

succeeds if BDD is a BDD for Formula with the true-leaf True and the
false-leaf False.

The �rst clause handles conjunctions. We recursively compute graphs
for A and B, and insert the latter for the true-leaf of the graph for A. This
corresponds to the �rst case in De�nition 7.2.2.
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1 f2bdd((A,B),True_B,False,BDD_A) :-!,

2 f2bdd(A,BDD_B,False,BDD_A),

3 f2bdd(B,True_B,False,BDD_B).

4 f2bdd((A;B),True,False_B,BDD_A):-!,

5 f2bdd(A,True,BDD_B,BDD_A),

6 f2bdd(B,True,False_B,BDD_B).

7 f2bdd(all(X,Fml),True,False,

8 (all(X,BDD_Fml) -> True; False)) :-!,

9 f2bdd(Fml,1,0,BDD_Fml).

10 f2bdd(Literal,True,False,BDD):-

11 (Literal= -Lit) -> BDD = (Lit -> False; True)

12 ; BDD= (Literal -> True; False).

Fig. 22. Implementing De�nition 7.2.2

Disjunctions work analogously, but the graph for B goes to the false-leaf
of the graph for A.

Universal quanti�cation is handled as with tableau graphs. Note, that
the leaves inside universally quanti�ed subgraphs are instantiated to the
constants true and false.

Figure 23 gives an example: it shows a graphical representation of the
binding of BDD after successful termination of the Prolog query:

f2bdd((p(a),-p(f(f(a))),all(X,(-p(X);p(f(X))))),true,false,BDD)

7.2.1 Deduction with BDDs

From what we have seen about BDDs, it should be clear how the presented
algorithms for deduction with tableau graphs can be adapted to BDDs;
the underlying principle is the same: BDDs represent a disjunctive normal
form and the paths in BDDs are the analog to branches in tableaux. Thus,
when trying to show that a given BDD represents an inconsistent formula,
we inspect its paths and try to �nd contradictory literals on each of them.
Extension steps for applying universal quanti�cation work in the same way
as for tableau graphs. It is not di�cult to modify the Prolog programs
given for tableau graphs such that they work on BDDs instead.

7.3 Reduced, Ordered Binary Decision Diagrams

The reader being familiar with Binary Decision Diagrams will have noticed
that we use BDDs in their non-reduced, non-ordered form21. In the litera-

21These are also called free BDDs by some authors, Shannon graphs by others.
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Fig. 23. An Example BDD

ture, however, BDDs appear mostly as reduced, ordered BDDs (ROBDDs)
[Bry86, Bry92, GP94]. One reason for this is that BDDs are originally a
propositional formalism; ROBDDs are a subclass of propositional BDDs,
where

1. each path respects a given ordering on atomic formul�,

2. no path contains multiple occurrences of the same literal, and

3. no subgraph occurs more than once in a BDD.

As a consequence of this, ROBDDs form a unique normal form for Boolean
functions. ROBDDs have been successfully applied to various domains.
Especially experience in hardware veri�cation (see e.g. [BRB90]) has shown
that ROBDDs are well suited as an underlying data structure for proving
properties of propositional formul�.

Our view was di�erent: we did not use BDDs as a canonical normal
form (ie: as ROBDDs), but regarded them simply as another representa-
tion of disjunctive normal forms, which is sometimes better (i.e. smaller)
than tableaux. From this point of view, BDDs are nothing but a logical
formul� | possibly in a graphical representation. The logical connective
underlying this representation is if-then-else.22 A calculus based on BDDs

22Such formul� have already been considered in 1854 by George Boole [Boo58]; Alonzo
Church showed about one century later that if-then-else is a primitive basis for propo-
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uses the same inference principles as a tableau calculus | just the under-
lying datastructure is di�erent, see [GP94] for a more detailed discussion
of the relation between BDDs and Automated Reasoning.

Furthermore, we used BDDs for representing �rst-order formul�, and
showing that they are inconsistent. This is also not a standard use of
ROBDDs: these have been designed for representing Boolean functions,
rather than for showing that the function never evaluates to 1. The main
purpose of ordering atoms and maintaining a reduced graphical represen-
tation in ROBDDs is, however, to ease the representation of Boolean func-
tions: it results in a unique representation (w.r.t. the ordering).

It is clear that a unique normal form for �rst-order logic is not com-
putable, since the language of �rst-order logic is undecidable. This might
appear as an argument against the use of ordered in BDDs for �rst-order
logic, but it is not: it just says that we will not achieve a unique normal
form, but does not tell anything about the e�ciency of an ordered, reduced
format w.r.t. the unordered BDDs we have used. The use of ROBDDs in
a tableau-like setting can, from a purely logical point of view, be seen as
using regular tableaux., which will be described in detail in another chap-
ter of the forthcoming Handbook of Tableau-based Methods in Automated
Deduction. It might well be the case that a �rst-order calculus based on
ROBDDs works more e�cient for a certain class of formul� than one ba-
sed on BDDs. The opposite, however, can also be the case. The answer to
\what should I choose?" is not context-free.

8 A Glimpse into the Future
Automated Deduction is at present neither an engineering discipline, nor
pure mathematics. The key to successfully applying Automated Deduction
is careful analysis and experimenting. Both are equally important and
depend on each other. The above considerations on BDDs vs. ROBDDs
stress an important point in working on Automated Deduction: There is
no panacea. For nearly each heuristic, or modi�cation to a calculus, there
is a counterexample where things become worse than before. The language
of �rst-order logic is not decidable, and it is highly unlikely that this will
ever change. This makes the �eld hard, but it also makes it interesting: we
will never run out of problems.

Our motivation for writing this chapter as it is was to support ex-
perimenting: we presented a couple of implementation techniques which
preserve the openess of tableau calculi. It is unlikely (although not im-
possible) that one of programs we presented will exactly �t for a concrete
application one has. But the reader is likely to �nd a starting point in this
chapter.

sitional logic [Chu56, x24, pp. 129�].
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It is hard to give any reasonable predictions of the future course of au-
tomated theorem proving in general and tableau-based automated theorem
proving in particular. But it is pretty clear that the distinctions between
fully automated theorem provers and interactive ones will fade. Interactive
components will be added to upto now fully automated systems and auto-
mated systems will be integrated in interactive proof development systems.
As one example for an interactive prover based on a sequent calculus one
may name IMPS (Interactive Mathematical Proof System) described in
[FGT92] and [FGT93]. Instead of implementing one prover for one logical
calculus it has also been tried to develop shells that help realize a custom-
made logical system. Within the family of sequent calculi such an approach
has been undertaken in [RKSW94].

9 A Brief Historical Survey on Tableau-based Pro-
vers

The following list of implementations of theorem provers can certainly not
claim to be exhaustive. Apart from the di�culty of locating the relevant in-
formation it is also not clear where to draw the line between tableau-based
theorem provers and those that are not. We tended to include programs
based on sequent calculi because of their close relationship to tableaux, but
left out systems based on natural deduction. We also did not consider pro-
vers for propositional logic only. The following account is for the greatest
part gleaned from [BPar].

The �rst tableau-based theorem prover that we know of was develo-
ped in the late �fties by Dag Prawitz, H�akan Prawitz, and Neri Vog-
hera [PPV60]. It ran on a computer named Facit EDB (manufactured
by AB �Advidabergs Industrier). The tableau calculus implemented was
already quite similar to today�s versions; it did not, however, use free va-
riables. This prover was perhaps the earliest for �rst-order logic at all.23

At about the same time, Hao Wang implemented a prover for �rst-order
logic, that was based on a sequent calculus similar to semantic tableaux
[Wan60]. The program ran on IBM 704-computers.

Ewa Or lowska implemented a calculus that can be seen as tableau-based
in 1967 on a GIER digital computer24. The calculus was based on deriving
if-then-else normal forms rather than disjunctive normal forms. Only the
propositional part of the calculus was implemented.

We are not aware of any implementation-oriented research around ta-
bleaux in the seventies; there have been a number of theoretic contributions
to tableau calculi but nothing seems to have been implemented.

23Actually, Prawitz et al. implemented a calculus for �rst-order logic without function
symbols; that, however, has the same expressiveness as full �rst-order logic.

24The GIER (Geodaetisk Instituts Elektroniske Regnemaskine) was produced by
Regnecentralen in Copenhagen (Denmark) in the early sixties.
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In the eighties, the research lab of IBM in Heidelberg, Germany was a
major driving force of tableau-based deduction: Wolfgang Sch�onfeld deve-
loped a prover within a project on legal reasoning [Sch85]. It was based on
free-variable semantic tableaux and used uni�cation for closing branches.
A few years later Peter Schmitt developed the THOT theorem prover at
IBM [Sch87]; this was also an implementation of free-variable tableaux and
part of a project aiming at natural language understanding. Both imple-
mentations have been carried out in Prolog. Based on experiences with

the THOT theorem prover, the development of the 3T
AP system started

around 1990 at Karlsruhe University [BGHK92b]; the project was funded
by IBM Germany and carried out by Peter Schmitt and Reiner H�ahnle.

The 3T
AP prover was again written in Prolog and implemented a calculus

for free-variable tableaux, both for classical �rst-order logic with equality
as well as for multi-valued logics. This program can bee seen as the direct

ancestor of leanTAP .
Besides the line of research outlined above there was also other work

on tableau-based deduction in the eighties: Oppacher and Suen published
their well-known paper on the HARP theorem prover in 1988 [OS88]. This
prover was implemented in LISP and is probably the best-known instance
of a tableau-based deduction system. Another implementation, the Hel-
sinki Logic Machine (HLM), is a Prolog program that actually implements
about 60 di�erent calculi, among them semantic tableaux for classical �rst-
order logic, non-monotonic logic, dynamic logic, and autoepistemic logic.
Approximately at the same time a tableau-based prover was implemented
at Karlsruhe University by Thomas K�au
 [KZ90]; the system, called \Tat-
zelwurm", implemented classical �rst-order logic with equality, but did not
use a calculus based on free variables. Its main purpose was to be used as
an inference engine in a program veri�cation system.

Since 1990, the interest in tableau-based deduction continuously in-
creased, and we will not try continue our survey beyond this date. From
1992 onwards, the activities of the international tableau community are
quite well documented, as annual workshops were started; we refer the in-
terested reader to the workshop proceedings of these workshops [FHK92,
BFH+93, BDG+94].25 Another interesting source of information on im-
plementations are the system abstracts in the proceedings of the CADE
conferences since 1986. Among the newer developments let us mention the
sequent calculus based prover called GAZER [BPR92]. GAZER is imple-
mented in Prolog.

25Proceedings of subsequent workshops will be published within Springer's LNCS
series.
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