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Local or lambda tomography reconstructs " f which has the same discontinuities as the searched-for
density distribution f. Computing "f, however, requires only local tomographic measurements. Local
tomography is usually implemented by a "ltered backprojection algorithm (FBA). In the present article we
design reconstruction "lters for the FBA such that "2m`1f will be reconstructed for a given m3N

0
.

Moreover, we prove convergence and convergence rates for the FBA as the discretization step size goes to
zero. To this end we express the FBA in the framework of approximate inverse. Based on our analysis we
further propose a scheme which yields a proper scaling of the reconstruction "lters. Numerical experiments
illustrate the analytic results. Copyright ( 2000 John Wiley & Sons, Ltd.
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1. Introduction

Local tomography recovers jump discontinuities of the searched-for density distribu-
tion f in a point x using only integrals of lines passing near to x. Typical applications for
local tomography are non-destructive testing and local microtomography.

The analytic basis of lambda tomography in 2D is the formula

"~af"(2n)~1R*"1~a Rf (1.1)

where R denotes the Radon transform mapping a function to its line integrals and R* is
the adjoint with respect to a suitable ¸2-space (see e.g. Natterer [14]). Formally, " is
the square root of the Laplacian !* : ""(!*)1@2. Note that any positive even
power of " is a local operator in the following sense: to compute "2bf (x) we only need
to know the values of f near x. On the contrary, any positive odd power of " is a global
integral operator.
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With this knowledge let us have a closer look at (1.1). For a"0 we have standard
tomography. Here, the global operator " acts on the data Rf. Reconstructing f in
x therefore calls for all data (even integrals of f over lines &far away' from x are needed).

Now set a"!1. Thus, (1.1) represents a local reconstruction formula for "f. This
situation is usually referred to as local tomography. Since "f and f share the same
singular support, both functions have the same discontinuities. So, if we are interested
in edges only, "f tells us the story at much less computational expense than in
standard tomography.

The idea of reconstructing "f is due to Smith and Keinert [18] as well as Vainberg
and Faingois [20]. Analytic properties of " have been studied extensively by Faridani
et al. [6, 5]. In particular, they propose techniques for cup removing and estimating
the sizes of density jumps from local data (see also Katsevich and Ramm [8]).

An algorithmic realization of local tomography may be based on the formula
(w denotes an appropriate convolution)

f we"R*(v wRf ), e"R*v (1.2)

where f we""f weJ and eJ is a smooth approximation to the d-distribution. The
computation of the smoothed (molli"ed) version "f weJ rather than "f has a stabili-
zing (regularizing) e!ect.

In this paper we pursue two objectives. First, we investigate which properties of
a compactly supported v lead to an e such that f we (x)+"2m`1f (x) for an m3N

0
(section 3). We also propose a scheme to design such functions v with a prescribed
smoothness. Second, we discretize (1.2) yielding a variation of the "ltered backprojec-
tion algorithm, (see e.g. Natterer [14, Chapter V]). For this algorithm we show
convergence to "2m`1f as the discretization step size approaches zero (section 4).
Moreover, our convergence analysis tells us how to scale v and e properly for a "xed
discretization step size. Numerical experiments for m"0 and 1 illustrate some of our
results in section 5.

Our investigations will be described in the framework of approximate inverse (see
Louis and Maass [12]). Thus, we can rely on our convergence theory developed in
[16]. The present paper may be viewed as a sequel to [16].

We start our exposition in the next section by introducing some notation and by
commenting brie#y on the concept of approximate inverse. For a more general
investigation of approximate inverse, see Louis [10, 11].

2. Tomographic reconstruction as approximate inverse

The Radon transform R maps a function f3¸2()) to its line integrals. Here, ) is the
unit ball in R2 centered at the origin. We have that

Rf (s,0) :"P
L(s,0)W)

f (x) dp(x)

The lines are parameterized by ¸ (s, 0)"MquM(0)#su(0) D q3RN where s3]!1,1[,
u(0)"(cos 0, sin0 )5 and uM(0)"(!sin 0, cos0 )5 for 03]0, n[. This parameteriz-
ation of lines gives rise to the parallel scanning geometry.
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The Radon transform is injective and maps ¸2()) boundedly to ¸2(Z) where
Z :"]!1, 1[]]0, n[ (see e.g. Natterer [14]). Let R* :¸2(Z)P¸2()) be the adjoint of
R which is called backprojection. Then,

R*g (x) :"P
n

0

g(xt u(0 ),0) d0

Given the tomographic data g :"Rf we wish to reconstruct moments of f : S f, eiT
L

2())
,

i"1,2,m, with suitable mollixers ei3¸2()). For instance, if ei is an approximation
to the d-distribution located in x

i
3) then S f, eiT

L
2())

+f (x
i
).

The computation of the moments is achieved by choosing the molli"ers in the range
of R*:

ei"R*viNS f, eiT
L

2())
"Sg, viT

L
2(Z)

(cf. (1.2)). We call vi a reconstruction kernel of R with respect to ei. The mapping
gC(Sg, v1T

L
2(Z)

,2,Sg, vmT
L

2(Z)
)5 is then an approximate inverse of R.

In [16] we computed vi from ei where ei+d
xi
. Here we design the molli"ers from

the reconstruction kernels. This is the usual procedure in tomography, (see e.g.
Natterer [14, Chapter V]). However, we impose conditions on vi such that ei approx-
imates "2m`1d

xi
, m3N

0
. For numerical computations, there is no need for an explicit

knowledge of the molli"ers.

3. Obtaining molli5ers from reconstruction kernels

In this section we study properties of R*v where v3¸=(R) is even, v (s)"v (!s),
real-valued, and compactly supported in ]!1, 1[. These are our standard assumptions
on v throughout the paper.

Lemma 3.1. For xO0 we have that

R*v (x)"2 P
.*/M1,ExEN

0

v (s)

J ExE2!s2
ds (3.1)

Further, zero moments of v,

P
1

~1

s2k v (s) ds"0, k"0,2,m (3.2)

imply the decay

DR*v(x)D"O (ExE~(2m`3)) as ExEPR (3.3)

Proof. Since v does not depend on the angle 0 and is even, we have that

R*v (ru(u))"P
n

0

v (ru(u)5u(0 )) d0"
1

2 P
2n

0

v(r cos(u!0 )) d0

"P
n

0

v(r cos0 ) d0

We obtain (3.1) by substituting cos 0"s/r in the last integral above.
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The second assertion follows from (3.1) for ExE*1 using a Taylor expansion of
(ExE2!s2)~1@2 about s"0. K

In the sequel we denote the Fourier transform of a function f3¸1(Rd ) by
f K (y) :"(2n)~d@2:Rd f (x) e~i y

t
x dx.

Lemma 3.1 gives that

e :"R*v is in ¸1(R2)W¸2(R2) (3.4)

whenever v has a vanishing mean value, that is, (3.2) holds for m"0. Moreover,

eL (m)"J 2n EmE~1 vL (EmE) (3.5)

(see e.g. Natterer [14, Chapter II, Theorem 1.4]). Both functions in the above equality
are continuous by the Riemann}Lebesgue Lemma.

We have the invariance or intertwining property

R*V
x,c"U

x,c R* (3.6)

for any x3R2 and c'0 where the operators U
x,c and V

x,c are de"ned by

U
x,c f (z) :" f A

z!x

c B and V
x,cw (s,0 ) :"wA

s!xtu (0)

c
, 0B

Above, c is a scaling or dilation parameter. For f3¸2()) we de"ne

W
e
f (x, c) :"SU

x,ce, f T
L

2())

By (3.4) and (3.6), W
e
f may be expressed alternatively as

W
e
f (x, c)"SV

x,cv, Rf T
L

2(Z)

which means: W
e
f can be computed from the tomographic data Rf.

Remark 3.2. Relation (3.5) shows that e from (3.4) is a two-dimensional radial wavelet
provided v has a zero mean value. Up to normalization W

e
is the corresponding

integral wavelet transform (see e.g. [13, Chapter 1.6]).
This connection between the Radon and the wavelet transforms has been observed

probably for the "rst time by Holschneider [7] and has been investigated in detail by
Berenstein and Walnut [1, 2]. Further, Berenstein and Walnut proposed a technique
to compute a multiresolution representation of f directly from the Radon data Rf.
Their results lead to an algorithm for the region-of-interest tomography [15].

Berenstein and Walnut proved a result (Lemma 3.1 in [1]) which is close to our
Lemma 3.1. In two space dimensions, however, our decay rates (3.3) are sharper.

We will now investigate the convergence in Sobolev spaces of W
e
f ( ) , c) as c tends to

zero. We de"ne the Sobolev spaces Ha(R2), a3R, to be the closure of ¸2(R2) with
respect to the norm

E f E2a :"PR2

(1#EmE2)a D f K (m)D2 dm
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The "-operator,

" Yf (m) :"EmE f K (m)

maps Ha(R2) boundedly to Ha~1(R2).
By Ha

0
())LHa(R2) we denote the closure of C=

0
()), the space of in"nitely di!erenti-

able functions with compact support in ), with respect to E ) Ea .
The following theorem gives us what we really obtain when computing the mo-

ments SV
x,cv,Rf T

L
2(Z)

, namely

c SV
x,cv, Rf T

L
2(Z)

+"2m`1f (x)

where m3N depends on v and c is a suitable scaling factor. The above approximation
gets better as c becomes smaller.

Theorem 3.3. ¸et v3¸=(R) be even and compactly supported in ]!1, 1[. Further,
assume v to have exactly 2m#1 zero moments (m3N

0
), that is, (3.2) holds and

k
m

:"P
1

~1

s2(m`1) v (s) dsO0 (3.7)

If f3Hs
0
()), s*0, then

lim
c?0

Ec
m

c~(2m`3) W
e
f ( ) , c)!"2m`1f E

s~(2m`1)
"0

with

c
m
"

(!1)m`1 (2m#2)!

2n k
m

(3.8)

Proof. We adapt the proof of Theorem 1.4.2 from [13] to the present situation. With

I(m, c) :"(1#EmE2)s~(2m`1) Dc
m

c~(2m`3) W
e
Y f (m, c)!EmE2m`1 f K (m)D2

we obtain that

Ec
m

c~(2m`3) W
e
f ( ) , c)!"2m`1f E2

s~(2m`1)
"PR2

I(m, c) dm

We wish to apply the dominated convergence theorem to the family MI ( ) , c)Nc;0
of

integrable functions.
To this end, we express W

e
f by the convolution product w and by the dilation

operator Dce( ) ) :"e( ) /c):

W
e
f ( ) , c)"D~cew f ( ) )

Taking the Fourier transform of W
e
f with respect to its "rst variable thus yields

W
e
Y f ( ) , c)"2n D Y~ce ( ) ) f K ( ) )"2n c2 D~1@c eL ( ) ) f K ( ) )

Inverse Local Tomography 1377

Math. Meth. Appl. Sci., 23, 1373}1387 (2000)Copyright ( 2000 John Wiley & Sons, Ltd.



so that

I(m, c)"(1#EmE2)s~(2m`1) D f K (m)D2 Dc
m

2n c~(2m`1) eL (!cm)!EmE2m`1D2

(3.5)
" (1#EmE2)s~(2m`1) D f K (m )D2

]Dc
m

(2n)3@2 c~(2m`2) vN (c EmE) EmE~1!EmE2m`1D2

Due to the vanishing moments of v, the Taylor expansion of vL about 0 becomes

vL (t)"vL (2m`2)(q
t
) t2m`2/(2m#2)! (3.9)

for a suitable q
t
between 0 and t. From this Taylor expansion we infer that

I(m, c))(1#EmE2)s D f K (m)D2D(2n)1@2 (!1)m`1 vL (2m`2)(qcEmE )/km
!1D2

By the Riemann}Lebesgue Lemma, the supremum

M :"sup
m|R2

D(2n)1@2 (!1)m`1 vL (2m`2)(qcEmE)/km
!1D2

exists and is independent of c'0. Hence, I ( ) , c) is majorized by an integrable function
almost everywhere:

I(m, c))M (1#EmE2)s D f K (m )D2

Since qcEmE goes to zero as cP0 and since vL (2m`2)(0)"(!1)m`1 (2n)~1@2k
m

we have
pointwise almost everywhere that

lim
c?0

I( ) , c)"0

The stated convergence follows now from the dominated convergence theorem. K

A modi"cation of the proof above shows that the convergence of W
e
f ( ) , c) to

"2m`1f is quadratic in c with respect to a weaker norm.

Corollary 3.4. ;nder the assumptions of ¹heorem 3.3 we have that

Ec
m

c~(2m`3) W
e
f ( ) , c)!"2m`1 f E

s~(2m`3)
)C

m
E f E

s
c2

where

C
m
"

c
m

J2n (2m#4)! P
1

~1

s2m`4 Dv(s)D ds

Proof. The same arguments as in the proof of Theorem 3.3 verify that

Ec
m

c~(2m`3) W
e
f ( ) , c)!"2m`1 f E2

s~(2m`3)
"PR2

I(m, c) dm
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with

I(m, c)"(1#EmE2)s~(2m`3) D f K (m)D2

]Dc
m

(2n)3@2 c~(2m`2) vL (cEmE) EmE~1!EmE2m`1D2

Now, we express vL in a Taylor expansion of higher order than in (3.9):

vL (t)"
vL (2m`2)(0)

(2m#2)!
t2m`2#

vL (2m`4)(q
t
)

(2m#4)!
t2m`4

for a q
t
between 0 and t. (Note that all odd derivatives of vL vanish at 0 because v is

even.) Plugging the latter Taylor expansion into I(m, c) yields

I(m, c))(1#EmE2)s D f K (m)D2
c4 c2

m
((2m#4)!)2

sup
q|R

DvL (2m`4)(q)D2

Since DvL (2m`4)(q)D): s2s`4 Dv(s) D ds/J2n we are done with the proof. K

In the remainder of this section we focus on the design of smooth "lters v satisfying
the hypotheses of Theorem 3.3 and Corollary 3.4. Our main ingredient is an even
polynomial p

n
with multiple zeroes at $1 and a non-vanishing mean value in

]!1, 1[. For instance, let us "x the even polynomial p
n
(s) :"(1!s2)n. With p

n
and

b, a
0
,2, a

m
3R we de"ne the "lter v

n,m
via

v
n,m

(s) :"G
b

m
<
i/0

(s2#a
i
) p

n
(s) DsD)1

0 DsD'1

The constants b, a
0
,2, a

m
will be adjusted such that (3.2) holds and k

m
"(!1)m`1

(2m#2)!; see (3.7). Thus, c
m
"(2n)~1 (see (3.8)). We have, e.g., for DsD)1,

v
10,0

(s)"!

1166167275

1048576
(s2!1/23) (1!s2)10

v
10,1

(s)"
3 ) 2977529270625

8388608
(s2!1/5) (s2!1/45) (1!s2)10

Fig. 1 displays the graphs of v
10,m

as well as the graphs of the radial parts of the related
molli"ers e

10,m
"R*v

10,m
, m"0, 1 (see (3.4) and (3.1)). Note that the e

10,i
's are not

compactly supported but rapidly decreasing (see (3.3)).

Remark 3.5. The kernels v
n,0

have been used before in local tomography. For
instance, Kn`1

1
of Faridani et al. [6, Formula (A.18)] and v

n,0
coincide. The construc-

tion principle for Kn`1
1

, which is a little bit di!erent from ours, may be adapted to
yield our reconstruction kernels v

n,m
for general m. Essentially, this was already done

by Faridani [4, Formula (4.5)].
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Fig. 1. Reconstruction kernels v
10,m

(left) and radial parts of the related mollifers e
10,m

"R*v
10,m

(right).
Top: m"0, bottom: m"1. The mollifers are not compactly supported

4. Filtered backprojection-type algorithm

In practice only discrete measurements of Rf are available. Given these samples we
need to compute an approximation to the inner product W

e
f (x, c)"SV

x,c v, R f T
L

2(Z)
.

Assume that we observe g(s
i
, 0

j
) :"Rf (s

i
, 0

j
) at s

i
"ih

4
, i"!q,2, q, and

0
j
"jh0 , j"0,2, p!1, for q, p3N where h

4
"1/q and h0"n/p are the discretiz-

ation step sizes. Set h :"maxMh
4
, h0N.

The trapezoidal rule with abscissv (s
i
, 0

j
) yields the approximation

SV
x,cv, Rf T

L
2(Z)

+¹
h
g(x, c) :"

n
qp

q~1
+

i/1~q

p~1
+
j/0

g (s
i
, 0

j
) vA

s
i
!xtu(0

j
)

c B (4.1)

The numerical scheme ¹
h
g (x, c) is called a xltered backprojection algorithm with "lter

function v (see e.g. Natterer [14, Chapter V.1]).
The abstract results of [16] formulated in the present context imply the error

estimate in Lemma 4.1 below.
Our notation A[B indicates the existence of a generic constant c'0 such that

A[cB. In our applications this generic constant will be independent of f, v, x, h, and c.

Lemma 4.1. ¸et f be in H1@2`i
0

()) for a i3]0, 1]. If v is in H2
0
(!1, 1) and c3] 0, 1]

then

ET
h
Rf ( ) , c)!W

e
f ( ) , c) E

L
2())

[EvE
1`iE f E

1@2`i
h

c1@2`i

as hP0. ¹he constant involved in the estimate above may depend on i.
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Proof. The "rst part of the proof of Theorem 5.4 in [16] yields

DT
h
Rf (x, c)!W

e
f (x, c)D[EV

x,c vEH1`i(Z)
E f E

1@2`i h (4.2)

By transformation results for Sobolev norms (see e.g. Wloka [21]), we obtain uni-
formly in x3) that

EV
x,c vEHl

(Z)
[EvEl c1@2~l for c)1 and l"1, 2

Arguments from interpolation theory of Sobolev spaces (see e.g. Lions and Magenes
[9]), now lead to

EV
x,c vEH1`i(Z)

)c~(1~i)@2 c~3i@2 EvE
1`i.

which, in view of (4.2), allows us to prove the stated error bound. K

We are now able to verify convergence of T
h
Rf ( ) , c

h
) to "2m`1 f as hP0

Theorem 4.2. ¸et v3H2
0
(!1, 1) be as in ¹heorem 3.3. In particular v has exactly

2m#1 zero moments. Choose a i3]0, 1].
(a) ¸et Mc

h
N
h;0

be a family of positive numbers such that

lim
h?0

c
h
"lim

h?0

h/c2m`3.5`i
h

"0 (4.3)

If f3Hs
0
()) for s*2m#1 then

lim
h?0

Ec
m

c~(2m`3)
h

T
h
R f ( ) , c

h
)!"2m`1f E

L
2())

"0

(b) ¸et

c
h
"k h1@(2m`5.5`i) (4.4)

where k is a positive constant. If f3Hs
0
()) for s*2m#3 then, as hP0,

Ec
m

c~(2m`3)
h

T
h
Rf ( ) , c

h
)!"2m`1f E

L
2())

)EvE
1`iE f E

s
h2@(2m`5.5`i)

Proof. (a) The triangle inequality gives that

Ec
m

c~(2m`3)
h

T
h
R f ( ) , c

h
)!"2m`1f E

L
2())

)Ec
m

c~(2m`3)
h

T
h
Rf ( ) , c

h
)!c

m
c~(2m`3)
h

W
e
f ( ) , c

h
)E

L
2())

#Ec
m

c~(2m`3)
h

W
e
f ( ) , c

h
)!"2m`1f E

L
2(R2)

[EvE
1`iE f E

1@2`i
h

c2m`3.5`i
h

#Ec
m

c~(2m`3)
h

W
e
f ( ) , c

h
)!"2m`1 f E

s~(2m`1)

The last inequality follows from Lemma 4.1 and from the continuous embedding
Hs~(2m`1)(R2)6¸2(R2) for s*2m#1. An application of Theorem 3.3 now veri"es
the claimed convergence.
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(b) Here, the same estimates used before to prove part (a) lead to

Ec
m

c~(2m`3)
h

T
h
Rf ( ) , c

h
)!"2m`1f E

L
2())

[EvE
1`iE f E

1@2`i
h

c2m`3.5`i
h

#Ec
m

c~(2m`3)
h

W
e
f ( ) , c

h
)!"2m`1 f E

s~(2m`3)

[EvE
1`iE f E

1@2`i
h

c2m`3.5`i
h

#C
m
E f E

s
c2
h

where the last step is due to Corollary 3.4. The proof is "nished when balancing the
terms on the above right-hand side and taking into account that C

m
[EvE

0
. K

The convergence results of Theorem 4.2 are asymptotic relations in the "rst place.
They do not advise us how to select c"c

h
for a xxed discretization step size h. What is

a reasonable value for k in (4.4)? The smaller k is the faster the "ltered backprojection
algorithm becomes computationally as the sum over i in (4.1) may be restricted to
a few non-zero terms.

The problem of relating c to h was "rst solved empirically and then analytically
explained by Faridani [3], see also Smith and Keinert [18, section VI]. Roughly
speaking, choose the smallest possible c such that the discrete kernel v

k
"v (k )h

4
/c),

k"!q,2, q, inherits the essential properties from the continuous kernel. These
essential properties of v are the moment conditions (see Theorem 3.3).

We propose the strategy c
h
:"h

4
/sw"1/(qsw) where sw minimizes locally the dis-

crete moment function M
m

in ]0, 1[:

M
m
(p) :"

m
+
l/0

Dmoml (p) D with moml (p) :"
x1/py

+
k/~x1/py

k2l v(k ) p)

Here, xty3Z for t3R denotes the greatest integer: xty)t(xty#1.

Lemma 4.3. ¸et v3C2r`2
0

(R) be as in ¹heorem 3.3 with 2m#1 vanishing moments.
Assume that m)r. ¹hen,

M
m
(p)"O(p2(r~m)`1) as pP0 (4.5)

Proof. We observe that p2l`1moml (p) is the trapezoidal rule with step size p applied
to :R s2l v (s) ds. For 0)l)m we obtain

p2l`1 moml (p)"O (p2r`2) as pP0

by the summation formula of Euler}Maclaurin (see e.g. Stoer and Bulirsch [19]).
Summing up the moml 's to M

m
proves (4.5). K

In general, sw is not uniquely determined. Then, we select the largest sw such that
M

m
(sw) becomes reasonably small. Due to Lemma 4.3 the smoother v is the larger

sw may be chosen.
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Fig. 2. Discrete moment functions M
0

(left) and M
1

(right) with respect to v
10,0

and v
10,1

, respectively

Table 1. Local minima of the discrete moment func-
tions M

0
and M

1
for values of the argument in Fig. 2

M
0

M
1

0.3642431314 0.2079565234
0.2939686889 0.1856192834
0.2503104031 0.1681260494

Fig. 3. Head phantom f
SL

due to Shepp and Logan [17]

Let us re-consider the two examples v
10,0

and v
10,1

from the end of section 3 (see
Fig. 1). Fig. 2 shows the graphs of M

0
and M

1
with respect to v

10,0
and v

10,1
,

respectively, for a meaningful range of p. In Table 1 we listed the corresponding local
minima sw .

For instance, the largest values sw,0
"0.3642431314 and sw,1

"0.2079565234 of
Table 1 lead to the following discrete moments (relative to the kernel maximum):

2
+

k/~2

k2l v
10,0

(k ) sw,0
)/v

10,0
(0)+G

2]10~11, l"0

!1, l"1
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Fig. 4. Reconstruction of "f
SL

by (4.1) with reconstruction kernel v
10,0

where c"h
4
/0.3642431314 (top)

and c"h
4
/0.36 (bottom)

and

4
+

k/~4

k2l v
10,1

(k ) sw,1
)/v

10,1
(0)+G

!5]10~4, l"0

2]10~11, l"1

13, l"2
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Fig. 5. Reconstruction of "3f
SL

by (4.1) with reconstruction kernel v
10,1

where c"h
4
/0.2079565234 (top),

c"h
4
/0.1856192834 (middle), and c"h

4
/0.1681260494 (bottom)

Please note that we have not been able to prove convergence of c
m
c~(2m`3)
h

T
h
Rf ( ) , c

h
)

for the strategy c
h
"h

4
/sw as hP0. Indeed, in our numerical experiments we obtained

the best reconstructions when choosing sw dependent on h. Here we had to decrease
sw with h which is in accordance with (4.3) and (4.4).
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5. Numerical experiments

We demonstrate the mode of action of our strategy for determining c
h

by local
reconstructions. The tomographic data were computed from the phantom designed
by Shepp and Logan [17] which simulates the density relations and the geometry in
a human skull (see Fig. 3).

Our implementation of the "ltered backprojection algorithm (4.1) for the parallel
scanning geometry is taken from Natterer [14, Chapter V.1.1]. In all our computa-
tions below we worked with p"400 directions and 513 rays per direction, that is,
q"256 and h

4
"1/256, respectively. All reconstructions below are shown on a

511]511 grid.
Fig. 4 displays two reconstructions of "f

SL
where f

SL
denotes the Shepp}Logan

phantom from Fig. 3. The reconstruction kernel is v
10,0

with c"h
4
/0.3642431314

(top) and c"h
4
/0.36 (bottom). Since 0.3642431314 is a zero of the discrete moment

function M
0

we obtain a good approximation to "f
SL

. However a slight perturbation
of this zero yields a catastrophic result. This instability can be seen from Fig. 2. The
graph of M

0
is very steep near the largest plotted zero. It becomes #atter in the

vicinity of smaller zeroes. The latter behaviour was to be expected, see Lemma 4.3. We
like to mention that c"h

4
/0.2939686889 (cf. Table 1) leads to a reconstruction of

"f
SL

which cannot be distinguished visually from the reconstruction with c"h
4
/

0.3642431314.
Finally, we computed approximations to "3f

SL
based on v

10,1
(see Fig. 5), where

c was given by the three local minima of M
1

from Table 4.1. The reconstruction with
the sharpest contrasts belongs to the smallest minimum at which M

1
is also smallest.

In our experiments we noticed that the cupping e!ect is less pronounced when
computing "3f rather than "f. Since "3f"!"*f and * f has more vanishing
moments than f (at least formally) the observed cup-removing e!ect of "3 "nds its
theoretical explanation in the work of Faridani et al. [5, Theorem 5.2].
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