
�
�

�
�@

@

@
@

Klaus Neumann

Welf G. Schneider

INSTITUT F�UR WIRTSCHAFTSTHEORIE

UND OPERATIONS RESEARCH

UNIVERSIT�AT KARLSRUHE

Heuristic Algorithms for

Job{Shop Scheduling Problems with

Stochastic Precedence Constraints

Report WIOR{498

Juni 1997

TECHNICAL REPORT

Universit�at Karlsruhe

Kaiserstra�e 12, D{76128 Karlsruhe

Klaus Neumann

Welf G. Schneider

Report WIOR{498

Juni 1997

submitted to Annals of Operations Research 6/97

INSTITUT F�UR WIRTSCHAFTSTHEORIE

UND OPERATIONS RESEARCH

UNIVERSIT�AT KARLSRUHE

Heuristic Algorithms for

Job{Shop Scheduling Problems with

Stochastic Precedence Constraints

This research was partially supported by the Deutsche Forschungsgemeinschaft

(Grant Ne 137/4).

All rights reserved. No part of this publication may be reproduced or transmitted

in any form or by any means, electronic or mechanical, including photocopy,

recording, or any information storage and retrieval system, without permission

in writing form from the authors.

Abstract:

Keywords:

This paper deals with job{shop scheduling with stochastic precedence constraints

given by so{called OR networks. At �rst, a job{shop problem with stochastic OR

network precedence constraints is described where the expected makespan is to

be minimized. An example shows where such a problem occurs in practice. Next,

the concept of an aggregate schedule is discussed, which represents a determin-

istic static scheduling policy for our stochastic problem. The construction of an

appropriate aggregate disjunctive graph permits us to adapt the shifting bot-

tleneck heuristic. After that, a priority{rule method is proposed for �nding an

approximate aggregate schedule. An experimental performance analysis shows

that both heuristics provide good approximate solutions. Finally, we briey dis-

cuss a ow{shop problem with OR network precedence constraints.

stochastic scheduling, job{shop and ow{shop scheduling, GERT networks, heu-

ristics

max

max

j j

j j

j j

Contents

J acyclOR E C

F acyclOR E C

1 Introduction 1

2 Basics from the theory of GERT networks 2

3 Job{shop scheduling with OR network precedence constraints 3

4 Application of job{shop scheduling with OR network precedence

constraints 5

5 Schedules for J acyclOR E Cmax 6

6 Disjunctive graphs and shifting bottleneck heuristic 10

7 A priority{rule{based procedure 18

8 Experimental performance analysis 19

9 Supplements 23

10 Conclusions 25

Bibliography 25

()

6.1 Disjunctive graph for deterministic precedence constraints 11

6.2 Aggregate disjunctive graph for () 13

8.1 Test environment . 19

8.2 Performance analysis of the shifting bottleneck heuristic 20

8.3 Performance analysis of the Gi�er{Thompson procedure 20

8.4 Comparison of shifting bottleneck heuristic and Gi�er{Thompson

procedure . 22

9.1 Flow{shop problem () 23

9.2 Cyclic OR networks . 24

J Cjj max

1 Introduction

GERT networks

project network realizations

aggregate schedule

aggregate disjunctive graph

During the last ten years, literature on job{shop scheduling has grown enor-

mously. In particular, a large number of exact and heuristic algorithms for

solving the \classic" problem have been proposed (for an overview com-

pare B la_zewicz et al. 1996, Brucker 1995, and Pinedo 1995). Job{shop problems

with additional (deterministic) precedence constraints for the jobs, however, have

been discussed extremely rarely (see, for example, Strusevich 1997). In job{shop

scheduling with stochastic processing times not much research has been done,

either (cf. Pinedo & Schrage 1982 and Pinedo 1995). Job{shop scheduling with

stochastic precedence constraints has not been treated at all in the open literature

so far.

In this paper, we are going to deal with job{shop scheduling where the prece-

dence constraints are given by special stochastic project networks, so{called

. GERT networks have been introduced to model, schedule, and

control projects whose evolution in time is not uniquely determined in advance

and where feedback is allowed. That is, we have a stochastic evolution structure

of the project in question (for a detailed discussion of GERT networks we refer to

Neumann & Steinhardt 1979 and Neumann 1990). Each GERT network is asso-

ciated with a random experiment, which consists of executing the corresponding

project. The sample space
 represents the set of all possible outcomes of the

project, also called or . The individual activities of the

project are assumed to be carried out without interruption, i.e. we only consider

the nonpreemptive case.

Single{machine scheduling problems with GERT network precedence con-

straints have been discussed by Neumann (1989, 1990), B�ucker (1992), and

B�ucker et al. (1994). Parallel{machine scheduling problems with GERT prece-

dence constraints have been studied by Zimmermann (1995) and Neumann &

Zimmermann (1997). First results on job{shop problems with precedence con-

straints given by special GERT networks can be found in Schneider (1997).

In Section 2 of this paper we briey sketch the basics from GERT networks

needed in what follows. In Sections 3 and 4 we present a job{shop model with

stochastic precedence constraints, where the expected makespan is to be mini-

mized, and discuss some application. In Section 5 we introduce an appropriate

concept of a deterministic scheduling policy for our stochastic job{shop problem,

the so{called . Section 6 is devoted to the construction of an

for the stochastic job{shop problem in question. This

permits us to apply the well{known shifting bottleneck heuristic, which provides

an approximate aggregate schedule. In Section 7 we propose a second approach to

solving the stochastic job{shop problem by adapting a priority{rule{based heuris-

tic of the Gi�er{Thompson type. In Section 8 we present an experimental per-

formance analysis for both heuristics. Section 9 contains some supplements such

as stochastic ow{shop problems and cyclic stochastic precedence constraints.

1

2

kl kl kl

kl

kl kl

2 Basics from the theory of GERT networks

< k; l > k l

p ; F p >

< k; l > k

F

< k; l > < k; l > p F

k < k; l >

!

k !

k k

! k

!

weight vector conditional execution probability

conditional distribution function duration

OR entrance

deterministic

exit

stochastic exit

OR networks deterministic

nodes stochastic nodes

Assumption A1

We present a short review of some basic material from the theory of GERT

networks in an intuitive way (for more details see Neumann 1990). For the basic

concepts from the theory of graphs and networks needed in the following, we refer

to Neumann (1990) and Ahuja et al. (1993).

For GERT networks, we use the activity{on{arc representation of projects

known from CPM and PERT networks (see, for example, Elmaghraby 1977).

A GERT network has exactly one source (corresponding to the beginning event

of the project) and at least one sink (corresponding to terminal events of the

project). As compared to CPM and PERT networks, GERT networks possess

more general arc weights, several di�erent types of nodes, and cycles to represent

feedback. Because of the latter property, some activities may be carried out

several times during a single project realization.

Each arc of a GERT network with initial node and �nal node is

assigned a (). 0 is the

of the corresponding activity given that project event has occurred.

is the of the nonnegative of activity

given that activity is executed. and are assumed to be

independent of how many times project event has occurred or activity

has been carried out before, respectively.

GERT networks possess six di�erent node types resulting from combination

of three possible entrance sides and two exit sides of a node. For simplicity, we

consider only one entrance side of a node, the so{called , which says

that the node is \activated" (i.e. the corresponding project event occurs) every

time when an incoming activity has been terminated. We speak of a

of a node if all outgoing activities are carried out when the node has been

activated. If exactly one outgoing activity is carried out when the node has

been activated, we have a . A node with at most one successor is

supposed to have a stochastic exit (if we speak of a successor or predecessor of

a node in what follows, we always mean an immediate successor or predecessor,

respectively). Hence, the special GERT networks we are going to discuss in this

paper and which are called possess two types of nodes:

with OR entrance and deterministic exit and with OR

entrance and stochastic exit.

Each realization
 of an OR network or the corresponding project, re-

spectively, begins with the activation of its source at time zero. Subsequently,

for each stochastic node activated, project realization speci�es exactly one

activity with initial node to be carried out. Note that if stochastic node is ac-

tivated several times during project realization , di�erent activations of node

may result in the execution of di�erent outgoing activities. Moreover, speci�es

the realized duration of each activity execution.

An OR network is supposed to satisfy two assumptions. refers

2

P

1

1

m

m

j

1 2 1 2

max

1 1

1

1

=1

R \R ; R

jj

J

f g M f g

k

k

kl

kl k kl

n m j

i j i j

i i m

m

ij

ij j
m
i ij j

j

j j j

j j j j

j

j k j

3 Job{shop scheduling with OR network

precedence constraints

k

l l k l l l

l

q k

q k

� < k; l >

� q p

< k; l >

J C

J ; : : : ; J M ; : : : ;M J m

O ; : : : ; O

M ; : : : ;M i ; : : : ; i

; : : : ;m

M ; : : : ;M

t >

O t t J

J

< k ; l > t

p k l J

J

� q p

A1

Assumption A2

A2

A1

processing time

stochastic precedence constraints

conditional execution

probability initial node �nal node

execution probability

to the stochastic evolution structure of the corresponding project and expresses

some Markov and independence properties. An OR network can then be asso-

ciated with several Markov renewal processes, whose states represent the nodes

and which evolve in time independently of one another and cease to exist and

give birth to new processes once deterministic nodes are activated (for a precise

formulation of see B�ucker et al. 1994 and Neumann 1990).

says that for each deterministic node and any two distinct

successors and of , it must hold that () () = where () denotes

the set of nodes reachable from node . From it follows that every node which

belongs to a cycle is stochastic and that each activity outside any cycle is carried

out at most once during a single project realization.

Let be the probability that node is activated (during a single project

execution). Exploiting , the activation probabilities of the nodes of an OR

network can be computed by solving a system of linear equations (cf. Neumann

1990). The probability that activity is carried out (during a single

project execution) is

= (1)

For simplicity, we only consider acyclic OR networks all of whose activities

have deterministic durations in what follows. How to deal with cyclic

OR networks will be discussed in Section 9.

We assume that the reader is familiar with the \classic" job{shop problem

(e.g. see B la_zewicz et al. 1996, Brucker 1995, or Pinedo 1995) and we only

review some notation. We consider a job{shop problem with job set =

and machine set = . Job consists of op-

erations that have to be processed in this order on the machines

, respectively, where () is some given permutation of

(1). The following investigations also hold for the cases where some jobs

are not processed on all machines and where some jobs are processed

on a machine more than once. Let 0 be the (deterministic) processing time

of operation . Then := is the or duration of job .

Assume that are prescribed for the jobs given

by an acyclic OR network where each job corresponds to exactly one arc or

activity of the network with duration and

. We also speak of the and of job .

Recall that by (1), the of job is

= (2)

3

l1

lr

k

J1

Jr

p1

pr

.
 .

.

l1

lr

k

J1

Jr

p1

pr

.
 .

.

p1 = ... = pr = 1

Job competition

pν = 1Σ
ν = 1

r

No job competition

Legend:

Deterministic node

Stochastic node

j

� �

� J

O �

j j

0 0

0 0

0 0 0

0

0

1

1

1

1 1

1

max

max

k j

j j j j

j j j j

j j j j j j

j j j

j

r

r

r

r r

r

q k

J J J J

J J J J

l J k J l k

J J J

J

k l ; : : : ; l

< k; l >; : : : ; < k; l > r

J ; : : : ; J

k

< k; l >; : : : ; < k; l > J ; : : : ; J

J ; : : : ; J

E C

J acyclOR E C

precede follow

deterministic node

job competition stochastic node

no job competition

objective function expected makespan

where is the activation probability of node .

Each realization of the underlying OR network corresponds to a job{shop

problem with deterministic precedence constraints where in general not all jobs

are performed. Job is said to job and is said to (in

symbols, or) precisely if there is a path in the OR network from

�nal node of job to initial node of job , where and may coincide.

If and are carried out in one and the same network realization, then

has to be carried out before . The strict order in the job set induces a

corresponding strict order in the set of all operations also denoted by , where

in addition, the operation sequences of the individual jobs have to be observed.

Let be a of the OR network with successors .

Then the emanating arcs correspond to jobs, say jobs

, all of whose conditional execution probabilities equal one and which

can be performed simultaneously (see Fig. 1). That is, the jobs compete with each

other for the machines (). Now let be a . Then

the emanating arcs correspond to jobs whose

conditional execution probabilities sum up to unity and which are performed

exclusively (Fig. 1). That is, there is between .

Figure 1: Deterministic and stochastic nodes

The we want to minimize is the (),

i.e. the expectation of the completion time of the last job to be performed. Us-

ing the three{�eld notation known from deterministic scheduling, our job{shop

scheduling problem with precedence constraints given by an acyclic OR network

is designated by (). If the OR network contains only stochas-

tic nodes, the jobs to be performed in any network realization have to be pro-

cessed one after another and there is no optimization problem. The problem

4

j j

�

max

10

Example 1:

J acyclOR E C

:

: : J

:

mixed{

model make{to{order production

4 Application of job{shop scheduling with OR

network precedence constraints

() and its time complexity will be discussed more detailed in

Section 5.

Job{shop problems with OR network precedence constraints occur in

, where several variants of some product are

manufactured. We present an example, where several variants of some sport-

ing car with respect to engine, transmission, and di�erential are manufactured.

We consider the simpli�ed automotive propulsion manufacturing for a certain

kind of sporting car, where the customer has the choice to individually order a

pattern of car{propulsion.

The customer is allowed to choose one of the following engines for his sporting

car: 8{cyl. engine, bi{turbo{charged 8{cyl. engine, or 12{cyl. engine. Indepen-

dent of the selected engine, the customer may choose either manual 6{speed

transmission or automatic 4{speed transmission. Finally, the customer is allowed

to order an automatic lock di�erential instead of a regular one, independent of en-

gine and transmission preferences (an empirical investigation by Furmans (1995)

shows that in production of individually ordered cars, the order probabilities of

extra features are \highly uncorrelated"). For those order wishes, we are given

corresponding order probabilities, e.g. we know that 60 % of the customers want

to have the smooth{running 12{cyl. engine.

We assume that due to technological reasons, transmission, engine, and shafts

with di�erential and rear axle can be assembled independently. Other techno-

logical production restrictions can be extracted from the OR network in Fig. 2,

where additional \dummy activities" provide for consistent representation of the

OR network.

Fig. 2 makes clear the meaning of a deterministic node in an OR network,

namely, that all outgoing jobs are performed independently and, possibly, at the

same time. A stochastic node indicates that exactly one outgoing job is executed.

E.g., we want to assemble either a 12{cyl. engine or an 8{cyl. engine. The order

probability of an 8{cyl. engine equals 0 4. We notice that the order probability of

an 8{cyl.{turbo engine is 0 4 0 8. Turbo chargers are assembled (job) with

a probability of 0 8 given that an 8{cyl. engine has already been installed.

5

J1 • prepare

transmission installation

J2 •

prepare
engine

installation

J3 • instal l

cardan shaft

J6 • instal l

8–cyl. engine

0.4

J4 • install manual

6–speed transmission

0.7

J5 • install automatic

4–speed transmission

J7 • instal l

12–cyl. engine

0.6

J8 • attach automatic

lock differential

0.1

J9 • attach

regular differential

0.9

dummy

dummy

0.2

J1 1 • assemble

rear axle

J1 0 • assemble

turbo chargers

0.8

dummy

0.3

Jj • job j

conditional execution probability
for Jj i f different from 1

Legend:

()j j

O O

O

O 2 O

aggregate schedule

5 Schedules for J acyclOR E Cmax

Figure 2: Example of automotive propulsion in mixed{model production

We want to introduce a deterministic static scheduling policy � with the property

that for each network realization, we obtain the sequences of jobs processed on

the individual machines and their start times in a unique way. Since such a

deterministic scheduling policy aggregates, in a sense, schedules for all individual

network realizations, it is called an . An aggregate schedule �

is de�ned on the set of all operations, where �() for can be viewed

as some deterministic start time of operation . The precise de�nition of an

aggregate schedule is as follows.

6

+

+

0 0

0

0

0 0

0 0 0 0

0

0

0

0 0

0

0 0

O !

2 O 6

� �

2 J 6 2 M

2

� �

2 J � J

O � O

O !

2 J 6 2 M

� �

2 2 O

2 OnO

De�nition 1:

De�nition 2:

Remark 1:

Remark 2:

Remark 3:

aggregate schedule

network realization schedule belonging

to

IR

O ;O ij i j

O t O O O

J ; J ; j j ; M

O = O ; O t

O O

M J J J J

!

! !

IR

J ; J ; j j ; M

O O O O

! O O !

O

ij i j

ij ij i j ij i j

j j i

ij ij ij ij

ij ij

i j j j j

!

!

!

! !

j j ! i

! ij ! ij ij ij

!

! !

! !

!

!

A mapping � : is called an if it is

(a) precedence{consistent, that is,

for all with =

�() + �() exactly if

(b) feasible, that is,

for all = and all

�() [�() �() + [

and

(c) semiactive.

Condition (b) says that there are no overlapping operations and on

one and the same machine if neither nor holds. As to

condition (c), recall that a schedule is said to be semiactive if no local left{shift

of any operation can be performed, i.e. no left{shift without altering the job

sequence on any machine (cf. Pinedo 1995).

Let � be an aggregate schedule,
 be a network realization, and

and be the sets of jobs and operations, respectively, carried out in

network realization . Then we de�ne the schedule � for network realization

belonging to aggregate schedule � as follows.

A mapping � : is called a

� if it is feasible, semiactive, and has the property that

for all = and all

� () � () exactly if �() �()

Given �, � is uniquely determined for each network realization

. � () represents the start time of operation in realization .

� is assumed to be semiactive. Hence, to obtain � from �,

after deleting all operations , some local left{shifts of the remaining

operations have to be performed in general.

The schedules � and � are assumed to be semiactive (instead of

being active) and thus no global left{shifts including changes of job sequences

7

J1

J2

J3

J4

1 2

2

!

! !

!

Example 2:

!

! J J J !

J J J

O

J O ;O t ; t

J O ;O t ; t

J O ;O t ; t

J O ;O t ; t

1 1 2 3 2

1 2 4

14

1 21 11 21 11

2 12 22 12 22

3 13 23 13 23

4 24 14 24 14

Figure 3: OR network

on the machines are permitted for the following reason: For one and the same

aggregate schedule � and network realization , di�erent global left{shifts might

result in di�erent network realization schedules � , that is, the start times of

operations would not necessarily be determined in a unique way. For a more

detailed discussion we refer to Schneider (1997).

As an example, we consider a job{shop problem with four jobs and two ma-

chines where the precedence constraints are given by the acyclic OR network

(without arc weights) depicted in Fig. 3. The order in which the operations have

to be done on the jobs correspond to the order of the operations in Table 1, which

also contains the processing times of the operations. An aggregate schedule for

this job{shop problem is given by the Gantt chart in Fig. 4, where idle times

are indicated by shaded areas. There are two possible network realizations. In

realization the jobs , , and are performed, in realization the jobs

, , and are performed. The network realization schedules � and �

belonging to � are shown in Figs. 5 and 6. Note that to obtain � from �, a

left{shift of operation has to be performed.

Table 1: Operation sequences and processing times

Job Sequence of operations Processing times

= 2 = 1

= 1 = 2

= 3 = 2

= 1 = 1

8

0 1 2 4 6 83 5 7

t

M1

M2
O21

O12

O22

O11

O24

O13 O14

O23

0 1 2 4 6 83 5 7

t

M1

M2
O21

O12

O22

O11 O13

O23

M1

M2
O21

O12

O22

O11

O24

O14

0 1 2 4 6 83 5 7

t

j !

1

2

X X

X

2 J

2 J

S 2 S

�

Theorem 3:

2 2

2J

�

�

2S

�

�

2

�

!

!

j j !

j ! j !

! !

!

!

!
J

j !

!

!

!

max

max

max

max
�

max

max

max

P ! ! P !

p J

C J !

C

E C P ! C P ! C

E C E C

!

E C P ! C

expected

makespan

optimal

aggregate schedule

Figure 4: Aggregate schedule �

Figure 5: Network realization schedule �

Figure 6: Network realization schedule �

Let () be the probability that network realization occurs. () equals

the product of the conditional execution probabilities of all jobs .

Let (�) be the completion time of job in network realization

and (�) be the makespan when schedule � is applied. Then the

when aggregate schedule � is applied is

[(�)] := () (�) = () max (�) (3)

Let be the set of all aggregate schedules. Then � is called an

if its expected makespan is minimum:

[(�)] = min [(�)] (4)

Let 	 be an optimal schedule for the deterministic job{shop problem corre-

sponding to network realization .

It holds that

[(�)] () () (5)

9

2

X X

X

Proof:
�

� � �

�

2

�

2

� �

2

�

!

! !

!

!

!

!

!

!

!

!

! ! !

�

�

2

j j NP

jj

j j NP

j j NP

NP

max

max

max

max max

max

1 2 1 2

max

max

max

max

6 Disjunctive graphs and shifting bottleneck

heuristic

!

! C

C

P ! C P ! C E C

>

LB P ! C

!

!

J acyclOR E C

J C n

J acyclOR E C

F tree C

Let � be the schedule for network realization belonging to aggregate sched-

ule � . Since 	 is optimal for network realization , we have ()

(�) and thus

() () () (�) = [(�)]

The fact that the sign generally holds instead of = in (5) means that we

have to pay for restricting ourselves to (deterministic) aggregate schedules as

scheduling policies with an increase in the minimum expected makespan. The

quantity

:= () () (6)

represents a lower bound on the minimum objective function value for aggregate

schedules.

If the OR network contains only stochastic nodes, there is no optimization

problem as already mentioned. In that case, there is only one schedule 	 for

each network realization . Moreover, for any two di�erent aggregate schedules

� and � , it holds that � = � = 	 for all
. Trivially, the = sign holds

to be true in (5).

Problem () is {hard since it represents a generalization

of the classic job{shop problem : if all jobs emanate from a deterministic

source into sinks, this special OR network corresponds to the classic case. Even

2 () is {hard since it is a generalization of the ow{shop

problem 2 and the latter problem is {hard, cf. Lenstra et al.

(1977) or Strusevich (1997).

Since the problem of �nding an optimal aggregate schedule is {hard, we are

going to compute an approximate aggregate schedule by some heuristic. The

�rst method we propose is the well{known shifting bottleneck heuristic based

upon the disjunctive{graph concept. At �rst we consider disjunctive graphs for

deterministic precedence constraints.

10

Oij Oi'j

r

Oij'

s

j j

j

max

maxjj 2 O

�

�

�

0

0

0

0

0

0
0

0

0 0

0

00 0

00 �

0 00 0

conjunctive arc

disjunctive arcs

!

!

!

j i i

ij i j

j j i

ij ij

!

j

j

j � j j � j

� j

! j j j j

i

ij ij

j j j

i

ij ij j j

j j j

N N N

!

G

N C

J C O

r

s J M M

O O

J J M

O O

r

s

N

J

J

J O J O

O s

N J J J J

M

O O

J J J

M

O O J J

J J J

6.1 Disjunctive graph for deterministic precedence

constraints

Let be an acyclic OR network and be that subnetwork of which belongs

to network realization . We want to construct the disjunctive (directed) graph

for the job{shop problem with deterministic precedence constraints given by

network and objective function .

We briey review the construction of the disjunctive graph for the job{shop

problem (for details we refer to Pinedo 1995). Each operation is

assigned a node of the disjunctive graph, which additionally contains a source

and a sink . If job is processed consecutively on machines and , there

is a from operation node to operation node . For two

di�erent jobs and to be processed on the same machine , there are two

between operation nodes and going in opposite directions.

Moreover, there are conjunctive arcs from source to all the �rst operations of

the jobs and from all the last operations of the jobs to sink . Fig. 7 illustrates

that construction of a disjunctive graph where conjunctive and disjunctive arcs

are indicated by solid and broken arrows, respectively.

Figure 7: Disjunctive graph

Now we turn to deterministic precedence constraints given by network .

First we consider the precedence relation given by two consecutive jobs and

. In that case, we introduce a conjunctive arc from the last operation of job

, say , to the �rst operation of job , say (see Fig. 8). Of course,

there is no arc from last operation to sink in that case.

Second we consider several arcs emanating from a deterministic node in net-

work , say, two arcs corresponding to jobs and . Jobs and compete

with each other for the machines. Thus, for each machine , we have to in-

troduce a pair of opposite disjunctive arcs between operations and (see

Fig. 9). In addition, each job competes with job for the machines.

Hence, for each machine , we have to introduce a pair of opposite disjunctive

arcs between operations and as well. Analogously, each job com-

petes with and with each job for the machines, and corresponding

pairs of disjunctive arcs must be introduced.

11

Jj Jj'

Network Nω

Oβj j Oαj ' j '

Corresponding disjunctive graph Gω

Jj Jj'

Jj

Jj'

Jj''

Network Nω Corresponding disjunctive graph Gω

Oij

Oij' Oij''

for each
machine Mi

J1

J2

J3

11

1

! !

!

!

!

! !

!

! !

! !

N G

N !

D D

D

N

N G

N

G N

G D G D

feasible selection

Figure 8: Network and corresponding disjunctive graph

Now let us return to Example 2 from Section 5 (see Fig. 3 and Table 1), where

the network corresponding to network realization is shown in Fig. 10. The

associated disjunctive graph is depicted in Fig. 11.

As in the case without precedence constraints (see, for example, Pinedo 1995),

a subset of the arc set of the disjunctive graph is called a if

contains all conjunctive arcs and one disjunctive arc from each pair of opposite

arcs such that the induced directed graph is acyclic. Each feasible selection

corresponds to a feasible schedule 	 for the job{shop problem with precedence

constraints given by .

Figure 9: Network and corresponding disjunctive graph

Figure 10: Network

Let be again the disjunctive graph corresponding to network and

let () be the subgraph of with arc set , where the weight of an arc

12

O11

r

s

O22

O23

O12

O13

O21

1

j j ()
max

�

2D

�

�

�

D

j j 2

j j

2

J acyclOR E C

max

max

max

max

!

ij ij ij

!

! !

!

!

D
! !

!

!

!

!

!

LB

aggregate disjunctive graph

6.2 Aggregate disjunctive graph for

G

O t O

r L G D

G D r s C

L G D C :

!

J acyclOR E C N !

J acyclOR E C

G

G

! G

Figure 11: Disjunctive graph

emanating from operation node equals the processing time of (the

arcs emanating from source have weight zero). Then the length [()] of a

longest path in () from source to sink is equal to the makespan ()

for feasible schedule 	 . Moreover, if is the set of all feasible selections and

	 is an optimal schedule, then

min [()] = () (7)

An optimal schedule 	 for the job{shop problem corresponding to network

realization can be computed by any branch{and{bound algorithm based upon

the disjunctive{graph concept, for example, by the algorithms of Carlier and

Pinson or of Brucker (see Carlier & Pinson 1989, Brucker et al. 1994, and Brucker

1995). To obtain an approximate (feasible) schedule 	 , the well{known shifting

bottleneck heuristic can be used (cf. Adams et al. 1988, Balas et al. 1995, and

Dauz�ere{P�eres & Lasserre 1994). For small instances of the stochastic job{shop

problem (), the networks for all realizations
 of the

underlying OR network can be generated and corresponding optimal schedules

	 can be computed. In addition, the lower bound on the minimum objective

function value for aggregate schedules de�ned in (6) can be determined.

Our goal is to adapt the shifting bottleneck heuristic to the job{shop problem

() with stochastic precedence constraints so that we can com-

pute a (deterministic) aggregate schedule �. To this end, we are going to con-

struct an appropriate disjunctive graph , also called

because, in a sense, it aggregates the disjunctive graphs for all network real-

izations
. Applying the shifting bottleneck heuristic to then provides an

13

J1

J2

J3

P

ij j ij j

j

j j j j

1 21 11

2 12 22

3 13 23

1 2

3

1

2 2 3

3

=1 1 2 max

N

J O O

J O O

J O O

N

J J

J

J

J J J

G

O � t �

J

r s

� t t E C

N

Case 1

stochastic conjunctive arcs

ordinary conjunctive arcs

Case 2

Figure 12: OR network

Table 2: Operation sequences

Job Operation sequence

,

,

,

aggregate schedule �.

We discuss some typical cases of stochastic precedence constraints given by an

acyclic OR network . deals with several jobs emanating from a stochas-

tic node. As an example we consider the simple OR network of Fig. 12, where

the operation sequences of the jobs are given in Table 2. Since the jobs , ,

and do not compete for the machines, we link them by introducing so{called

from the last operation of to the �rst operation of

and from the last operation of to the �rst operation of (in contrast to

the introduced in Subsection 6.1). This provides the

aggregate disjunctive graph depicted in Fig. 13, where stochastic conjunctive

arcs are indicated by bold arrows. To take into consideration that several jobs

emanating from a stochastic node are carried out with a probability less than one

each, the weight of an arc in an aggregate disjunctive graph emanating from oper-

ation node is to be equal to , where is again the execution probability

of job .

The length of the only path from source to sink in the aggregate disjunctive

graph of Fig. 13 is (+) = [(�)] for any aggregate schedule

�. Later, we will see that the latter holds for any acyclic OR network with only

stochastic nodes.

As we consider Example 2 from Section 5, where the OR network

is shown in Fig. 3 and the operation sequences of the jobs are given in Table 1.

There are a deterministic and a stochastic node both with outgoing jobs. The

14

O11O21r

sO23O13
π3t13 π3t23

O22O12

0 π1t21

π1t11

π2t12

π2t22

O11

r

s

O22

O23

O12

O13

O21

O14O24

Case 3

2 1 3 4 1 3

1 4

11 13 11 24

3 4

23 24

G N

G

J J ; J J J J

J J

< O ;O > < O ;O >

J J N

< O ;O > G

G N

k

Figure 13: Aggregate disjunctive graph for OR network of Fig. 12

corresponding aggregate disjunctive graph (without arc weights) is depicted

in Fig. 14. The pairs of opposite disjunctive arcs result from the competition of

job with jobs , and for the machines. Since jobs and on the one

hand and jobs and on the other hand can be carried out consecutively, there

are ordinary conjunctive arcs and . The stochastic

node with outgoing jobs and in leads to the stochastic conjunctive arc

in .

Figure 14: Aggregate disjunctive graph for OR network of Fig. 3

In , which is depicted in Fig. 15 and represents a generalization of

Case 1, several job sequences emanate from a stochastic node . We connect the

15

J1

J4

J2

k

J3

J5

J4

J1

J2

J3

J5

admissible

aggregate disjunctive graph

3 1 2 3 4 4 5

3

4 5 1

1 2 3 4 5

1 3 3 4

2 4 4

1 3 4 5 5 2

2 4 5 2

2 1 5 2

J J ; J ; J J J ; J

J

J J J

J ; J J J J

J J J J

J J J

J ; J ; J J J J

J ; J ; J ; J

J J J J

G N

Figure 15: OR network

�nal job of job sequence () to the initial job of job sequence ()

by introducing a stochastic conjunctive arc from the last operation of to the

�rst operation of . A second possibility is to link jobs and in a similar

way. In addition, we have to introduce ordinary conjunctive arcs connecting the

consecutive jobs , and on the one hand and jobs and on the other

hand. Note that there may be several aggregate disjunctive graphs for one OR

network or stochastic job{shop problem, respectively.

Figure 16: OR network

In general, the introduction of stochastic conjunctive arcs to link jobs beyond

a stochastic node is neither easy nor unique. For example, consider the OR

network of Fig. 16. A corresponding aggregate disjunctive graph contains three

ordinary conjunctive arcs linking the consecutive jobs and , and , and

and , respectively. If in addition, we connect �nal job of job sequence

() to job and link jobs and , each by a stochastic conjunctive

arc, we obtain a job cycle () and thus a cycle in the corresponding

aggregate disjunctive graph all of whose arcs are conjunctive, which does not

make sense. If, instead, we link jobs and as well as jobs and by a

stochastic conjunctive arc each, we obtain an aggregate disjunctive graph which

is acyclic with respect to conjunctive arcs.

Schneider (1997) has proposed an algorithm which constructs an

for each acyclic OR network , that is, an aggregate

disjunctive graph which is acyclic with respect to conjunctive arcs and where

16

2

LB

ij !

XX X

XX X X X

J �

� 6�

O

D

j j

0

0

00 0 00 00 0

0

00

2 2O 2

2D

�

�

Theorem 4:

Proof:

=1 =1 =1

max

=1 =1

max max

max

max

j j

j j

j j j j j j

m

i

n

j

j ij

n

j

j j

m

i

n

j

j ij

! O

ij

!

!

!

D

N

G

J J j < j

J J

J J J J J J

j

N

G

D G G

r s

L G � t � t E C

G

L G � t P ! t P ! C E C

!

N

G

N G D

G D L G D

G D r s

L G D E C

G L G D D

J acyclOR E C

for jobs belonging to a subnetwork of with only stochastic nodes, there is a

sequence of conjunctive arcs in representing all those jobs. The basic idea of

that procedure is as follows.

First we number the jobs from such that implies . To link

two jobs and emanating from one and the same stochastic node, we insert

a stochastic conjunctive arc from a job to job , where , ,

and is maximum.

If the OR network contains only stochastic nodes, there are no disjunctive

arcs in any corresponding aggregate disjunctive graph . There is only one

feasible selection in each graph , which coincides with the arc set of .

Moreover, we have in analogy to (7)

If the OR network contains only stochastic nodes, the length of the only path

in any admissible aggregate disjunctive graph from source to sink is

() = = = [(�)] (8)

for each aggregate schedule �.

Since is admissible, it holds that

() = = () = () (�) = [(�)]

for any aggregate schedule �, where is again the set of operation carried out

in network realization .

If the OR network contains stochastic and deterministic nodes, there is no

counterpart to relation (7). Let be an admissible aggregate disjunctive graph

for the job{shop problem with precedence constraints given by , () be the

subgraph of whose arc set is a feasible selection , [()] be the length of a

longest path in () from source to sink , and be again the set of all feasible

selections. Then min [()] can be less or greater than [(�)], where

� is an optimal aggregate schedule (compare Schneider 1997). However, due

to the introduction of stochastic conjunctive arcs and the speci�cation of the

arc weights in , the deviation of [()] with obtained by the shifting

bottleneck heuristic from lower bound is relatively small in general as we will

see in Section 8.

An admissible aggregate disjunctive graph is a deterministic representation

of the stochastic problem (). The shifting bottleneck heuristic

of Adams et al. (1988) or the modi�ed version of Dauz�ere{P�eres & Lasserre

(1994) applied to that graph provides a sequence of operations on each machine.

17

ij

i �j j j i �j j j

X X
8
<
:

X X ����

9
=
;

0

2O

�

�

�

�

2M 2J 2M 2J

�

�

�

�

� �

�

�

�

�

0 �

0 0

0

0 0

0

max

max

~

max

max

max

max

7 A priority{rule{based procedure

jj

j j

O

�

2 O

O f 2 O j g

O O 2 O

2 O

2

jj

j j

2 O

f j 2 O g

2 O

2 O

M

J

AND entrance

Gi�er{Thompson algorithm

SEPT

MEWR

ij

ij ij ij ij

�� �� O ij �j

�j �j ��

�j ij ij ij

ij ij ij

!

�j

j �j j �j �j

�j

j

M

ij

J

j j j

M

ij

J

j j �j

ij j

i i j j

J C

J acyclOR E C

N

k N

k

k

k

O

O O S

C S t O

O C C O

O S < C

O S C O

O S O

E C

!

E C

J C

J acyclOR E C

O

� t � t O

O

� t � t � t � t O

J

M M J

Observing conditions (a), (b), and (c) of De�nition 1, an aggregate schedule can

then be determined.

The heuristic most frequently used in practice for approximately solving the clas-

sic job{shop problem is the priority{rule method by Gi�er and Thomp-

son (cf. Gi�er & Thompson 1960 or Neumann 1996). To adapt this heuristic to

our stochastic problem (), we replace the stochastic precedence

constraints given by the underlying acyclic OR network with deterministic

ones. That is, each node of is replaced by a node with deterministic exit and

so{called , which says that node is activated if all incoming jobs

have been terminated. Then each node corresponds to a node in a classical

CPM network and the jobs emanating from compete with each other for the

machines. The stochastic character of the OR network precedence constraints

will be taken into consideration by appropriate priority rules.

We briey review one step of the . Let ~ be

the set of all schedulable operations, i.e. the set of all operations with the

property that all operations have already been scheduled. Let and

= + be the start and completion time, respectively, of operation .

Determine ~ such that = min . Choose an operation

from the conict set := ~ by some priority rule and

delete from ~. Update ~ as well as and for ~.

An aggregate schedule � is then given by �() := for all . The

corresponding value of the objective function [(�)] can be computed by

(3) after having determined the network realization schedules � for all
.

Note that the computation of [(�)] cannot be done in polynomial time in

contrast to the determination of �.

A large number of priority rules for have been studied in literature

(for example, see Haupt 1989 and Neumann 1996). For () the

following priority rules have been discussed by Schneider (1997):

(Shortest Expected Processing Time): Choose operation

such that

= min

(Most Expected Work Remaining): Choose operation such

that

+ = min +

where is the set of machines on which job has to be processed after its

processing on including itself and is the set of jobs which follow job

18

++ ++

0

�

�

�

0 0

�

� �

TM TM

TM

FCFS

RND

�

�

2 O

2 O 2 O

f g

j j j

j

�j

j �

�j �j

8.1 Test environment

8 Experimental performance analysis

J J J

J

J J J

O

J M

O O

m ; ; ;

n ; ; ; ; ; ; n ; ; ;

m

; ; : : : ; m; n

C C

:

, i.e. . Note that in the MEWR rule we sum up not only the durations

of the remaining operations of the currently schedulable job weighted by its

execution probability but also of all jobs with in order to take the

stochastic precedence constraints into account.

(First Come First Served): Choose operation such that job

is the �rst element in the queue of jobs waiting for machine .

(Random): Choose operation randomly where each

is equally likely.

In Section 8 we will see that the MEWR rule has turned out to be superior

to the remaining three priority rules.

In this section we examine the performance of the two heuristics from Sections 6

and 7. First, we describe the test environment. Next, we analyze the performance

of the shifting bottleneck and Gi�er{Thompson heuristics. Finally, we compare

both heuristics.

Job{shop scheduling problems have been generated for two classes of OR net-

works. In Class 1, the OR networks have no outtree structure, i.e. nodes may

have an indegree of more than one, and the networks generally have a stochastic

source. Class 2 contains OR networks with outtree structure and a deterministic

source. The latter networks have a larger portion of deterministic nodes and yield

scheduling problems of a higher scheduling complexity. A detailed description of

the network generator used can be found in Zimmermann (1995). Machine di-

mensions of = 5 10 15 20 have been chosen. The job dimensions in Class 1

are = 5 10 20 30 50 75 100 and in Class 2 = 5 10 20 30 (due to higher

scheduling complexity). All jobs are carried out on all machines in a randomly

determined machine sequence with operation durations uniformly chosen from

1 2 10 . For each pair () of the above ranges, 100 instances have been

sampled. That is, 2800 problem instances of Class 1 and 1600 problem instances

of Class 2 have been investigated.

All tests have been performed on an IBM {compatible PC with an INTEL -

Pentium Processor 586 with clock speed of 133 MHz and 32 MB RAM. All pro-

cedures have been implemented in under Microsoft Visual , Release

4 2.

19

G

G � �

� � � �

� �

� max

max

� max

LB

LB

LB

LB LB

LB

LB

LB

LB LB

L G D

E C

;

;

L G D

G E C

m;n

L G D =

m n m n

L G D

L G D

E C =

8.2 Performance analysis of the shifting bottleneck

heuristic

8.3 Performance analysis of the Gi�er{Thompson

procedure

Table 3: Average relative percentage deviation � of [()] from

Class 1 5 machines 10 machines Class 2 5 machines 10 machines

5 jobs 0.2225 0.1358 5 jobs 1.123 1.011

10 jobs -1.252 -0.9088 10 jobs 3.527 2.001

20 jobs -1.008 -0.5715

Table 4: Average percentage deviation � of [(�)] from

Class 1 5 machines 10 machines Class 2 5 machines 10 machines

5 jobs 0.2225 0.1358 5 jobs 1.618 1.823

10 jobs 1.107 0.7094 10 jobs 6.869 6.311

20 jobs 2.229 1.616

The computation time needed for computing an approximate aggregate schedule

by the shifting bottleneck heuristic for an instance of a (10 10) problem of Class 1

is two seconds and for an instance of a (10 50) problem it is 30 seconds on the

average. With increasing number of machines or jobs, the computation times

increase remarkedly.

We have determined the deviations of the lower bound from both the

longest path length [()] in the (respective subgraph of the) aggregate disjunc-

tive graph and the expected makespan [(�)] of the aggregate schedule �

computed. For di�erent problem sizes (), the relative percentage deviations

� := 100 ([()]) averaged over the 100 instances are given in

Table 3. We stress that the calculation of is only possible for small{sized

problems, i.e. 10 and 20 in Class 1 or 10 and 10 in Class 2,

respectively. The deviation of [()] from is remarkably small. We also see

that [()] can be greater or less than . The relative percentage deviations

� := 100 ([(�)]) each averaged over the 100 instances are

shown in Table 4. In summary, we notice a very good performance of the shifting

bottleneck heuristic.

In principle, the computing time for the Gi�er{Thompson procedure increases

in the number of jobs and machines in the same way as for the shifting bottle-

20

MEWR

FCFS

SEPT RND

Best ru le

MEWR FCFS

SEPT

RND

Wors t ru le

� �

LB

LB

LB LB

E C

E C

E C

E C =

� max

max

max

� max

�

Table 5: Comparison of priority rules: portion of best and worst results yielded

Classes 1 and 2 MEWR FCFS SEPT RND

portion best 0.670 0.187 0.0778 0.0652

portion worst 0.0229 0.0751 0.521 0.381

Table 6: Average percentage deviation � of [(�)] from

Class 1 5 machines 10 machines Class 2 5 machines 10 machines

5 jobs 1.891 1.212 5 jobs 2.661 1.083

10 jobs 1.936 1.087 10 jobs 6.336 3.300

20 jobs 2.698 1.792

neck procedure. However, the Gi�er{Thompson heuristic clearly outperforms

the shifting bottleneck procedure in absolute computing times.

First, we have compared the four priority rules used. The portions of prob-

lem instances where each rule provides the best or worst result for [(�)],

respectively, are shown in Table 5 and visualized in Fig. 17. We see that the

MEWR rule is markedly superior to all remaining rules.

Figure 17: Portion of instances where each rule provides the best and worst result,

respectively

Second, we have again determined the deviations of [(�)] from . The

relative percentage deviations � := 100 ([(�)]) averaged over

the 100 instances, where � is determined with the MEWR rule, are listed in

Table 6. We see that the values of � are again small but mostly larger than for

the shifting bottleneck procedure (cf. Table 4).

21

� �E C E C =E C

�

�

� max max max

�

SG

SG

SG SBP GT GT

SBP GT

SG

8.4 Comparison of shifting bottleneck heuristic and

Gi�er{Thompson procedure

Table 7: Average percentage deviation � of shifting bottleneck from Gi�er{

Thompson, Class 1

Class 1 5 machines 10 machines 15 machines 20 machines

5 jobs -1.552 -1.035 -0.8307 -0.4267

10 jobs -0.007716 -0.3597 -0.1666 -0.3514

20 jobs -0.4066 -0.1669 -0.1494 -0.1786

30 jobs -1.198 1.820 1.715 1.567

50 jobs 0.2418 1.200 1.458 1.248

75 jobs 0.7960 2.878 2.764 3.300

100 jobs 0.9459 3.498 3.664 4.167

Table 8: Average percentage deviation � of shifting bottleneck from Gi�er{

Thompson, Class 2

Class 2 5 machines 10 machines 15 machines 20 machines

5 jobs -0.8166 0.7679 0.4106 0.2225

10 jobs 0.6942 2.911 3.061 2.790

20 jobs 3.994 4.829 5.798 7.208

30 jobs 4.986 13.56 13.13 11.34

We have computed � :=100 ([(�)] [(�)]) [(�)],

the relative percentage deviations averaged over the 100 instances in order to

compare the shifting bottleneck and Gi�er{Thompson heuristics. � and �

are the aggregate schedules obtained by the shifting bottleneck procedure and the

Gi�er{Thompson heuristic with MEWR rule, respectively. The values of �

are shown in Tables 7 and 8. Visualization is given by Fig. 18.

We see that, on the average, the shifting bottleneck procedure gives very

good results for small{sized problem instances, whereas the Gi�er{Thompson

procedure yields better results for large{sized instances. The worse performance

of the shifting bottleneck heuristic is due to the fact that stochastic conjunctive

arcs cause additional precedence relations between jobs which actually do not

exist.

22

Class 1

5
10 15 20

5

10

20

30

50

75

100

-2

-1

0

1

2

3

4

5

number
of jobs

number of machines

pe
rc

en
t d

ev
ia

ti
on

Class 2

5
10

15
20

5

10

20

30

-2

0

2

4

6

8

10

12

14

number of machines

number
of jobs

pe
rc

en
t d

ev
ia

ti
on

P

j j ()

SG

max
F acyclOR E C

j j

j j

f g

f g

A

A !

9 Supplements

�

max

1 2

max 1

1

=1

1

+

j

m

r

i ir
r
� � i�

r i�

i�

9.1 Flow{shop problem

F acyclOR E C

J

M ;M ; : : : ;M

F acyclOR E C k J ; : : : ; J

O ; : : : ; O i ; : : : ;m

k p t k

J ; : : : ; J O i ; : : : ;m �

; : : : ; r k

t

IR

stochastic

action beginning node duration

deterministic action beginning node duration

action schedule

Figure 18: Average percentage deviation � of shifting bottleneck from Gi�er{

Thompson

In this section we briey discuss the ow{shop problem () with

stochastic precedence constraints given by an acyclic OR network. After that,

we show how to deal with OR networks containing cycles.

In a ow{shop problem, all jobs have the same processing order through the

machines, where we may assume that the machine sequence for each job

is . This permits us to aggregate certain operations beyond a

stochastic node into so{called actions, which results in a reduction of the com-

putational e�ort for solving the problem.

The concept of an action has been introduced for single{machine and parallel{

machine scheduling with GERT network precedence constraints (cf. Neumann

1990 and Neumann & Zimmermann 1997). To adapt that concept to problem

(), let be a stochastic node with outgoing jobs (see

Fig. 1). Then each set (= 1) is said to be a

with and (expected) . If is a deter-

ministic node with outgoing jobs , then each set (= 1 ; =

1) is said to be a with and

. In any network realization, an action is performed, i.e. exactly one of its

operations is carried out, when its beginning node has been activated.

Let be the set of all actions of the underlying OR network. Then, in anal-

ogy to De�nition 1 of an aggregate schedule, the concept of an

� : can be introduced, where in De�nition 1 operations and their du-

23

k0 k1
J1 J2

J3

J4

J5

Cycle (network N)

k1 c0k0
J1 J2 J3

J4

J5

Eliminated cycle (acyclic network N')

j j

�

C

C

C

C

Theorem 5:

�

� �

0

�

� �

�

0

!

� � � � �

� � � � �

� � � �

�

�

9.2 Cyclic OR networks

max

max

max max

0 1 0

1 1

0 1

!

E C

F acyclOR E C

E C E C

N !

N N

N

k ; : : : ; k ; k ; : : : ; k ; k k c

k < k ; k > < k ; c >

k ; : : : ; k ; k ; : : : ; k ; c

k

c

N

network

realization schedule belonging to

expected

makespan

optimal action schedule

rations are replaced by actions and their durations. The concept of a

� � (cf. De�nition 2 where each action is re-

placed by that of its operations which is carried out in realization), the

[(�)] when action schedule � is applied (compare (3)), and the

concept of an � (compare(4)) can be introduced as well.

Analogously, the shifting bottleneck heuristic and the priority{rule method of

Gi�er and Thompson (cf. Sections 6 and 7) can be used for computing an ap-

proximate action schedule. The following result has been proved by Schneider

(1997):

For () it holds that

[(�)] [(�)]

that is, aggregate schedules dominate action schedules.

For a cyclic OR network , there are in�nitely many network realizations .

Jobs within a cycle structure (i.e. a strong component with at least two nodes)

of may be executed more than once. In this case, we transform into an

acyclic network by eliminating cycles of each cycle structure from the inside

outwards. We begin with a cycle of with minimum number of nodes, say

in that sequence. Pick any node, say , let be a

copy of node , and replace arc by arc . Replace the

cycle by the node sequence . Let all arcs which entered

the cycle now lead into and all arcs which left the cycle now emanate from

. Fig. 19 illustrates such an elimination of a cycle. Proceed analogously with

a next cycle (with minimum number of nodes) of the modi�ed cycle structure .

That procedure eventually results in an acyclic network . For more details we

refer to Schneider (1997).

Figure 19: Eliminating a cycle in an OR network

24

0 0

0 0

0

0 0

O � O

2 O

2 O �

max

max

max

Network Flows

!

k

j j

!

i i !i !

i

i i

i !i

!i

10 Conclusions

References

N

! N

q k N

� J N

N N

! N

Q M

M !

M M

Q O

O O O

E C

E L

E T

There is no aggregate schedule � for the cyclic OR network (condition

(a) of De�nition 1 cannot be satis�ed). However, we can determine a schedule

� for each network realization of as follows. At �rst, we compute the

activation probabilities for all nodes of and the execution probabilities

for all jobs . Next we eliminate the cycle structures in which results in

an acyclic network as shown above. For , we then determine an aggregate

schedule � by some heuristic (cf. Sections 6 and 7). From � we derive a network

realization schedule � for realization of in the following way. Given � a

sequence of operations is speci�ed for each machine . Let be the

set of operations carried out on in network realization . Then every time

a machine, say , is freed, the next operation to be carried out on is that

one which has the foremost position in among all operations that are

ready to be performed (i.e. all operations with have already

been executed).

We have discussed a stochastic job{shop scheduling problem with objective func-

tion () where stochastic precedence constraints are given by so{called OR

networks. We have introduced the concept of a deterministic aggregate schedule

for that problem. Two heuristics have been presented, which provide good ap-

proximate aggregate schedules: the shifting bottleneck procedure and a priority{

rule method.

An important area of future research is to develop similar heuristics for

stochastic job{shop problems with di�erent objective functions such as ()

and (). Moreover, since the heuristics proposed represent only schedule

construction procedures, schedule improvement procedures should be developed

based upon local search. However, a comparison of di�erent aggregate sched-

ules by computing the corresponding expected makespans cannot be made in

polynomial time.

[1] J. Adams, E. Balas, and D. Zawack: The shifting bottleneck procedure for

job shop scheduling, Management Science 34 (1988), 391{401.

[2] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin: , Prentice Hall,

Englewood Cli�s, 1993.

[3] E. Balas, J. K. Lenstra, and A. Vazacopoulos: One machine scheduling with

delayed precedence constraints, Management Science 41 (1995), 94{109.

25

Scheduling

Computer and Manufacturing Processes

Scheduling Algorithms

An Integrated Approach in Production

Planning and Scheduling

Activity Networks: Project Planning and Control by Net-

work Models

Stochastic Project Networks

[4] J. B la_zewicz, K. H. Ecker, E. Pesch, G. Schmidt, and J. W�eglarz:

, Springer, Berlin, 1996.

[5] P. Brucker: , Springer, Berlin, 1995.

[6] P. Brucker, B. Jurisch, and B. Sievers: A branch and bound algorithm for

the job shop scheduling problem, Discrete Applied Mathematics 49 (1994),

107{127.

[7] M. B�ucker: Time complexity of single machine scheduling with stochas-

tic precedence constraints, ZOR{Mathematical Methods of Operations Re-

search 36 (1992), 211{225.

[8] M. B�ucker, K. Neumann, and T. Rubach: Algorithms for single{machine

scheduling with stochastic outtree precedence relations to minimize expected

weighted owtime or maximum expected lateness, ZOR{Mathematical

Methods of Operations Research 39 (1994), 321{348.

[9] J. Carlier and E. Pinson: An algorithm for solving the job shop problem,

Management Science 35 (1989), 164{176.

[10] S. Dauz�ere{P�eres and J.{B. Lasserre:

, Lecture Notes in Economics and Mathematical

Systems 411, Springer, Berlin, 1994.

[11] S. E. Elmaghraby:

, John Wiley, New York, 1977.

[12] K. Furmans: A discrete model of a car assembly system, Proceedings of the

INRIA/IEEE Conference on Engineering Technologies and Factory Automa-

tion, Paris, 1995.

[13] B. Gi�er and G. L. Thompson: Algorithms for solving production{

scheduling problems, Operations Research 8 (1960), 487{503.

[14] R. Haupt: A survey of priority{rule based scheduling, OR Spektrum 11

(1989), 3{16.

[15] J. K. Lenstra, A. H. G. Rinnooy Kan, and P. Brucker: Complexity of machine

scheduling problems, Annals of Discrete Mathematics 1 (1977), 343{362.

[16] K. Neumann: Scheduling of stochastic projects by means of GERT net-

works, in: Advances in Project Scheduling, R. Slowinski and J. W�eglarz,

eds., Elsevier, Amsterdam, 1989, 467{496.

[17] K. Neumann: , Lecture Notes in Economics and

Mathematical Systems 344, Springer, Berlin, 1990.

26

Produktions{ und Operations{Management

GERT Networks and the Time{Oriented

Evaluation of Projects

Scheduling: Theory, Algorithms, and Systems

Deter-

ministic and Stochastic Scheduling

Job Shop Scheduling with Stochastic Precedence Con-

straints

Mehrmaschinen{Schedulingprobleme mit GERT{Anord-

nungsbeziehungen

[18] K. Neumann: , Springer, Berlin,

1996.

[19] K. Neumann and U. Steinhardt:

, Lecture Notes in Economics and Mathematical Sys-

tems 172, Springer, Berlin, 1979.

[20] K. Neumann and J. Zimmermann: Heuristic procedures for parallel{machine

scheduling problems with stochastic precedence constraints, Annals of Op-

erations Research, to appear, 1997.

[21] M. Pinedo: , Prentice Hall,

Englewood Cli�s, 1995.

[22] M. Pinedo and L. Schrage: Stochastic job scheduling: a survey, in:

, M. A. H. Dempster, J. K. Lenstra, and

A. H. G. Rinnooy Kan, eds., D. Reidel, Dordrecht, 1982, 181{196.

[23] W. G. Schneider:

, Ph. D. Thesis, Universit�at Fridericiana zu Karlsruhe, 1997.

[24] V. A. Strusevich: Shop scheduling problems under precedence constraints,

Annals of Operations Research 69 (1997), 351{377.

[25] J. Zimmermann:

, Ph. D. Thesis, Universit�at Fridericiana zu Karlsruhe,

1995.

27

