
THE APPROXIMATE INVERSE IN ACTION WITH AN
APPLICATION TO COMPUTERIZED TOMOGRAPHY∗

ANDREAS RIEDER† AND THOMAS SCHUSTER‡

SIAM J. NUMER. ANAL. c© 2000 Society for Industrial and Applied Mathematics
Vol. 37, No. 6, pp. 1909–1929

Abstract. The approximate inverse is a scheme to obtain stable numerical inversion formulæ
for linear operator equations of the first kind. Yet, in some applications the computation of a crucial
ingredient, the reconstruction kernel, is time-consuming and instable. It may even happen that the
kernel does not exist for a particular semidiscrete system. To cure this dilemma we propose and
analyze a technique that is based on a singular value decomposition of the underlying operator. The
results are applied to the reconstruction problem in 2D-computerized tomography where they enable
the design of reconstruction filters and lead to a novel error analysis of the filtered backprojection
algorithm.
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1. Introduction. The approximate inverse is a regularization scheme which ap-
plies especially to underdetermined (semidiscrete) systems. Yet in some applications
the numerical computation of the necessary reconstruction kernel υdiscrete is time-
consuming and instable. It may even happen that υdiscrete does not exist for a par-
ticular semidiscrete system. However, the reconstruction kernel υ of the underlying
infinite dimensional (continuous) problem may be at hand. In this paper we propose
a procedure to find a substitute for υdiscrete from υ and we show that this procedure
is sound.

In the following we recall the concept of the approximate inverse which belongs
to the class of mollifier methods as considered, for instance, by Murio [19]. In a
systematic way the approximate inverse generalizes a technique used by Grünbaum [5]
and Davison and Grünbaum [3] for tomographic inversion.

Let A : X → Y be a continuous and injective operator between the real or complex
infinite dimensional Hilbert spaces X and Y . We want to find a f ∈ X such that

Anf = gn,(1.1)

where An : X → Cn and gn ∈ Cn are defined via a mapping Ψn : Y → Cn by
An = ΨnA and gn = Ψng with g ∈ R(A), the range of A. Let us assume—for
the time being—that An is continuous. The above setting describes most practical
situations where the data can be recorded only in finitely many observation points.

Problem (1.1) is underdetermined and we can only search for its minimum norm
solution f†n, that is,

A∗
nAnf

†
n = A

∗
ngn and f†n ∈ N(An)

⊥.(1.2)
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Here N(An)
⊥ is the orthogonal complement of the null space of An. If the range of

A is nonclosed in Y , that is, the generalized inverse of A is unbounded, instabilities
appear very likely in computing f†n directly from (1.2) under erroneous data gn.

This reasoning led Louis and Maass [13] to the approximate inverse where one
tries to reconstruct moments of f : 〈f, ein〉X , i = 1, . . . ,m, with suitable mollifiers ein.
In case X = L2(Ω), Ω a domain in Rd, one can think of the ein’s as smooth approxi-
mations to δ-distributions located at points xi ∈ Ω.

The computations of the moments is achieved by approximating ein in the range
of A∗

n. To any e
i
n we associate a reconstruction kernel υi

n ∈ Cn by minimizing the
defect ‖A∗

nυ
i
n − ein‖X , that is, υ

i
n solves the normal equation

AnA
∗
nυ

i
n = Ane

i
n.(1.3)

The above equation for υi
n is independent of the data gn, therefore free of noise from

measurement errors. We call (ein, υ
i
n) a mollifier/reconstruction kernel pair for An.

The operator Sn : C
n → Cm,

(Snh)i = 〈h, υi
n〉Cn , i = 1, . . . ,m,(1.4)

is called approximate inverse of An. Hence, Sngn is an approximate solution of (1.1).
Lemma 1.1. If gn = Anf then

(Sngn)i = 〈f†n, ein〉X , i = 1, . . . ,m.(1.5)

Proof. The reconstruction kernels satisfy A∗
nυ

i
n = Pne

i
n where Pn : X → X is the

orthogonal projector onto R(A∗
n) = N(An)

⊥. Hence,

(Sngn)i = 〈f, A∗
nυ

i
n〉X = 〈Pnf, e

i
n〉X .

Since Pnf = f
†
n (see (1.2)), we are finished with the proof.

An interpretation of the approximate inverse as regularization scheme and further
details are given by Louis [12]. He also shows how invariances of A improve the
efficiency; see Remark 5.2 below.

For several reasons we wish to avoid solving (1.3): AnA
∗
n may be densely pop-

ulated and ill-conditioned, increasing n calls for a complete new computation of the
kernels; invariances of A do not show in AnA

∗
n in general.

We propose the following technique to approximate υn (we will drop the super-
script i whenever considering a single pair (en, υn)). Suppose (e, υ) is a mollifier/re-
construction kernel pair for A, i.e., A∗υ = e (A is injective!). Then we expect Ψnυ to
be an approximate solution of (1.3) where en is equal or close to e. In section 3.1 we
show convergence of Ψnυ to a solution of (1.3). We also analyze the situation when
the mollifier e is not in R(A∗) (section 3.2). Here we approximate υn by Ψnυ where
A∗υ is close to en. We further discuss a technique to construct υ from e which can
be implemented.

In some applications, for instance, if A is the Radon transform, An : D(An) ⊂
X → Cn is unbounded and A∗

n does not exist; see section 5. Consequently, the concept
of approximate inverse cannot be applied to (1.1). Louis and Schuster [16] replaced
A by a truncated singular value decomposition, thus circumventing the problem. We
favor another cure which is closely related to our findings for a bounded An (section 4).

In section 5 we apply the results from the previous sections to the reconstruction
problem in 2D-computerized tomography, mainly to illustrate our rather abstract
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results by a concrete application. As a byproduct we achieve a novel error estimate for
the filtered backprojection algorithm as well as an alternative to design reconstruction
filters.

To start this paper we introduce our technical set-up in the next section. Es-
pecially the operator An is defined precisely. In the appendix we prove an auxiliary
mapping property of the Radon transform.

Hegland and Anderssen [6] investigated a mollification method being akin to our
approximate inverse approach. However, the details are completely different and
they require stronger conditions on A; for instance, A−1 has to be densely defined.
Further, an implementation of their method requires an explicit knowledge of the
preimages (under A) of the chosen basis functions. On the other hand, Hegland and
Anderssen relate the regularization parameter (support width of the mollifier) to the
discretization step size to bound the noise amplification error. This is an issue we do
not address here.

2. Preliminaries. We specify our technical assumptions that are required to
hold throughout the paper if not indicated otherwise.

The operator A is supposed to have the mapping property (2.1). Let there be
Banach spaces X1 and Y1 such that the embeddings X1 ↪→ X as well as Y1 ↪→ Y are
continuous, injective, and dense. Moreover,

A : X1 → Y1 is continuous.(2.1)

Let Y ′
1 be the dual to Y1. One may consider the spaces X1 and Y1 as abstract

smoothness classes in X and Y , respectively.
We are now able to define the observation operator Ψn : Y1 → Cn precisely: given

n functionals ψn,k ∈ Y ′
1 , k = 1, . . . , n, let

(Ψnv)k := 〈ψn,k, v〉Y ′
1×Y1

, k = 1, . . . , n,(2.2)

where 〈·, ·〉Y ′
1×Y1

is the duality pairing on Y ′
1 × Y1.

In applications we have in mind, typically, Y1 will be a Sobolev space of sufficient
order such that point evaluations are continuous.

It will prove useful to transform equation (1.1) into an equivalent equation where
Cn is replaced by a suitable subspace of Y ; see (2.6) below. To this end we introduce
a family {Vn}n∈N of finite dimensional subspaces of Y being nested: Vn ⊂ Vn+1.
Furthermore, each Vn is spanned by basis elements ϕn,k, k = 1, . . . , n, which build a
Riesz system with respect to Y , that is,

n∑
k=1

|ak|2 �
∥∥∥ n∑

k=1

ak ϕn,k

∥∥∥2
Y

�
n∑

k=1

|ak|2 for all n ∈ N.(2.3)

Our notation A � B indicates the existence of a generic constant c > 0 such that
A ≤ cB. The constant c will not depend on the arguments of A and B. This means
that the constants involved in (2.3) do not depend on n.

The spaces Cn and Vn are related one-to-one by the operator Qn : Cn → Vn,
Qna :=

∑n
k=1 ak ϕn,k. The composition of Ψn and Qn creates a new operator Πn :

Y1 → Vn as follows:

Πnv := QnΨnv =

n∑
k=1

〈ψn,k, v〉Y ′
1×Y1

ϕn,k.
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The operator Πn relates the observation operator Ψn to Vn. Considered as an operator
mapping Y1 into Y , Πn is assumed to be uniformly bounded in n:

‖Πn‖Y1→Y � 1 as n→ ∞.(2.4)

Our last ingredient is the approximation property (2.5): let there be a sequence {ρn} ⊂
[0, 1] converging monotonically to zero such that

‖v −Πnv‖Y � ρn ‖v‖Y1 for all v ∈ Y1 as n→ ∞.(2.5)

We understand {ρn} as optimal, that is, {ρn} is the fastest converging admissible
sequence in (2.5).

Now we apply Qn from the left to both sides of (1.1) yielding

Ãn f = g̃n,(2.6)

where Ãn = QnAn : X1 → Vn and g̃n = Qngn.
For the solution of (1.1) and (2.6), respectively, by the approximate inverse we

distinguish two scenarios.
First, we assume that An : D(An) ⊂ X → Cn is bounded where D(An) := X1 is

the domain of definition of An. Thus, An ∈ L(X,Cn). Typical examples are integral
operators which are sufficiently smoothing.

Example 2.1. Let A : L2(0, 1) → L2(0, 1), Af(x) :=
∫ 1

0
k(x, y) f(y) dy, where

the kernel k is such that A : L2(0, 1) → H1/2+ε(0, 1) is bounded for an ε > 0. On
the Sobolev space H1/2+ε point evaluations are continuous functionals, so Ψng =
n−1/2(g(x1), . . . , g(xn))

t, xi ∈ ]0, 1[, is the right choice if we are able to observe Af at
xi. Thus, A

∗
nw(y) = n

−1/2
∑

i k(xi, y)wi and (AnA
∗
n)i,j = n

−1
∫ 1

0
k(xi, y) k(xj , y) dy.

Second, we consider An : D(An) ⊂ X → Cn unbounded. Hence, the Hilbert
space adjoint of An cannot be defined on all of Cn (otherwise An would have been
continuous already). Here the worst case is D(A∗

n) = {0}, so that the approximate
inverse is not defined meaningful for (1.1). This happens for the Radon transform;
see section 5.

3. Bounded semidiscrete operators An: Approximating the discrete
reconstruction kernel. Let (2.1) hold true with X1 = X (topologically):

A : X → Y1 is continuous,(3.1)

that is, An ∈ L(X,Cn) and Ãn ∈ L(X,Y ). In what follows we will denote the adjoint
of A : X → Y by A∗.

Now we study convergence of the minimum norm solution f†n of (1.1) as n→ ∞.
From this we derive a kind of pointwise convergence of the approximate inverse Sn.

Lemma 3.1. If (3.1) then ‖A− Ãn‖X→Y ≤ ρn ‖A‖X→Y1 .

Proof. Since Ãnx = ΠnAx for x ∈ X one needs to apply (3.1) only.
Theorem 3.2. Let f†n (1.2) be the minimum norm solution of (1.1) with gn =

Anf for f ∈ X. Then

lim
n→∞

∥∥f − f†n∥∥X = 0.

Moreover, if the sequence of mollifiers {ein}n∈N converges to ei ∈ X, i = 1, . . . ,m, we
have that

lim
n→∞SnAnf = Ef,(3.2)
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where

E : X → Cm is defined by (Ef)i := 〈f, ei〉X , i = 1, . . . ,m.(3.3)

Proof. Recall that f†n = Pnf where Pn : X → X is the orthogonal projection

onto N(An)
⊥ = N(Ãn)

⊥. Due to Lemma 3.1 and the injectivity of A we have that⋂
n∈N

N(Ãn) = {0}. This yields the pointwise convergence of Pn to the identity
operator in X as n → ∞, thereby proving the first assertion. The second assertion
follows readily from (1.5).

Choosing special mollifiers ein we will show below that
∥∥SnAnf−Ef

∥∥
∞ � ρn‖f‖X

as n→ ∞; see Corollary 3.8.
For an e ∈ X we have either e ∈ R(A∗) or e ∈ ∂R(A∗) due to the injectivity

of A (∂R(A∗) is the topological boundary of R(A∗)). The first situation leads to
reconstruction kernels υ satisfying A∗υ = e. In section 3.1 below we shall show that
Ψnυ is an approximate solution of (1.3) for suitable en.

If we cannot find a mollifier e in the range of A∗, the equation A∗y = e has
no least squares solution. Thus, no reconstruction kernel is associated with e. We
investigate the latter situation in section 3.2.

3.1. The special case e ∈ R(A∗). In Lemma 3.3 we derive a relation between
the reconstruction kernels for An and Ãn.

Lemma 3.3. Let (e, υ̃n) be a mollifier/reconstruction kernel pair for Ãn where
e ∈ X is arbitrary. Then, (e,Q∗

n υ̃n) is a mollifier/reconstruction kernel pair for An.

Proof. The assertion follows from A∗
nQ

∗
nυ̃n = Ã

∗
nυ̃n = Pne where Pn is as in the

proof of Theorem 3.2.
Below we will need the Gramian matrix Gn ∈ Cn×n relative to {ϕn,1, . . . , ϕn,n}.

This matrix has entries (Gn)i,j = 〈ϕn,i, ϕn,j〉Y . A quick calculation validates the
equality GnΨnz = Q

∗
nΠnz for all z ∈ Y1.

Theorem 3.4. Adopt all assumptions specified in section 2 and assume (3.1).

Let (en, υ̃n) be a mollifier/reconstruction kernel pair for Ãn where en = Ã
∗
nυ, υ ∈ Y1,

and υ̃n ∈ N(Ã∗
n)

⊥. Then,

‖GnΨnυ −Q∗
nυ̃n‖Cn � ρn ‖υ‖Y1 + inf

y ∈R(Ãn)
‖υ − y‖Y(3.4)

as n→ ∞. Note that (en, Q
∗
nυ̃n) is a mollifier/reconstruction kernel pair for An.

Proof. Since ‖Q∗
n‖Y →Cn � 1 by (2.3) we may estimate

‖GnΨnυ −Q∗
nυ̃n‖Cn ≤ ‖Q∗

nΠnυ −Q∗
nυ‖Cn + ‖Q∗

nυ −Q∗
nυ̃n‖Cn

� ‖Πnυ − υ‖Y + ‖υ − υ̃n‖Y

� ρn ‖υ‖Y1 + ‖υ − υ̃n‖Y ,

where we used (2.5) in the final step. The assertion will be proved if we bound

‖υ − υ̃n‖Y by a multiple of inf{ ‖υ − y‖Y | y ∈ R(Ãn) }.
Recall that υ̃n is the unique solution in N(Ã∗

n)
⊥ of the normal equation

ÃnÃ
∗
nυ̃n = Ãnen = ÃnÃ

∗
nυ.(3.5)

Let Pn : Y → Y be the orthogonal projector onto N(Ã∗
n)

⊥. Since Pnυ solves (3.5) as

well, we obtain υ̃n = Pnυ. As N(Ã∗
n)

⊥ = R(Ãn) we proceed with

‖υ − υ̃n‖Y = ‖υ − Pnυ‖Y = inf
y ∈R(Ãn)

‖υ − y‖Y
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which completes the proof.
Corollary 3.5. The assumptions are those from Theorem 3.4. If either υ ∈

R(A) or all An’s are onto then

‖GnΨnυ −Q∗
nυ̃n‖Cn � ρn ‖υ‖Y1

as n→ ∞.
Proof. First we consider υ ∈ R(A). Let υ = Az for z ∈ X. Now

inf
y ∈R(Ãn)

‖υ − y‖Y ≤ ‖Az −ΠnAz‖Y � ρn ‖Az‖Y1

by the approximation property (2.5). Second, if An : X → Cn is onto we have that

R(Ãn) = Vn which gives

inf
y ∈R(Ãn)

‖υ − y‖Y = inf
y ∈Vn

‖υ − y‖Y ≤ ‖υ −Πnυ‖Y � ρn ‖υ‖Y1 .

In both cases the assertion follows from (3.4).

Even so en = Ã∗
nυ converges to e = A∗υ due to Lemma 3.1, en may be an

unsuitable mollifier for fixed (possibly small) n. It seems natural to work with e in
the semidiscrete setting also. This more general situation is considered in the following
lemma where we, however, allow a weighted norm in Cn. Under the assumptions of
Lemma 3.6 below, ‖AnA

∗
n · ‖Cn is a norm on Cn being, in general, weaker than the

Euclidean norm in the following sense. There exist positive constants γn and Γ such
that γn ‖z‖Cn ≤ ‖AnA

∗
nz‖Cn ≤ Γ ‖z‖Cn for all z ∈ Cn where Γ does not depend on n

and where γn tends to zero as n grows.
Lemma 3.6. Let e = A∗υ for υ ∈ Y1. Further, let (e, υn) be a mollifier/reconstruc-

tion kernel pair for Ãn where υn ∈ N(Ã∗
n)

⊥. Under the assumptions of Theorem 3.4
and provided all An’s are onto we have that

‖AnA
∗
n(GnΨnυ −Q∗

nυn)‖Cn � ρn ‖υ‖Y1
as n→ ∞.

Proof. Let υ̃n be as in Theorem 3.4. Hence,

‖AnA
∗
n(GnΨnυ −Q∗

nυn)‖Cn ≤ ‖A‖2
X→Y1

‖GnΨnυ −Q∗
nυ̃n‖Cn

+ ‖AnÃ
∗
nυ̃n −AnÃ

∗
nυn‖Cn

� ρn ‖υ‖Y1 + ‖ÃnÃ
∗
nυ̃n − ÃnÃ

∗
nυn‖Y ,

where we used Corollary 3.5, (2.3), and the estimate

‖AnA
∗
n‖Cn→Cn = ‖An‖2

X→Cn � ‖ΠnA‖2
X→Y � ‖A‖2

X→Y1
(3.6)

by (2.3) and (2.4). Since ÃnÃ
∗
nυ̃n = ÃnÃ

∗
nυ and ÃnÃ

∗
nυn = ÃnA

∗υ we obtain that

‖ÃnÃ
∗
nυ̃n − ÃnÃ

∗
nυn‖Y � ‖Ã∗

n −A∗‖Y →X ‖υ‖Y .

The assertion of Lemma 3.6 is now due to Lemma 3.1.
We discuss the implications of Corollary 3.5 on the approximate inverse Sn

of An (1.4). Here one has m mollifier/reconstruction kernel pairs (ein, υ
i
n), i =

1, . . . ,m; see (1.3). Now let ein = Ã∗
nυ

i where υi ∈ Y1, i = 1, . . . ,m. Our inves-
tigations from above suggest to replace the (unknown) approximate inverse Sn by the
(computable) operator Σn defined by

(Σnb)i = 〈b,GnΨnυ
i〉Cn , i = 1, . . . ,m.(3.7)
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As a direct consequence of Corollary 3.5, we can show that Σn is a reasonable substi-
tute for Sn.

Theorem 3.7. The assumptions are those from Theorem 3.4. Further, let
(ein, υ

i
n), i = 1, . . . ,m, be mollifier/reconstruction kernel pairs for An where ein =

Ã∗
nυ

i. Assume that all υi’s are in Y1. If either all υi’s are in R(A) or all An’s are
onto, then

‖SnAnf − ΣnAnf‖∞ � ρn max
1≤i≤m

‖υi‖Y1 ‖f‖X as n→ ∞.(3.8)

Proof. Let (ein, υ̃
i
n) be the mollifier/reconstruction kernel pair for Ãn where υ̃

i
n ∈

N(Ã∗
n)

⊥. From Lemma 3.3 we know that (ein, Q
∗
nυ̃

i
n) is a mollifier/reconstruction

kernel pair for An. Note that Q
∗
nυ̃

i
n may be different from the kernel υi

n used in Sn;
however, A∗

nυ
i
n = A

∗
nQ

∗
nυ̃

i
n. Thus,

(SnAnf)i = 〈f,A∗
nυ

i
n〉X = 〈f,A∗

nQ
∗
nυ̃

i
n〉X = 〈Anf,Q

∗
nυ̃

i
n〉Cn

which implies that

|(SnAnf)i−(ΣnAnf)i| = |〈Anf,Q
∗
nυ̃

i
n−GnΨnυ

i〉Cn | ≤ ‖Anf‖Cn ‖Q∗
nυ̃

i
n−GnΨnυ

i‖Cn .

The estimate (3.8) follows now from (3.6) and from Corollary 3.5.
The following fact on the convergence speed of the approximate inverse is worth-

while to mention; compare (3.2).
Corollary 3.8. We have that

‖SnAnf − Ef‖∞ � ρn ‖f‖X max
1≤i≤m

‖υi‖Y1
as n→ ∞.

Proof. By the triangle inequality and by (3.8) it suffices to show that ‖ΣnAnf −
Ef‖∞ � ρn ‖f‖X max1≤i≤m ‖υi‖Y1 . This is obtained from∣∣(ΣnAnf

)
i
− 〈f, ei〉X

∣∣ = ∣∣〈ΨnAf,GnΨnυ
i〉Cn − 〈f,A∗υi〉X

∣∣
=
∣∣〈Πng,Πnυ

i〉Y − 〈g, υi〉Y
∣∣,

where g = Af . The difference on the right-hand side may now be estimated as follows:∣∣〈Πng,Πnυ
i〉Y − 〈g, υi〉Y

∣∣ ≤ ‖Πng − g‖Y ‖Πnυ
i‖Y + ‖Πnυ

i − υi‖Y ‖g‖Y

� ρn ‖g‖Y1
‖υi‖Y1

� ρn ‖f‖X ‖υi‖Y1
,

where we used the uniform boundedness (2.4), the approximation property (2.5), and
the continuity (3.1).

3.2. The general case e ∈ X. The range of A∗ is dense in X due to the
injectivity of A. Therefore, we will assume only that the mollifier can be approximated
arbitrarily close by an element in R(A∗).

Let ei ∈ X be mollifiers for i = 1, . . . ,m. To any εi > 0 we can find a υ
i ∈ Y1 so

that

‖ei −A∗υi‖X ≤ εi, i = 1, . . . ,m.(3.9)

Below we will demonstrate how to get υi from ei knowing a singular value decompo-
sition of A.
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Since, in general, no reconstruction kernel is associated with ei there will be no
counterparts of Theorems 3.4 and 3.7, respectively. Instead, we are directly heading
towards an estimate of ΣnAnf −Ef . Based on the ei ’s and the υi ’s from above the
operators E (3.3) and Σn (3.7) are well defined.

Theorem 3.9. Adopt the assumptions specified in section 2 and assume (3.1).
Let the operators E and Σn be defined as in (3.3) and (3.7), respectively, where ei ∈ X
and υi ∈ Y1 are related by (3.9). Then∥∥ΣnAnf − Ef

∥∥
∞ �

(
ρn max

1≤i≤m
‖υi‖Y1 + max

1≤i≤m
εi

)
‖f‖X as n→ ∞.(3.10)

Proof. By the triangle inequality and by (3.9) we get∣∣(ΣnAnf
)
i
− 〈f, ei〉X

∣∣ ≤ ∣∣〈ΨnAf,GnΨnυ
i〉Cn − 〈f,A∗υi〉X

∣∣ + ‖f‖X εi.

We may now proceed as in the proof of Corollary 3.8.
We will now discuss the vital issue of constructing υi ∈ Y1 from ei ∈ X which

satisfy (3.9) for εi arbitrarily small. For convenience let us suppress the superscript i.
The tool we employ is a singular value decomposition (SVD) of the operator A.

In medical imaging SVDs are explicitly known; see, e.g., [9, 10, 15, 17, 18, 21].
Let A : X → Y be a compact operator and let {vk, uk;σk | k ∈ N0} be its singular

system, that is,

Ax =
∞∑

k=0

σk 〈x, vk〉X uk.

The sets of singular functions {vk} and {uk} are orthonormal bases in X (A is injec-
tive) and R(A), respectively. The positive numbers σk are the singular values of A
satisfying limk→∞ σk = 0 (monotonically). The singular functions and the singular
values are related via

Avk = σk uk and A∗uk = σk vk.

We assume that all uk’s are in Y1. For an arbitrary e ∈ X we follow the approach of
Dietz [4] and define

υM :=

M−1∑
k=0

σ−1
k 〈e, vk〉X uk(3.11)

which is an element of Y1. Dietz [4] implemented (3.11) to solve the cone beam
reconstruction problem in 3D utilizing the formula of Grangeat.

Obviously,

‖e−A∗υM‖2
X =

∞∑
k=M

|〈e, vk〉X |2 → 0 as M → ∞.(3.12)

Incorporating an abstract smoothness assumption on e, we are able to give conver-
gence rates of ‖e−A∗υM‖X as M → ∞.

Lemma 3.10. Suppose that e ∈ R
(
(A∗A)α

)
= D

(
(A∗A)−α

)
for a α ≥ 0. Then

lim
M→∞

σ−α
M ‖e−A∗υM‖X = 0.
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Moreover, the following error estimate holds:

‖e−A∗υM‖X < σα
M

√
‖e‖X ‖(A∗A)−αe‖X .

Proof. We have that

‖e−A∗υM‖2
X =

∞∑
k=M

σ−2α
k |〈e, vk〉X | σ2α

k |〈e, vk〉X |

≤
( ∞∑

k=M

σ−4α
k |〈e, vk〉X |2

)1/2

σ2α
M

( ∞∑
k=M

|〈e, vk〉X |2
)1/2

and both assertions follow readily.
In view of (3.10) we realize that controlling the εi’s tells only half of the story.

To learn the whole story we look at ‖υM‖Y1 .
Lemma 3.11. Suppose that e ∈ R

(
(A∗A)α

)
= D

(
(A∗A)−α

)
for a α ≥ 0. Further,

let there exist a β ≥ 0 such that ‖uk‖Y1
� σ−β

k for all k. Then

‖υM‖Y1
� ‖(A∗A)−αe‖X

(
M−1∑
k=0

σ
4α−2(1+β)
k

)1/2

.

Proof. The straightforward estimates

‖υM‖Y1 �
M−1∑
k=0

σ−2α
k |〈e, vk〉X | σ2α−(1+β)

k

�
(

M−1∑
k=0

σ−4α
k |〈e, vk〉X |2

)1/2(M−1∑
k=0

σ
4α−2(1+β)
k

)1/2

verify the claim.
Theorem 3.12. Let A : X → Y be compact with singular system {vk, uk;σk | k ∈

N0}. Assume that σk � (k+1)−γ for a γ > 0 as k → ∞ (a � b abbreviates a � b � a)
and that ‖uk‖Y1 � σ−β

k for β ≥ 0.
Assume the hypotheses of Theorem 3.9; in particular, let the operators E and Σn

be defined as in (3.3) and (3.7), respectively, where ei ∈ D
(
(A∗A)−α

)
and υi

Mi
are

related by (3.11).

If α > (1+β)/2+1/(4γ) and Mi =Mi(n) � ρ−1/(αγ)
n as n→ ∞ (ρn from (2.5)),

then ∥∥ΣnAnf − Ef
∥∥
∞ � ρn ‖f‖X max

1≤i≤m
‖(A∗A)−αei‖X as n→ ∞.(3.13)

Proof. Since ‖ei‖X � ‖(A∗A)−αei‖X we have that

εi = ‖ei −A∗υi
Mi

‖X � σα
Mi

‖(A∗A)−αei‖X

� (Mi + 1)
−αγ ‖(A∗A)−αei‖X � ρn ‖(A∗A)−αei‖X

by Lemma 3.10 and our assumption on Mi = Mi(n) as n → ∞. Further, by Lem-
ma 3.11,

‖υi
Mi

‖Y1 � ‖(A∗A)−αei‖X

( ∞∑
k=0

(k + 1)−γ
(
4α−2(1+β)

))1/2

,
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where the series converges due to γ
(
4α − 2(1 + β)) > 1. Recalling Theorem 3.9 we

are finished with the proof of (3.13).

4. Unbounded semidiscrete operators An. Here we consider (2.1) where
X1 is a proper subspace of X with a stronger topology.

As we will see in the next section it may happen that An : X1 ⊂ X → Cn is
unbounded. In the extremest case we even have to deal with D(A∗

n) = {0}, that is,
the approximate inverse with respect to the topology in X is not defined for (1.1).

Basically, this leaves us with the situation already investigated in section 3.2.
Indeed, if (ei, υi) ∈ X × Y1, i = 1, . . . ,m, are mollifier/reconstruction kernel pairs
satisfying (3.9) then E (3.3) as well as Σn (3.7) are well defined. Even for unbounded
operators An both Theorems 3.9 and 3.12 remain valid with a slight modification: we
have to assume that f ∈ X1. In (3.10) as well as in (3.13) we have to replace ‖f‖X

by ‖f‖X1
.

5. Application to the reconstruction problem in 2D-computerized to-
mography. We apply our abstract results of the former sections to the reconstruction
problem in 2D-computerized tomography, that is, the reconstruction of a function
from its line integrals. For further applications of our results in vector and local
tomography we refer to [24] and [22], respectively.

The underlying operator is the Radon transform R mapping a function f ∈ L2(Ω)
to its line integrals. Here, Ω is the unit ball in R2 centered at the origin. More
precisely,

Rf(s, ϑ) :=

∫
L(s,ϑ)∩Ω

f(x) dσ(x).(5.1)

The lines are parameterized by L(s, ϑ) = {τ ω⊥(ϑ)+ s ω(ϑ) | τ ∈ R} where s ∈]−1, 1[,
ω(ϑ) = (cos ϑ, sin ϑ)t and ω⊥(ϑ) = (− sin ϑ, cos ϑ)t for ϑ ∈]0, π[. By this parame-
terization of lines we are dealing with the parallel scanning geometry.

The Radon transform maps X = L2(Ω) continuously to Y = L2(Z) where Z :=
]−1, 1[×]0, π[; see, e.g., Natterer [20, Chap. II.1]. In the appendix we will verify the
following mapping property (see Theorem A.2 below):

R : Hα
0 (Ω)→ Hα+1/2(Z) is continuous for any α ≥ 0.

The involved Sobolev spaces are defined as follows. By Hα
0 (Ω) we denote the closure

of C∞
0 (Ω), the space of infinitely differentiable functions with compact support in Ω,

with respect to the norm ‖f‖2
α =

∫
R2

(
1 + ‖ξ‖2

)α |f̂(ξ)|2 dξ. Here, f̂ is the Fourier
transform of f .

The space Hβ(Z) = W β
2 (Z) is an L

2-Sobolev space defined on the rectangular
domain Z; see, e.g., Wloka [25].

Since point evaluations are continuous linear functionals on Hβ(Z) for β > 1 we

set X1 = H
1/2+κ
0 (Ω) and Y1 = H

1+κ(Z) for a κ > 0; cf. (2.1).
For q, p ∈ N let hs = 1/q and hϑ = π/p be the discretization step sizes and set

si = i hs, i = −q, . . . , q, and ϑj = j hϑ, j = 0, . . . , p. Let = ∈ {1, 2}. With this index =
we will be able to distinguish between two different settings using a compact notation.

To the pairs (si, ϑj) we associate the Dirac-distributions ψ
(�)
i,j given by

〈ψ(�)
i,j , g〉Y ′

1×Y1
:= ς

(�)
i,j g(si, ϑj), i = −q, . . . , q�, j = 0, . . . , p�,
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for any g ∈ H1+κ(Z) where q1 = q − 1, q2 = q, p1 = p − 1 and p2 = p. The

ς
(�)
i,j ’s are normalization factors to be defined below in (5.3). We define the mapping

Ψ
(�)
q,p : H1+κ(Z)→ Rn� according to (2.2) using the ψ

(�)
i,j ’s. The respective dimensions

are n1 = 2qp and n2 = (2q + 1)(p+ 1).

Theorem 5.1. The operator R
(�)
q,p =: Ψ

(�)
q,pR : H

1/2+κ
0 (Ω) ⊂ L2(Ω) → Rn� is

unbounded for any κ > 0. Moreover, D
(
(R

(�)
q,p)∗

)
= {0}.

Proof. We construct a sequence {fr}r∈N ⊂ H1/2+κ
0 (Ω) with ‖fr‖L2(Ω) ≤ 1 and

‖R(�)
q,pfr‖Rn� → ∞ as r → ∞.
We will define fr as the tensor product of two univariate functions χr and µr.

Let {αr} and {βr} be monotonically decreasing zero sequences with 0 < αr < 1,
0 < βr < 1/2, and α

2
r + (1− βr)

2 < 1.
Let χr ∈ C∞

0 (−αr, αr) with values in [0, 1/
√
2αr] such that χr(t) = 1/

√
2αr for

|t| ≤ αr/2. Similarly, let µr ∈ C∞
0 (−1 + βr, 1 − βr) with values in [0, 1/

√
2(1− βr)]

such that µr(t) = 1/
√
2(1− βr) for |t| ≤ 1− 2βr. Both functions can be constructed

explicitly using a partition of unity; see, e.g., Wloka [25, Chap. 1.2].
For fr(x) := χr(x1)µr(x2) we have 0 < ‖fr‖L2(Ω) = ‖χr‖L2(R) ‖µr‖L2(R) ≤ 1

and supp fr ⊂ [−αr, αr] × [−1 + βr, 1 − βr] ⊂ Ω because α2
r + (1 − βr)

2 < 1. Thus,

fr ∈ H1/2+κ
0 (Ω) for any κ > 0.

Now consider Rfr at s0 = 0 and ϑ0 = 0:

|Rfr(s0, ϑ0)| =
∫

R

fr(0, t) dt = χr(0)

∫
R

µr(t) dt

≥ χr(0)

∫ 1−2βr

−1+2βr

µr(t) dt =
1− 2βr√
αr (1− βr)

r→∞−→ ∞.

Hence, ‖R(�)
q,pfr‖Rn� → ∞ as r → ∞.

We are now going to verify the second statement of Theorem 5.1. To this end
observe that limr→∞Rfr(si, ϑj) = 0 if (i, j) �= (0, 0). This limit holds since supp fr
“converges” to the line segment L(0, 0) ∩ Ω.

The construction principle from above can be repeated for any pair (si, ϑj), |si| <
1, leading to a sequence of functions {f i,j

r }r∈N ⊂ H1/2+κ
0 (Ω) with ‖f i,j

r ‖L2(Ω) ≤ 1 and

lim
r→∞Rf i,j

r (sk, ϑl) =

{ ∞ : (k, l) = (i, j),

0 : otherwise.

Assume that 0 �= w ∈ D
(
(R

(�)
q,p)∗

)
. Then the linear functional f �→ 〈

R
(�)
q,pf, w

〉
Rn�

is

continuous on D(R
(�)
q,p) with respect to the L2(Ω)-topology. With wi,j �= 0 we obtain〈

R(�)
q,pf

i,j
r , w

〉
Rn�

= wi,j ς
(�)
i,j Rf

i,j
r (si, ϑj) +

∑
(k,l)

(k,l)�=(i,j)

wk,l ς
(�)
k,l Rf

i,j
r (sk, ϑl)

which implies that limr→∞
〈
R

(�)
q,pf i,j

r , w
〉

Rn�
= sgn(wi,j)∞. However, this unbound-

edness contradicts w ∈ D
(
(R

(�)
q,p)∗

)
.

Due to Theorem 5.1 the approximate inverse cannot be applied to the 2D-recon-
struction problem

given gq,p ∈ Rn� find f ∈ L2(Ω) such that R(�)
q,pf = gq,p.
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Here we are facing the situation from section 4, that is, we have to replace the “nonex-
isting” Sq,p by Σq,p; compare (1.3), (1.4), and (3.7), respectively.

Canonical candidates for approximation spaces related to Ψ
(�)
q,p are the tensor

product spline spaces V
(�)
q,p = S

(�)
s ⊗ S(�)

ϑ , = = 1, 2. Here, S
(�)
s and S

(�)
ϑ are either the

piecewise constant (= = 1) or linear (= = 2) spline spaces with respect to the knot

sequences {si} and {ϑj}, respectively. As basis in V (�)
q,p we choose the tensor product

B-spline basis {
B

(�)
q,i ⊗B(�)

p,j/ς
(�)
i,j

∣∣ − q ≤ i ≤ q�, 0 ≤ j ≤ p�} .(5.2)

The B-splines B
(�)
q,i ∈ S(�)

s and B
(�)
p,j ∈ S(�)

ϑ are uniquely determined by (χD is the
indicator function of the set D)

B
(1)
q,i = χ[si,si+1[, B

(1)
p,j = χ[ϑj ,ϑj+1[,

and

B
(2)
q,i (sk) =

{
1 : i = k,

0 : otherwise,
B

(2)
p,j (ϑl) =

{
1 : j = l,

0 : otherwise,

respectively. The normalization factors ς
(�)
i,j are just the L

2-norms of the B-splines:

ς
(�)
i,j := ‖B(�)

q,i ⊗B(�)
p,j‖L2(Z), i = −q, . . . , q�, j = 0, . . . , p�.(5.3)

Thus, the normalized tensor product B-spline basis (5.2) is an L2(Z)-Riesz system
where the constants in the corresponding norm equivalence do not depend on hs or
hϑ; compare (2.3).

We next define the interpolation operator Π
(�)
q,p : H1+κ(Z) → V

(�)
q,p which links

V
(�)
q,p to Ψ

(�)
q,p:

Π(�)
q,pv :=

q�∑
i=−q

p�∑
j=0

(Ψ(�)
q,pv)i,j B

(�)
q,i ⊗B(�)

p,j/ς
(�)
i,j =

q�∑
i=−q

p�∑
j=0

v(si, ϑj) B
(�)
q,i ⊗B(�)

p,j .

Let h = max{hs, hϑ}. Then the uniform boundedness

‖Π(�)
q,pv‖L2(Z) � ‖v‖Hα(Z), α > 1,

as well as the approximation property

‖v −Π(�)
q,pv‖L2(Z) � hmin{α,�} ‖v‖Hα(Z), α > 1,

hold true whenever the right-hand sides are finite. Both estimates are standard results
from spline approximation theory; see, e.g., Schumaker [23, Chap. 12].

In the following we apply our results of section 3.2 to the 2D-reconstruction
problem. In a first step we therefore construct reconstruction kernels from mollifiers
using a SVD of the Radon transform. Unfortunately, a SVD of R : L2(Ω) → L2(Z)
is not known explicitly. However, it can be shown that the Radon transform maps
L2(Ω) compactly to L2(Z̃, w−1) where Z̃ =] − 1, 1[×]0, 2π[; see, e.g., Natterer [20,
Chap. IV.3]. The weight function is given by w(s) :=

√
1− s2 and acts on the first

variable only.
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Let
{
vm,l, um,l;σm

∣∣m ∈ N0, l ∈ Z, |l| ≤ m, m+ l ∈ 2Z} be the singular system
of R : L2(Ω)→ L2(Z̃, w−1), that is,

Rf =
∞∑

m= 0

m∑
l =−m

E
σm 〈f, vm,l〉L2(Ω) um,l,(5.4)

where E restricts the summation over those l’s with m+ l ∈ 2Z.
Later on we will need an explicit representation of the σm’s and the um,l’s only.

We therefore give analytic expressions

σm = 2

√
π

m+ 1
and um,l(s, ϕ) =

1

π
w(s) Um(s) e

ı l ϕ,(5.5)

where Um(s) = sin
(
(m+ 1) arccos s

)
/ sin(arccos s), m ∈ N0, are the Chebyshev poly-

nomials of the second kind. For the vm,l’s see Louis [11] or Natterer [20].
Denoting by R∗ and R# the adjoints of R : L2(Ω) → L2(Z) and R : L2(Ω) →

L2(Z̃, w−1), respectively, we have that

2R∗w−1um,l = R#um,l = σm vm,l.

The first equality can be checked by straightforward calculations. Given a mollifier
e ∈ L2(Ω) normalized by

∫
Ω
e(x) dx = 1 and centered about the origin we define

υM := 2

M−1∑
m= 0

m∑
l =−m

E
σ−1

m 〈e, vm,l〉L2(Ω) w
−1um,l

which then gives

‖R∗υM − e‖2
L2(Ω) =

∞∑
m=M

m∑
l =−m

E |〈e, vm,l〉L2(Ω)|2;(5.6)

compare (3.11) and (3.12).
Let us assume from now on that the mollifier e is a radial function, that is,

e(x) = e(‖x‖R2). Since 〈e, vm,l〉L2(Ω) = 0 for l �= 0 the representation of υM simplifies
to

υM = 2

(M−1)/2∑
k = 0

σ−1
2k 〈e, v2k,0〉L2(Ω) w

−1u2k,0.(5.7)

Hence, the reconstruction kernel does not depend on the angle ϑ. Moreover υM is an
even function in s as so are the Chebyshev polynomials of even degree. See Figure 5.1
for an example.

Let xi ∈ Ω, i = 1, . . . ,m, be points in which we would like to reconstruct moments
〈f, ei〉L2(Ω) from the data gq,p. The mollifiers e

i are derived from e by translation and
dilation:

ei(·) = T xi
1 e(·) :=

1

4
e
( · − xi

2

)
.

At the present time the choice of the dilation factor 2 seems to be artificial; however,
it will become clear in the proof of Lemma 5.3 below.
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Fig. 5.1. Reconstruction kernels (left) and radial parts of the related mollifiers (right). Solid
curves: reconstruction kernel υ501 (5.7) corresponding to e(x) = 5γ−2p

(‖x‖
R2/γ

)
/π with γ = 0.05

where p(t) = (1 − t2)4 for t ≤ 1 and p(t) = 0 otherwise. From a numerical point of view we
have R∗υ501 = e. Dashed curves: reconstruction kernel υ (5.14) corresponding to the Gaußian
e(x) = (2π)−1γ−2 exp

( − γ−2 ‖x‖2
R2/2

)
with γ = 0.013. Please note that both kernels are negative

in [0.2, 1] and monotonically increasing.

The invariance property

R∗T xi
2 = T xi

1 R∗, where T xi
2 υ(s, ϑ) :=

1

4
υ
( s − xt

i ω(ϑ)

2
, ϑ
)
,(5.8)

suggests to define the reconstruction kernel υi
M associated with ei by

υi
M (s, ϑ) := T

xi
2 υM (s, ϑ) =

1

4
υM

( s − xt
i ω(ϑ)

2

)
, i = 1, . . . ,m.

Thus,

R∗υi
M = T xi

1 R∗υM −→ T xi
1 e = e

i as M → ∞.
Remark 5.2. Thanks to the invariance property (5.8) only the kernel υM has

to be computed and stored. The kernels for the reconstruction points xi are simply
found by the action of T xi

2 on υM .
Lemma 5.3. Let v ∈ Hr(Z), r ≥ 0. Then

‖T x
2 v‖Hr(Z) � ‖v‖Hr(Z) uniformly in x ∈ Ω.(5.9)

Proof. The transformation Φ(s, ϑ) :=
(
(s−xt ω(ϑ))/2, ϑ

)
maps Z to Z ′ bijectively

where

Z ′ =
{
(σ, ϕ) ∈ Z

∣∣∣ σ ∈
[ −1− xt ω(ϕ)

2
,
1− xt ω(ϕ)

2

]}
.

Moreover, Φ is a C∞-diffeomorphism with detJΦ(s, ϑ) = 1/2 where JΦ is the Jacobian
of Φ. Since T x

2 v = v◦Φ/4 the assertion follows from transformation results for Sobolev
norms, see; e.g., Wloka [25].

Define E : L2(Ω) → Rm by (Ef)i := 〈f, ei〉L2(Ω), i = 1, . . . ,m; see (3.3), and

Σ
(�)
q,p : Rn� → Rm by(

Σ(�)
q,p b
)
i
:=
〈
b, G(�)

q,pΨ
(�)
q,p υ

i
M

〉
Rn�
, = = 1, 2;

see (3.7). Here, G
(�)
q,p is the Gramian matrix with respect to the B-spline basis in V

(�)
q,p .

Especially G
(1)
q,p is the identity matrix.
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The process of evaluating Σ
(�)
q,p gq,p coincides with (and may be implemented ex-

actly as) the filtered backprojection algorithm in computerized tomography with filter
function υM ; see, e.g., Natterer [20, Chap. V.1]. Indeed, for = = 1,

(
Σ(1)

q,p gq,p
)
i
=

π

4 q p

q−1∑
l=−q

p−1∑
j=0

g(sl, ϑj) υM

( sl − xt
i ω(ϑj)

2

)
.

A reformulation of Theorem 3.12 in the present context results therefore in a novel er-
ror analysis of the filtered backprojection algorithm (Theorem 5.4 below). Compared
to already known error estimates, see, e.g., Natterer [20, Th. V.1.1], we allow mild
smoothness assumptions on the density distribution f . Further, the kernel υ needs
only to be known approximately. The error bound reflects clearly the influence of the
smoothness of f and e on the convergence rate.

Theorem 5.4. Let f ∈ H1/2+κ
0 (Ω) for 0 < κ ≤ 1. Assume that the radial

mollifier e is in Hα
0 (Ω) for α > 4 + 2κ. Let λ� = min{1 + κ, =} for = = 1, 2.

If M =M(h) � h−2λ�/α, then∥∥Σ(�)
q,pΨ

(�)
q,p Rf − Ef

∥∥
∞ � hλ� ‖f‖1/2+κ ‖e‖α as h→ 0.(5.10)

Proof. We follow the line of proof of Theorem 3.9 to obtain∣∣(Σ(�)
q,pΨ

(�)
q,p Rf

)
i
− 〈f, ei〉L2(Ω)

∣∣
≤ ∣∣(Σ(�)

q,pΨ
(�)
q,p Rf

)
i
− 〈f,R∗υi

M 〉L2(Ω)

∣∣+ ∣∣〈f,R∗υi
M − ei〉L2(Ω)

∣∣
=
∣∣(Σ(�)

q,pΨ
(�)
q,p Rf

)
i
− 〈Rf, T xi

2 υM 〉L2(Z)

∣∣+ ∣∣〈f, T xi
1 (R

∗υM − e)〉L2(Ω)

∣∣
� ‖f‖1/2+κ

(
hλ� ‖υM‖H1+κ(Z) + ‖R∗υM − e‖L2(Ω)

)
,

where we used the invariance property (5.8) as well as (5.9). Since

‖(R#R)−αe‖L2(Ω) � ‖e‖α

(see Lemma A.3 below), we immediately infer from (5.6) and from the proof of Lem-
ma 3.10 that

‖R∗υM − e‖L2(Ω) � σα
M ‖e‖α � (M + 1)−α/2 ‖e‖α � hλ� ‖e‖α.

It remains to bound ‖υM‖H1+κ(Z); see (5.7). We will be guided by the proof of
Lemma 3.11. Using the interpolation inequality for Sobolev norms; see, e.g., Lions
and Magenes [7, Chap. 2.5], we may estimate as follows:

‖w−1u2k,0‖H1+κ(Z) � ‖w−1u2k,0‖1−κ
H1(Z) ‖w−1u2k,0‖κ

H2(Z)

= ‖U2k‖1−κ
H1(−1,1) ‖U2k‖κ

H2(−1,1).

A bound on the Sobolev norms of the Chebyshev polynomials may be obtained by
Markov’s inequality (5.11); see, e.g., Lorentz [8, Chap. 3.3]: let Pr be a polynomial of
degree r then

|P ′
r(s)| ≤ r2 max

−1≤t≤1
|Pr(t)|, |s| ≤ 1.(5.11)
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With max−1≤t≤1 |Ur(t)| = r + 1 we easily find that

‖Ur‖H1(−1,1) � (r + 1)3 � σ−6
r and ‖Ur‖H2(−1,1) � (r + 1)5 � σ−10

r

which result in

‖w−1u2k,0‖H1+κ(Z) � σ
−2 (3+2κ)
2k .

Recalling the representation (5.7) of υM we get

‖υM‖H1+κ(Z) �
(M−1)/2∑

k = 0

σ−4α
2k |〈e, v2k,0〉L2(Ω)|2

1/2(M−1)/2∑
k = 0

(2k + 1)−2α+7+4κ

1/2

� ‖(R#R)−αe‖L2(Ω) � ‖e‖α.

We used the fact that the second sum is bounded in M since 2α − 7 − 4κ > 1. The
proof of Theorem 5.4 is now complete.

Because h = max{hs, hϑ} it is most efficient—in view of (5.10)—to work with
discretization step sizes hs and hϑ which coincide: hs = hϑ, that is, p = π q. So we
recovered the optimal sampling relation for the parallel scanning geometry; see, e.g.,
Natterer [20, Chap. III].

In the remainder of this section we comment briefly on another way to design
reconstruction kernels for the Radon transform; see (5.13) below. This approach is
based on the inversion formula (5.12) of the Radon transform

e = (2π)−1 R∗I−1Re for e ∈ Hα
0 (Ω), α ≥ 1/2;(5.12)

see, e.g., Natterer [20, Chap. II.2]. The operator I−1 : H1
0 (−1, 1)→ L2(R) is the Riesz

potential: (̂I−1f)(ξ) = |ξ| f̂(ξ). In (5.12), the Riesz potential acts on the first variable
of Re. Motivated by (5.12) we make the ansatz υ := I−1Re/(2π). Assuming radial
symmetry of e the latter formula may be expressed as

υ(s) =
1

π

∫ ∞

0

σ ê
(
σ ω(0)

)
cos(s σ) dσ;(5.13)

compare Natterer [20, (1.5), p. 103].
For instance, let e be the Gaußian e(x) = (2π)−1γ−2 exp

(−γ−2 ‖x‖2
R2/2

)
, γ > 0.

Clearly, these mollifiers are not supported in Ω. However, for γ small, they decay fast

enough to consider them elements of H
1/2
0 (Ω). Thus,

υ(s) =
1

2π2

∫ ∞

0

σ exp
(− γ2 σ2/2

)
cos(s σ) dσ

=
−1
2π2 γ2

∫ ∞

0

d

dσ

(
exp
(− γ2 σ2/2

))
cos(s σ) dσ.

Now applying integration by parts and using formulæ (7.4.7) and (7.1.3) from [1]
yields

υ(s) =
1

2π2 γ2

(
1 +

√
π

2

s

γ
exp
(− s2/(2γ2)

)
ı erf

(
ı s/(

√
2 γ)
))
,(5.14)
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where erf(t) = (2/
√
π)
∫ t

0
exp(−z2) dz is the error function. Figure 5.1 displays

υ (5.14) for γ = 0.013 (dashed curves).
Remark 5.5. We recommend the filter design methods from above whenever one

wants to impose certain conditions on the mollifier, e.g., nonnegativity and compact
support; see Figure 5.1. The widely used Shepp–Logan filter and its noncompactly
supported mollifier have frequent sign changes. To avoid artifacts in the reconstruc-
tions these oscillations require a certain fine-tuning: the dilation parameter γ (com-
pare (5.14)) needs to be selected carefully. In contrast, the reconstructions based on
the filters from Figure 5.1 are more robust with respect to the support width of the
mollifier.

A. Appendix: A Sobolev space estimate of the 2D-radon transform. In
this appendix we will show that the Radon transform (5.1) maps Hα

0 (Ω) boundedly

to H
α+1/2
p (Z̃), α ≥ 0, where Z̃ =]−1, 1[×]0, 2π[. The space Hβ

p (Z̃) is a Sobolev space

of periodic functions. Let g ∈ L2(Z̃) be expressed in its Fourier series, that is,

g(s, ϕ) =
∑
k∈Z

∑
n∈Z

ĝk,n e
ı (π k s +nϕ), ĝk,n =

1

4π

∫
Z̃

g(s, ϕ) e−ı (π k s +nϕ) dϕ ds.

Then, g ∈ Hβ
p (Z̃), β ≥ 0, iff the norm

‖g‖2
p,β =

∑
k∈Z

∑
n∈Z

(
1 + k2 + n2)β |ĝk,n|2

is finite.
Remark A.1. Interpreting periodic functions in L2(Z̃) as functions defined on the

torus T ⊂ R3 we may identify Hβ
p (Z̃) with the Sobolev space H

β(T ) defined on the
smooth compact manifold T by means of local coordinates; see, e.g., Wloka [25].

In proving our main result in Theorem A.2 below we will benefit from a known
Sobolev space estimate (A.1) for the Radon transform due to Louis and Natterer [14];
see also [20, Chap. II.5].

Let H(β,0)(Z̃), β > 0, be the tensor product Hβ
0 (−1, 1) ⊗̂L2(0, 2π) (for the tensor

product of Sobolev spaces, see, e.g., Aubin [2]); then, for α ≥ 0,
‖Rf‖H(α+1/2,0)(Z̃) � ‖f‖α for all f ∈ Hα

0 (Ω).(A.1)

In view of Remark A.1 our estimate (A.2) below is intrinsically different from a
result of Natterer which looks similar at first glance; see [20, Chap. II, Thrm. 5.3].

Theorem A.2. The Radon transform maps Hα
0 (Ω) continuously to H

α+1/2
p (Z̃),

α ≥ 0, that is,

‖Rf‖p,α+1/2 � ‖f‖α for all f ∈ Hα
0 (Ω).(A.2)

Proof. Let g = Rf . Since (1 + k2 + n2)β ≤ 2β
(
(1 + k2)β + (1 + n2)β

)
for β ≥ 0

and for all k, n ∈ Z we have that

‖g‖p,α+1/2 � A(g) + B(g)

with

A(g)2 =
∑

k,n∈Z

(1 + k2)α+1/2 |ĝk,n|2 and B(g)2 =
∑

k,n∈Z

(1 + n2)α+1/2 |ĝk,n|2.
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We will bound A(g) as well as B(g) by a multiple of ‖f‖α. Both relations∑
n∈Z

|ĝk,n|2 =
∫ 2π

0

∣∣∣ 1
2

∫ 1

−1

g(s, ϕ) e−ı π k s ds
∣∣∣2dϕ

and ∑
k∈Z

|ĝk,n|2 =
∫ 1

−1

∣∣∣ 1
2π

∫ 2 π

0

g(s, ϕ) e−ı nϕ dϕ
∣∣∣2ds

follow from Parseval’s identity. Hence,

A(g)2 =
1

4

∫ 2π

0

∑
k∈Z

(1 + k2)α+1/2
∣∣∣ ∫ 1

−1

g(s, ϕ) e−ı π k s ds
∣∣∣2 dϕ

� ‖g‖2
H(α+1/2,0)(Z̃)

� ‖f‖2
α,

where the first inequality follows from a Sobolev norm equivalence given by Natterer
in [20, Chap. VII, Lem. 4.4]. The second inequality comes from (A.1).

Estimating B(g) is a little bit more involved. From the singular value expan-
sion (5.4) of g = Rf we deduce that

1

2π

∫ 2π

0

g(s, ϕ) e−ı nϕ dϕ =
1

π

∞∑
m= 0

m∑
l =−m

E
gm,l w(s) Um(s)

1

2π

∫ 2 π

0

e−ı (n−l)ϕ dϕ︸ ︷︷ ︸
= δn,l

=
1

π

∞∑
µ=0

g|n|+2µ,n w(s) U|n|+2µ(s)

with gm,l = σm 〈f, vm,l〉L2(Ω). Thus,

B(g)2 =
1

π2

∑
n∈Z

(1 + n2)α+1/2

∫ 1

−1

∣∣∣∣∣
∞∑

µ=0

g|n|+2µ,n w(s) U|n|+2µ(s)

∣∣∣∣∣
2

ds

≤ 1

2π

∑
n∈Z

(1 + n2)α+1/2

∫ 1

−1

∣∣∣∣∣
∞∑

µ=0

g|n|+2µ,n

√
2

π
w(s) U|n|+2µ(s)

∣∣∣∣∣
2

w−1(s) ds

=
1

2π

∑
n∈Z

(1 + n2)α+1/2
∞∑

µ=0

|g|n|+2µ,n|2

because {√ 2/ π w(·)Um(·)
∣∣m ∈ N

}
is an orthonormal basis in L2(] − 1, 1[, w−1).

Further,

B(g)2 �
∑
n∈Z

(1 + |n|)2α+1
∞∑

µ=0

σ2
|n|+2µ |〈f, v|n|+2µ,n〉L2(Ω)|2

�
∑
n∈Z

∞∑
µ=0

σ−4α
|n|+2µ |〈f, v|n|+2µ,n〉L2(Ω)|2

≤
∞∑

m= 0

m∑
l =−m

E
σ−4α

m |〈f, vm,l〉L2(Ω)|2.
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In Lemma A.3 below we bound the latter double sum by a multiple of ‖f‖2
α which

finally proves (A.2).
Lemma A.3. The operator (R#R)−α : Hα

0 (Ω) → L2(Ω), α ≥ 0, is continuous,
that is,

‖(R#R)−αf‖2
0 =

∞∑
m= 0

m∑
l =−m

E
σ−4α

m |〈f, vm,l〉L2(Ω)|2 � ‖f‖2
α(A.3)

for all f ∈ Hα
0 (Ω).

Proof. Since C∞
0 (Ω) is dense H

α
0 (Ω) it suffices to consider f ∈ C∞

0 (Ω). Let us
start with α = 2 r + 1/2, r ∈ N0. We have

〈f, vm,l〉L2(Ω) = σ
−1
m 〈f, R#um,l〉L2(Ω) = σ

−1
m 〈Rf, um,l〉L2(Z̃,w−1).(A.4)

Further, Rf(·, ϕ) ∈ C∞
0 (−1, 1) for any ϕ ∈ [0, 2π]; see, e.g., Natterer [20]. We estimate

the inner product on the right-hand side of (A.4). Let gϕ(s) = Rf(s, ϕ). Integration
by parts yields∫ 1

−1

gϕ(s)Um(s) ds =

∫ π

0

gϕ(cos ϑ) sin
(
(m+ 1)ϑ

)
dϑ

=
−1
m+ 1

∫ π

0

g′ϕ(cos ϑ) sin ϑ cos
(
(m+ 1)ϑ

)
dϑ,

where we used that gϕ(−1) = gϕ(1) = 0. Repeating integration by parts 2r+1-times
we obtain∫ 1

−1

gϕ(s)Um(s) ds = (m+ 1)−2r−1

∫ π

0

ρr(ϑ, ϕ) cos
(
(m+ 1)ϑ

)
dϑ

with ρr(ϑ, ϕ) = sin ϑ
∑2r+1

i=1

(
∂i

∂siRf
)
(cos ϑ, ϕ) pi−1(ϑ) where pi−1 is a real trigono-

metric polynomial of degree i− 1 at most. Thus,

〈g, um,l〉L2(Z̃,w−1) = π
−1 (m+ 1)−2r−1

∫ 2 π

0

∫ π

0

ρr(ϑ, ϕ) cos
(
(m+ 1)ϑ

)
dϑ e−ı l ϕ dϕ︸ ︷︷ ︸

=: cm,l(Rf)

implying

|〈f, vm,l〉L2(Ω)|2 � σ 8r+2
m |cm,l(Rf)|2 = σ 4α

m |cm,l(Rf)|2

by (5.5) and (A.4). Summing up results in

∞∑
m= 0

m∑
l =−m

E
σ−4α

m |〈f, vm,l〉L2(Ω)|2 �
∞∑

m= 0

m∑
l =−m

E |cm,l(Rf)|2.(A.5)

Since
{
cos(nϑ) eı l ϕ/π

∣∣n ∈ N, l ∈ Z
}
is an orthonormal system in L2([0, π]× [0, 2π])

we get from the Bessel inequality that

∞∑
m= 0

m∑
l =−m

E |cm,l(Rf)|2 ≤ π−2

∫ 2π

0

∫ π

0

|ρr(ϑ, ϕ)|2 dϑ dϕ
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= π−2

∫ 2π

0

∫ π

0

∣∣∣ sin ϑ 2r+1∑
i=1

( ∂i

∂si
Rf
)
(cos ϑ, ϕ) pi−1(ϑ)

∣∣∣2dϑ dϕ
�
∫ 2π

0

∫ 1

−1

(
2r+1∑
i=1

∣∣∣( ∂i

∂si
Rf
)
(s, ϕ)

∣∣∣)2

ds dϕ

� ‖Rf‖2
H(α+1/2,0)(Z̃)

� ‖f‖2
α.

In the last step we used (A.1). The latter estimate together with (A.5) verifies (A.3)
for α = 2r + 1/2. For arbitrary α ≥ 0 one can use arguments from interpolation
theory of Sobolev spaces; see, e.g., Lions and Magenes [7, Chap. 5.1].
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