Interactive Theorem Proving with
Schematic Theory Specific Rules

Elmar Habermalz

Universitat Karlsruhe (TH)
Institut fiir Logik, Komplexitat und Deduktionssysteme
elmar.habermalz@ira.uka.de
WWW home page: http://illwww.ira.uka.de/ habermlz

Abstract. This paper presents a framework to make interactive proving
over abstract data types (first order logic plus induction) more comfort-
able. A language of schematic rules is introduced, yielding the ability to
write, to use, and even to verify these rules for any abstract data type
and its theory.

The language allows to express the functionality of a rule easily and
clearly. Nearly all potential rule applications are coupled with the occur-
rence of certain terms or formulas. One can prove with these rules simply
by mouse clicks on these terms and formulas. The rule language is ex-
pressive enough to describe even complex induction rules. Nevertheless,
the correctness of a rule can be verified within the same theory without
use of explicit higher order logic or of a translation to some kind of meta
level. So, in each state of a proof, new rules can be introduced, whenever
required, and proven.

1 Introduction

An abstract data type can have a rich signature and a complex theory. If one
wants to prove difficult lemmas about such a data type, then usually the proof is
not only based on the axioms of the theory, e.g., other lemmas of the theory are
used. Normally, these lemmas have to be edited and made available first. This
can be done in the form of first order lemmas, higher order lemmas interpreted
as proof rules, or other forms. This is a multi-step process, and with every step,
even more complex lemmas of the theory has to be formulated, until one arrives
at a point, where the current proof problem could be solved. With every step,
more knowledge of the previous steps will be needed. This knowledge and its
easy use have thus a great importance for the feasibility of proving.

The feasibility of interactive proving over an abstract data type is not only
determined by the purely logical knowledge that can be specified in the form
of formulas. In addition, one can collect information as to when, where, and
how the purely logical knowledge could be applied. Then that knowledge can be
offered skillfully to the user and he can select the knowledge easily to execute
the next proof step.

The schematic theory specific rules presented here form a system that makes
such knowledge over a complex theory available in a simple and easily un-

derstandable way as proof rules. In particular a schematic theory specific rule
(STSR) contains:

— pure logical knowledge

— information, how this knowledge should be used

— information, when and where this knowledge should be presented for inter-
active use

— information, when and where this knowledge should be used automatically

A distinguishing feature of an STSR is that it is not difficult to write and to read
it, because of its clear syntax. In addition, STSRs are relatively expressive, even
rules for induction can be formulated. Their correctness can be represented by
the correctness of a formula that can be calculated from the STSR syntactically.
The formula can be proven in the same framework and with the previously
introduced STSRs. Therefore correctness proofs for rules are no more difficult
than for normal formulas and lemmas.

The concept of STSRs was influenced by two existing systems, KIV and InterAct.
KIV [HMRS90,Rei95,RSSB98] is a tool for specifying and verifying abstract
data types and there implementations. As part of this process, one has to prove
lemmas over the specified abstract data types. The specifications use full first
order predicate logic and generate conditions with loose semantics. The proofs in
KIV can be made interactively using a sequent calculus. Not all steps have to be
executed interactively. The simplifier, the problem-specific heuristic and further
special heuristics are available as automation assistance. More knowledge about
the abstract data type and its theory is gained and organized primarily through
lemmas. The simplifier does term rewriting and simple logical transformations.
If a lemma has a certain form, it can be used by the simplifier. This form also
states how the logical knowledge of the lemma should be used. The problem-
specific heuristic gives the possibility of executing any proof step automatically.
Every entry in the problem-specific heuristic includes formula patterns and a
proof rule. The prover compares the formula patterns with the formulas of the
sequent. When this comparison yields the appropriate matches, the rule will be
executed automatically. The interactive steps, e.g. split conjunctions, instantiate
univeral quantifier, use an induction rule, or insert lemmas, can be made with
a comfortable graphical user interface. Particularly when working with complex
theories, induction and insertion of lemmas are the most important steps.

The idea of proving by clicking on terms and formulas was applied before
by InterAct [KGC96,GKC96]. InterAct is a system that allows the specification
of abstract data types. The specification language uses conditional equations
with initial semantics. The underlying calculus is again a sequent calculus. The
prover also has a simplifier that can use conditional equations for automated
simplifications. But the most interesting feature of InterAct is its graphical user
interface. The offered proof steps are divided into global and local steps. Global
steps are steps like induction or cut. The local steps are e.g. instantiation of

universal quantifier or paramodulation. These steps are controlled by clicking on
the appropriate terms and formulas.

The STSRs, which I introduce here, have the advantage that the four concepts
of the simplifier, the problem-specific heuristic, the use of lemmas by clicking,
and general proving by clicking are united in one concept. An STSR can

— be an automatically or interactively used rewriting rule

— represent a lemma

— contain necessary context information for automatic use

contain information on using it by mouse-click on formulas or terms

And with the possibility to combine all these features and, at the same time, be
more expressive than first order lemmas it goes beyond those concepts.

The idea has simularities with systems like Isabelle [Pau90] or PVS [ORS92],
where higher order lemmas can be interpreted as proof rules. Such proof rules
are much more powerful than the STSRs presented here. However, the STSRs
avoid to confront a user with proofs in higher order logic. Moreover, the direct
combination with the interaction makes the STSRs different.

Other concepts on proving by mouse click have been presented: proof by
pointing [BKT94] and proof by drag and drop [Ber97] are two very interesting
techniques. The aim of proof by pointing is to bring subformulas to the surface,
however, it does not focus on theory specific knowledge. The aim of proof by drag
and drop is to select term rewriting steps by what Bertot calls a gesture. The
concept he presents allows for highly differentiated preselection. On the other
hand, this system is quite complex and therefore requires a lot of training on
part of the user. Thus, in developing the STSRs I decided to allow proving by
single click only, to keep the concept simple and manageable.

The following sections will present the STSRs. The second section introduces
the STSRs. In the third section a calculus is formed by the STSRs. Section
four presents a system that operates with the STSRs and section five gives a
summary.

2 Schematic Theory Specific Rules

First, an abstract data type for natural numbers is introduced as an example.
It serves as a basis for a constructive introduction to the STSRs. Afterwards
the STSRs are introduced more formally and with a larger outline. Finally the
example is expanded.

2.1 Example: natural numbers

The STSRs are used for proving conjectures about abstract data types. The ab-
stract data types are given as algebraic specifications, using sorts, full first order
axioms and generation conditions, like in KIV. It can be seen as a sublanguage
of CASL (Common Algebraic Specification Language, [CoF99]).

The specification for natural numbers is:

signature

sorts nat;

functions 0 : nat;
. +1 (nat) : nat;
. —1 (nat) : nat;

. + . (nat,nat) : nat;
* . (nat,nat) : nat;
predicates . < . (nat,nat);

variables n, ng, ni, ns, ... : nat;
generate conditions {nat} generated by {0, +1};
axioms -0 =n +1, n+1=mng +1 < n=ng,
(n +1) -1 =n,
- n <0, n<mng+le (n=ngVn<nyg),
n+0=n, n+ (ng +1) = (n + ng) +1,
nx0=0, n#*(ng +1) =n + (n *ng)

The axioms are implicitly, universaly quantified. The generate conditions re-
stricts the models of the mentioned sorts to appropriate term generated models.
Natural numbers are not the main goal of STSR. They are more useful for data
types that are made new for a software project or other projects. But since nat-
ural numbers are well known and therefore easier to understand, they serve here
as an illustrating example.

2.2 Steps to STSRs

An STSR contains logical knowledge and information about how, where and
when it should be used. Let us start with the lemma

ng<np<ng+n<n+n

to explain, how those informations are coded.

One possibility of reading operational information into this lemma is to take
a formula of the form ty, < t;, to ask the user for a term ¢, and to replace the
formula with o +¢ < ¢ +¢. From this special operational interpretation it results
immediately that it is only needed when a formula of the form ty < ¢; is present.
Moreover, it is meaningful to connect the lemma with this special operational
interpretation and such a formula, and to offer the application of the lemma to
the user in this form, if he selects a formula of the form ¢y < ;. The connection
of the operational and the logical information results in something of the form:

find(ng < ny) replacewith(ng+n < nj +n)

The keyword find marks a formula pattern that must be found in the current
proof problem so that the lemma is applicable in the intended form. The inter-
action is defined by find too. The idea is that this rule will be offered to the
user, when he clicks on a formula of the form ny < ni. The rule is bound to the
formulas or terms that match the expression given with find. replacewith and
the following expression describes how the new proof goal is calculated from the

old one. The STSRs are laid out for a sequent calculus. Therefore, the current
goal is a sequent and will be adressed as one. I assume that the reader is familiar
with the concepts of sequent calculus as explained e.g. in [Gal86]. If such a STSR
is used, the variables in the argument of find will be instantiated by matching
the selected term or formula of the current goal. All other variables need an
instantiation supplied by the user.

Also, it must be possible to adress formulas only in the antecedent or succe-
dent of a sequent. This is possible by permitting the use of sequents in find and
replacewith with ’=’ as sequent arrow. Example:

find(= n*ng = 0) replacewith(=n = 0,n9 = 0)

Sometimes, it is necessary to produce more than one remaining goal by an STSR.
Consequently, it is possible to specify more than one description for a new goal
in an STSR. The descriptions are seperated by ’;”:

find(= n + no = 0) replacewith(= n = 0); replacewith(= ny = 0)

If the argument of £ind is a sequent, it must not contain more than one formula.
With more than one formula, the way of interacting with the STSR would not
be clear.

If a formula should remain in the sequent that is found by find, the keyword
add is used instead of replacewith. Example:

find(n < np =) add(n < no+1 =)
It is also possible to combine both keywords:

find(n—1+41) replacewith(n) add(-n =0 =);
add(n =0 =)

This STSR makes a case distinction. First it is assumed that n is not equal to 0
(add(—-n = 0 =)). Then, n—1+41 could be replaced by n. Secondly it is assumed
that n is equal to 0. n—1+41 remains unchanged and n = 0 is added to the
antecedent.

It was mentioned that the STSR can also be used automatically. This mech-
anism should not be compared with automated theorem provers. But it can free
the user from doing trivial proof steps. To mark an STSR as a rule that can be
used automatically there exists the keyword heuristics, followed by a list of
names, called heuristic names. The user should select a list of active heuristics
from these. If a certain STSR contains an active heuristic, this STSR, should be
executed automatically. This enables e.g. simple automated term rewriting.

To implement conditional execution, a condition is necessary. The keyword
if fulfils this task. An example:

if(= n =0) find(n—141) replacewith(n) heuristics(nat)

The rule will be executed automatically whenever there is an instantiation for n
such that n—141 can be found anywhere in the sequent and n = 0 can be found

in the succedent of the current sequent. The argument of if is a condition that
has to be fullfilled when the rule is executed. For automated use, the sequent of
if must be a part of the current sequent. For interactive use, this is not necessary,
but an extra goal will be created to check, whether that sequent could be deduced
from the current sequent.

Also, the closure of a proof branch can be expressed as an STSR. If no
description for a new goal is given, no new goal will be created, and with that
the current proof branch will be closed. E.g.:

if(n +1 < ng =) £ind(= n < ng) heuristics(nat)

2.3 STSRs more systematically

For a more systematical formulation of STSRs we need to extend the vocabulary
of the abstract data type nat and of formulas in general by additionally symbols:

heuristic names formula, nat;

formula skolem symbols p, pg, p1, P2, ...;
skolem symbols ¢, ¢y, c1, co, ... : nat;
formula variables b, by, b1, b2, -..;

rule variables rule, ruleg, ruley, rules, ...;

The term ”formula” is a defined heuristic name for STSRs that handles formulas
in general. The skolem symbols enrich the set of terms and formulas. With
formula skolem symbol p, skolem symbol ¢ of the sort nat and terms ¢y, ...,%,
(of arbitrary sorts), p and p(ti,...,t,) are formulas and ¢ and ¢(ty,...,t,) are
terms of the sort nat. Thus, every symbol could be used as a constant or as
a function or predicate symbol. These formulas and terms are allowed in rules
and also in sequents. The skolem symbols are needed for skolemisation of free
variables in the sequents to seperate free variables from bound variables, and also
to express the correctness of a rule as a formula. Formula variables are standing
for arbitrary formulas in rules, they can only be used in rules. For the formulas
and terms occuring in rules but not in find or if, there are some special kinds
of terms and formulas defined. With variable z, terms t;, > and formulas ¢,
2, rule variable rule, there are:

{z t1}(t2) term (of the sort of t», & and ¢; must be of the same sort)
{z t1}(¢2) formula (z and ¢; must be of the same sort)

{z p1}(p2) formula (z must be a formula variable)

proofobl(rule) formula

The first three terms and formulas denote substitutions, e.g. {z ¢ }(t2) means
that every x in t5 should be replaced by ¢;. The substitution will be executed
collision free. proofobl(rule) stands for the formula that represents the correct-
ness of rule. If rule is instantiated by an STSR, that formula could be calculated

and could replace proofobl(rule). This formula is called the proof obligation of
an STSR.

With that expanded notion of terms and formulas, we can go back to the STSRs.
An STSR has three parts:

— the application part
— the goal descriptions
— the heuristic part

Definition: application part
The application part has the form

if(ifseq) find(findexp) varcond(varezplist)

where i fseq is a sequent, findexrp a term, formula or a sequent with not more
than one formula and varexplist a list of elements of the form

x new with x variable
y not freein z with y, z variables.

Unused keywords can be omitted (if with the empty sequent, find with the
empty sequent, varcond with an empty list). if and find should be clear.
varcond is necessary for describing independencies between variables on one
side and terms and formulas on the other side. A new variable can always auto-
matically be instantiated.

Definition: goal descriptions
The goal descriptions are presented as a list in which the individual descriptions
are separated by ’;’. Each goal description is of the form

replacewith(rwezp) add(addseq) addrules(stsrlist)

with rwezp appropriate for findexp (if findexp is a sequent, the sequent in
rwexp is not limited to one formula), addseq a sequent and stsrlist a list of
STSRs and rule variables. Again, unused keywords can be omitted (replacewith
with the same expression as find, add with the empty sequent, addrules with
an empty list). replacewith and add have already been explained. addrules
creates new rules that are available for the sequent created by that goal de-
scription and its successors. If addrules contains a rule variable, it could be
instantiated by every possible rule.

Definition: heuristic part
The heuristic part is simple, it is of the form

heuristics(heunamelist)

with heunamelist a list of heuristic names.

Finally, STSRs could (and should) have names, so that the they are easier to
organize and to identify. To sum it up, an STSR has the structure:

name{
if(ifseq) find(findexp)

varcond(x; new, ..., 2, new,y; not freein z,...,y, not freein z,)
replacewith(rwexp:) add(addseq:) addrules(ri 1, ...,71,0,);

replacewith(rwerp,) add(addseq,) addrules(r,1,...,7,0,)
heuristics(heus,..., heug)

}

Some examples will make the possibilities of the STSRs more clear.

2.4 Examples

STSRs cover all areas from quite general rules to very specific ones. Very general
ones represent base rules of the sequent calculus like:

and-left { find(bA by =) replacewith(b,by =) heuristics(formula) }
eq-right { find(= b > by) replacewith(b= by);

replacewith(by = b) }
close { if(b =) find(= b) heuristics(formula) }

and-left and eq-right are based on the appropriate rules of the sequent calculus,
close is based on the closing mechanism of it. The whole sequent calculus can be
covered. With introducing a sort, e.g. quantifier instantiation is needed. It could
be made in to ways:

all-left-1 { find(Vz b =) add({z zo}(b) =) }
all-left-2 { if (Vo b =) find(zo) add({z xo}(b) =) }

If the user clicks on a universally quantified formula in the antecedent, he can use
all-left-1 and would be asked to insert an instantiation for xzq. If there is already
an appropriate term in the current sequent, it would be better to use all-left-2.
The user would click on that term and choose all-left-2. A system could easily
offer all existing possibilities for « and b.

More specialized rules handle induction. The structural induction rule over
the natural numbers is:

nat-induction{
varcond(ng new)
add(= {n 0}(d));
add({n no}(b) = {n (no +1)}(b));
add(Vn b =) }

If a user executes this rule with a formula ¢(n) for b, he will receive three new
goals. The first goal includes = (0), where it has to be shown that (0) is valid.
The next goal includes ¢(ng) = ¢(ng +1), where it has to be shown that ¢ (ng)
implies ¢(ng +1). The third goal includes Vn p(n) =, the validity of ¢(n) for
all n could be used for the ongoing proof. This rule has no find meaning that

it contains find(=) implicitly. To choose this rule, a user has to click on the
sequent arrow =.
This could be continued, e.g. to a very special kind of induction:

jump-and-back-induction {
varcond(no new,n; new)
add({n no }(b) = In (no <my A{nn1}(d)));
add({n (no +1)}(b) = {n no}(b));
add((Vn b) =)

If a user executes this rule with a formula ¢(n) for b, he also gets three new
goals. The first one includes ¢(ng) = Iny (np < n1 A p(n1)). It means, it has to
be proven that if for some ng the formula p(ng) is valid, there has to be a greater
ny such that ¢(ny) is also valid. It is a jumping up the natural numbers. The
second one includes ¢(ng +1) = ¢(ng) and is a step back. It has to be proven
that the gaps of the jumping could be filled. So, it is a proof that ¢(n) is valid
for all n and Vn ¢(n) is included in the antecedent of the third goal.
A simpler rule also specific for the natural numbers is:

less-cases{ find(n) add(n < ng =); add(n = np =); add(ng < n =) };

With this rule the user can introduce a case distinction over two natural numbers.
Until now, the keyword addrules was not used. An example will make up
for that. It deals with equality on nat:

make-insert-eq { find(n = ny =)
addrules(insert-eq { find(n) replacewith(ng) })
heuristics(formula) }

If an equation appears in the antecedent of a sequent, this rule creates a new
rule to replace an occurrence of its left-hand side with its right-hand side (the
commutativity of the equality should be build in, so a rule is made for both
directions).

2.5 The STSR rule-cut

Finally, there is the STSR rule-cut. With this rule, it is possible to introduce
any rule at any place of a proof. But the proof splits at that point and the user
has to prove in the second branch that the rule is a correct rule at that point:

rule-cut { addrules(rule); add(= proofobl(rule)) };

With this rule it is possible to introduce highly specialized rules in a proof,
maybe rules that are only correct rules in the context of the current sequent but
rules carrying operational and heuristic information that make the rest of the
current proof very simple. This rule illustrates one of the main ideas of STSRs.
A formula called proof obligation can be calculated syntactically for every rule
and these proof obligations guarantee the correctness of the rule. Two examples
will illustrate this calculation, a formal explanation will be given elsewhere.
The first example is:

pred-succ-elim{ if(= n = 0) find(n—1+1)
replacewith(n) heuristics(nat) }

Its proof obligation is very simple:
c=0Vce-1+l=c
The second example is:

jump-and-back-induction {
varcond(ng new, n; new)
add({n no}(b) = Iny (ng < n1 A {n n1}(b)));
ada({n (no +1)}(5) = {n no}(b));
add((Vn b) =)

This proof obligation is a little bit more complicated:
Ine Iny (=(Ing (no < n1 Ap(ny))) V (p(no +1) A =p(no)) V (Vn p(n)))

b is replaced by p(n). The first goal description yields —(3n1 (no < n1 A p(ni))),
the second yields (p(no +1)A=p(no)), and the third (Vn p(n)). The ng new, n; new
in the rule yields the dng 3dn; in the proof obligation. The use of skolem functions
and predicates (see the predicate p(nat) — nat above) covers the higher order
elements of the STSRs and makes the guarantee of correctness possible.

3 A calculus with STSRs

So far, the STSRs have been presented. But how do they work in a calculus?
Here I describe a calculus that works only with STSRs. But it is also possible to
use them as an add-on. One of the ideas of the STSRs is, to give a user a uniform
concept for collecting theory specific knowledge. So it is not the idea to use them
with a lot more concepts for theory specific knowledge when using them as an
add-on. In particular, it is possible to use the STSRs as the only concept for
proving. To use them for that, there are two questions to be answered. What is
a proof, and how exactly could an STSR be used?

3.1 Proofs

In a standard sequent calculus a proof is a tree, the nodes are sequents and the
edges are justified by rule applications of the calculus. The set of rules is fixed for
a proof. If one uses STSRs, the set of rules is not fixed anymore. Consequently,
every node of a proof tree is enriched by a set of STSRs.

There is a second change, which is not really necessary, but makes the ex-
planation of correct rule instantiations easier. As mentioned before, the free
variables in a sequent should be skolemized to avoid conflicts between free and
bound occurrences of a variable. In the root sequent and in all sequents that
are the result of a rule application, the free variables should be replaced by new
skolem constants. Then conflicts are not possible.

Thus, a partial proof for a lemma ¢ is a tree in which:

10

— every node includes a sequent,

— the root node includes the skolemized version of the sequent = ¢

— every node includes a set of STSRs

— the root node includes a set of STSRs that are given axiomatically or are
assumed or proven correct (monitored by a correctness management)

— a node is “open’ or there is one STSR of the set of STSRs of this node, a
correct instantiation of this rule, and the children of that node are justified
by the application of that rule with that instantiation

Regarding the last point, if that rule does not introduce any new goals, it is
justified that that node has no children and the branch is closed there.

3.2 Rule application

The first thing that has to be done when a user wants to apply an STSR is
to instantiate the variables of the STSR. There are some restrictions to the
variable instantiations of STSRs. There are three possible types of restriction.
An unrestricted variable can be instantiated to any term of appropriate sort or to
a formula. This is even the case if free variables of that term or that formula have
an interrelation with quantifiers of the current sequent. If such an interrelation
would compromise the correctness of the rule, the variable is always restricted to
be instantiated to a constant term or formula. This is not a restriction to ground
terms, also skolem functions and skolem predicates are allowed. To control this,
an STSR is divided into regions. If a variable occurs in more than one region,
the variable is restricted to be instantiated by constant terms. For a variable x
the regions are defined as follows:

— if findexp is a sequent or x is declared as new, findexp, ifseq, all rwexp,
and all addseq taken together are one region

— if findexp is not a sequent and x is not declared as new, i fseq and all addseq
taken together are one region.

— if findexp is not a sequent and x is not declared as new, every rwexp together
with findexp is a region.

— every single rule in a stsrlist is a region of its own.

Rule variables are an exeption. They always have to be instantiated by a concrete
STSR (and not a rule variable), but that STSR can always include free variables.

The other two restrictions are simpler. If a variable is used quantified some-
where in the STSR, it has obviously to be instantiated with a variable. This is
also the case for all y in a declaration of the form y not free in z and for all
z of such declarations in rule lists of addrules. Also every x in x new has to
be a variable, if the x new appears inside an addrules declaration. If x new is
declared for the instantiated rule, the variable has to be new.

It is possible that a variable belongs to more than one region but also is
limited to be instantiated with a variable. In such a case, the STSR has no
correct instantiation and could not be used.

11

After the correct instantiation, the substitution terms are eliminated. If such
a substitution results in a collision, the appropriate inner quantified variables
would have to be renamed to avoid the collision.

The new nodes of the proof are constructed straightforward. For every goal
description a new node is constructed. If the description includes a replacewith,
the findexp will be replaced by it. Then the addseq will be added to the current
sequent and the stsrlist will be added to the set of existing rules of the current
node. If the ¢fseq is not a subsequent of the current sequent, it is first added
to every sequent from a goal description, and in a second step an extra goal is
created to which the negation of i fseq is added.

An example. Let us take the lemma

(’I’Lo—].+]. <nig Anp <TL2) — (’no < mn2Vng :0) (*)
and a set of STSRs including:

less-trans{ if(n < ng =) find(np < n1 =) add(n <ny =) }
pred-succ-elim{ if (= n = 0) find(n—1+1)
replacewith(n) heuristics(nat) }

After skolemisation of the free variables and automatic transformation steps, (*)
leads to the sequent :

co—1+1l<cy, c1<ca = cg<ca, cg=0 (**)

less-trans is attached to two formulas:

less-trans{if(n < ng =) find(ngy < n1 =) add(n < n; =)}

If the user clicks on ¢; < ¢z, chooses the rule less-trans and completes the
instantiation with a choice for n to n — ¢g, ng — ¢1 and ny — co2, two new goals
will be created. The if yields

co—1l+1<cy, c1<ca = c9<c1, cp<cg, cog=0
with ¢p < ¢; new in the succedent and the add yields
co<cCy, cp<ci, co—14+1<c, 1<y = cp<cy, ¢g=0

with ¢y < ¢ from add and ¢y < ¢; from if new in the antecedent. But if the
heuristic nat is active, pred-succ-elim will be executed before less-trans auto-
matically, because the rule is attached to the term ¢p—1+1 and the condition
= ¢p = 0 is fulfiled.

<ec, g <cp=>cp<cy, ¢g=0

pred-succ-elim{if(= n = 0) find(n —1 +1) replacewith(n)}

12

Therefore, the result of this operation is
co<cy, c1<ce => cg<cy, cg=0

After that, clicking on ¢; < ¢z and choosing less-trans does not generates two
goals, because the condition ¢y < ¢; = is fulfiled. There will be only one new
goal with the sequent

co<cy, cp<cy, c1<C = cpg<cy, cg=0

including ¢y < c2 in the antecedent. Then the active heuristic formula and the
STSR

close { if(b =) find(= b) heuristics(formula) };

would close the proof immediatly with b instantiated to ¢y < c¢s.

4 A System working with STSRs

The STSRs are not only a theory. The system IBIJa [Sup98] applies the idea of
STSRs. The acronym is derived from the German Interaktiver Beweiser In Java
which can be translated as Interactive Prover In Java.

Change goal|Global heuristics|Local ;:;;;’EI =
([(cD 1) +1)[< 1), o

{cl1 <c2)

{cO < c2)
{ch=10})

=plit-ar-right

=plit-and-left :-:.:i

=plit-im p-right |

IBIJa works on two levels, the project level and the prover level. At the
project level, it is possible to create and edit projects. A project contains a struc-
tured algebraic specification enriched by the necessary STSR signature, lemmas
and most importantly by STSRs. Currently, the specification language is not
very elaborate. There are no generic features, but an enrichment of specifications
is possible. A specification file does not only include the signature enriched for
STSRs, full first order axioms and generation condition. Also lemmas, axiomatic
STSRs and derivable STSRs can be written in those files and be managed by the
system. A user can choose a lemma or a derivable STSR, and can start to prove
them. The picture illustrates the example (*) of the previous section. It shows
the current sequent with the selected term cp—1+1 and the current proof. The

13

already made proof steps split (*) in its parts. The symbols of the proof nodes
indicate, whether the step was made interactively (the hand) or automatically
(the computer). If the user clicks on the selected term, the following window
appears where the user can select the rule pred-succ-elim for application.

Lzt of potentially appliable riles
Wariabisnirstanciatians Mame ol ihe i Bady o ik nils
LN RS R T e Y tindl n } addl {n € nd } =%} add{ { n= nd } =) add{{nld € n} =%}
== gmil A J el) netzem-has-pred | 0(=> (n= 03 Jindd n) wareond{ nd new Jadd{ (n = (nl 1)) =F) |
n =F nl0 | pred-Succ ehim M=% {n=0)Wind{ {{m:1} +1 _|;|r\cpln:r:wnh[-"-}Murmlu:u-’.n-:l}.
== (gmil -4) e)| rewrite fined{ n } repincewithi n0) ndd{ { n = nd } ==); ndd{ == { n = n0 §) |
| apply selected ruke | close dinkeg |

IBlJa is a prototype written in Java2. It is completely functional and can be
downloaded from http://illwww.ira.uka.de/"ibija.

5 Conclusion

The idea of schematic theory specific rules (STSRs) is a concept to make inter-
active proving more comfortable. It is designed particularly to work with theory
specific knowledge of abstract data types.

The rules are easy to write and easy to integrate with the already existing
ones by clicking on terms and formulas in the user interface. They can be run
automatically (in a simple way) and their correctness can be proven within the
same framework. The application of a rule follows its syntax in a straightforward
way. Basically, the STSRs provide a framework that can be adapted easily to
build a comfortable interactive prover for any abstract data type.

For the future it is planned to integrate the STSRs into a theorem prover,
which will be used in a project called KeY developed at the Institut fir Logik,
Komplezitat und Deduktionssysteme, Universitit Karlsruhe (TH). The aim of
this project is to integrate formal software specification and verification into the
industrial software engineering process. You can find more information about
KeY at http://illwww.ira.uka.de/ key/.

References

[Ber97] Y. Bertot. Direct manipulation of algebraic formulae in interactive proof
systems. http://www-sop.inria.fr/croap/events/uitp97-papers.html, 1997.
Proceedings of the 3rd international Workshop on User Interfaces for The-
orem Provers.

[BKT94] Y. Bertot, G. Kahn, and L. Théry. Proof by pointing. In M. Hagiya and
J. C. Mitchell, editors, Theoretical Aspects of Computer Software (TACS
’94), number 789 in LNCS. Springer, 1994.

[CoF99] The CoFI Task Group on Language Design. Casl, the common algebraic
specification language. http://www.brics.dk/Projects/CoFI, 1999.

[Gal86] J. Gallier. Logic for Computer Science. Harper & Row, 1986.

14

[GKC96]

R. Geisler, M. Klar, and F. Cornelius. Interact: An interactive theorem
prover for algebraic specifications. In M. Wirsing and M. Nivat, editors,
Algebraic Methodology and Software Technology, number 1101 in LNCS.
Springer, 1996.

[HMRS90] M. Heisel, W. Menzel, W. Reif, and W. Stephan. Der Karlsruhe Interactive

[KGC96]

[ORS92]

[Pau90]

[Rei95]

[RSSBYS]

[Sup9g]

Verifier (KIV). Eine Ubersicht. In H. Kersten, editor, Sichere Software,
Formale Spezifikation und Verifikation vertravenswirdiger Systeme. Hiitig
Verlag, 1990. (In German).

M. Klar, R. Geisler, and F. Cornelius. Interact: An interactive theorem and
completeness prover for algebraic specifications with conditional equations.
In M. Haveraaen, O. Owe, and O.-J. Dahl, editors, Recent Trends in Data
Type Specification, number 1130 in LNCS. Springer, 1996.

S. Owre, J. Rushby, and N. Shankar. PVS: A Prototype Verification Sys-
tem. In Deepak Kapur, editor, 11th International Conference on Automated
Deduction (CADE), number 607 in LNCS. Springer, 1992.

L. C. Paulson. Isabelle: The next 700 theorem provers. In P. Odifreddi,
editor, Logic and Computer Science. Academic Press, 1990.

W. Reif. The KIV-approach to Software Verification. In M. Broy and
S. Jéhnichen, editors, KORSO: Methods, Languages, and Tools for the
Construction of Correct Software — Final Report, number 1009 in LNCS.
Springer, 1995.

W. Reif, G. Schellhorn, K. Stenzel, and M. Balser. Structured Specifications
and Interactive Proofs with KIV. In W. Bibel and P. Schmitt, editors, Au-
tomated Deduction — A Basis for Applications, volume I. Kluwer Academic
Publishers, 1998.

M. Supp. Implementierung eines integriert interaktiven und reflexiven Be-
weisers fiur Priadikatenlogik. Master’s thesis, Universitat Karlsruhe (TH),
1998. (In German).

15

