Inclusion of eigenvalues and eigenfunctions of the Sturm-Liouville problem

Markus Neher
Institute of Applied Mathematics, Karlsruhe University, Kaiserstr. 12,
D-W-7500 Karlsruhe 1, Germany

Abstract

We compute verified inclusions of eigenvalues and eigenfunctions of the SturmLiouville equation. The bounds are calculated on a computer. Using machine interval arithmetic, all truncation and rounding errors are enclosed.

1. INTRODUCTION

We consider the Sturm-Liouville boundary value problem

$$
\begin{align*}
-u^{\prime \prime}+\mathrm{q}(\mathrm{x}) \mathrm{u} & =\lambda \mathrm{u}, \quad \mathrm{x} \in[0, \pi] \tag{1}\\
\mathrm{u}(0)=\mathrm{u}(\pi) & =0
\end{align*}
$$

where $\mathrm{q}(\mathrm{x})$ is a continuous function in $[0, \pi]$ and λ a real parameter. λ is called an eigenvalue of (1), if there exists a non-trivial solution $u(x)$. In this case $u(x)$ is called an eigenfunction of (1).

In the following we state some well-known results about (1) that can be found in any standard text book on ordinary differential equations (see Walter [5], for example). The first is about existence of eigenvalues:

Theorem 1: Under the above assumptions on $\mathrm{q}(\mathrm{x})$, (1) has an infinite number of (simple) eigenvalues $\lambda_{0}<\lambda_{1}<\lambda_{2}<\ldots$, that tend to infinity. A corresponding eigenfunction $\mathrm{u}_{\mathrm{n}}(\mathrm{x})$ has exactly n zeroes in $(0, \pi)$.

Now consider the following initial value problem for $u=u(x, \mu)$:

$$
\begin{align*}
& -\mathrm{u}^{\prime \prime}+\mathrm{q}(\mathrm{x}) \mathrm{u}=\mu \mathrm{u}, \mathrm{x} \in[0, \pi] \tag{2}\\
& \mathrm{u}(0)=0, \mathrm{u}^{\prime}(0)=1
\end{align*}
$$

(2) has a unique solution $u(x, \mu)$ for every $\mu \in \mathbb{R}$ and μ is equal to an eigenvalue $\lambda_{\mathrm{n}}, \mathrm{n} \in \mathbb{N}_{0}$, of (1), iff $\mathrm{u}(\pi, \mu)=0$. Counting the zeroes of $\mathrm{u}(\mathrm{x}, \mu)$ in $(0, \pi]$ we get lower and upper bounds of eigenvalues of (1) from

Theorem 2: Let $u(x, \mu)$ be a solution of (2) for a given $\mu \in \mathbb{R}$. Denote by $N(\mu)$ the number of zeroes of $u(x, \mu)$ in $(0, \pi]$ and let $\lambda_{-1}:=-\infty$. Then $N(\mu)$ is an increasing function of μ and $\lambda_{\mathrm{N}(\mu)-1} \leq \mu<\lambda_{\mathrm{N}(\mu)}$.

Corollary 1: For $\lambda=\lambda^{-}, \lambda^{+}$with $\mathrm{N}\left(\lambda^{-}\right) \leq \mathrm{n}, \mathrm{N}\left(\lambda^{+}\right) \geq \mathrm{n}+1$ it holds that $\lambda^{-}<\lambda_{\mathrm{n}} \leq \lambda^{+}$.

The next theorem will be needed in chapter 4 to derive approximations of eigenvalue bounds:

Theorem 3: The Sturm-Liouville problem is monotone in $q(x)$, that is if $\mathrm{p}(\mathrm{x}) \leq \mathrm{q}(\mathrm{x})$ for all $\mathrm{x} \in[0, \pi]$ then $\lambda_{\mathrm{n}}(\mathrm{p}(\mathrm{x})) \leq \lambda_{\mathrm{n}}(\mathrm{q}(\mathrm{x}))$ for all $\mathrm{n} \in \mathbb{N}_{0}$.

2. INCLUSION OF EIGENVALUES

Suppose we solve (2) for two numbers λ^{-}, λ^{+}satisfying the assumptions of corollary 1 . Then we have an immediate but presumably rough inclusion of the n-th eigenvalue λ_{n} of (1). Note that we obtain an inclusion of λ_{n} without knowledge of the other eigenvalues of (1).
To improve given bounds of λ_{n} we solve (2) for some $\mu \in\left[\lambda^{-}, \lambda^{+}\right]$and apply corollary 1 to λ^{-}and μ or μ and λ^{+}. If we are close enough to λ_{n}, that is if $\mathrm{N}\left(\lambda^{-}\right)=\mathrm{n}$ and $\mathrm{N}\left(\lambda^{+}\right)=\mathrm{n}+1$, then convergence speed is improved be applying the regula falsi (or any other method suited to compute inclusions of simple zeroes of a real-valued function) to $\mathrm{f}(\mu):=\mathrm{u}(\pi, \mu)$.

Usually, computing bounds in every iteration step is a slow process and we can speed up convergence considerably if we first compute a good approximation λ^{*} of λ_{n} by a
fast method (using real machine arithmetic) and then derive bounds λ^{-}and λ^{+}adding or substracting a suitable number ϵ.

When applying the secant method we have to solve one (ivp) in every iteration step (the same amount of work is due for bisection of $\left[\lambda^{-}, \lambda^{+}\right]$or the regula falsi method). Newton's method requires the computation of $\mathrm{f}^{\prime}(\mu)$, where
$\mathrm{f}^{\prime}(\mu)=\mathrm{u}_{\mu}(\pi, \mu)=\left.\frac{\partial}{\partial \mu}(\mathrm{u}(\mathrm{x}, \mu))\right|_{\mathrm{x}=\pi}$
and $\mathrm{v}(\mathrm{x}, \mu):=\mathrm{u}_{\mu}(\mathrm{x}, \mu)$ satisfies
$-\mathrm{v}^{\prime \prime}+\mathrm{q}(\mathrm{x}) \mathrm{v}=\mu \mathrm{v}+\mathrm{u}, \quad \mathrm{v}(0)=\mathrm{v}^{\prime}(0)=0$.

In this case we have to solve two (ivp) per iteration.

3. PRŪFER TRANSFORMATION OF (2)

There is an alternative approach to solve (2) applying the Prüfer transformation. Introducing polar coordinates
$\mathrm{u}^{\prime}(\mathrm{x})=: \rho(\mathrm{x}) \cos \phi(\mathrm{x}), \mathrm{u}(\mathrm{x})=: \rho(\mathrm{x}) \sin \phi(\mathrm{x})$
in the phase plane $\left(u^{\prime}(x), u(x)\right)$, and inserting these into (2) we get two first order equations for ϕ and ρ :

$$
\begin{array}{ll}
\phi^{\prime}(\mathrm{x})=(\lambda-1-\mathrm{q}(\mathrm{x})) \sin ^{2} \phi+1, & \phi(0)=0 \\
\rho^{\prime}(\mathrm{x})=(1-\lambda+\mathrm{q}(\mathrm{x})) \rho \cos \phi \sin \phi, & \rho(0)=1 \tag{4}
\end{array}
$$

The following theorem holds:

Theorem 4: a) $\lambda=\lambda_{\mathrm{n}} \Leftrightarrow \phi(\pi, \lambda)=(\mathrm{n}+1) \pi, \quad \mathrm{n} \in \mathbb{N}_{0}$.
b) $\phi_{\lambda}(\pi, \lambda)=\left.\frac{\partial}{\partial \lambda}(\phi(x, \lambda))\right|_{\mathrm{x}=\pi}>0 \quad$ for all $\lambda \in \mathbb{R}$.

Note that we do not have to solve (4) to obtain eigenvalue inclusions. $\rho(\mathrm{x})$ is only needed to compute eigenfunctions of (1). As (4) is a linear first order equation for ρ, it can be solved by quadrature, after (3) has been solved.

All methods described in chapter 2 apply to the transformed problem (3), where
$\mathrm{g}(\mu):=\phi(\pi, \mu)-(\mathrm{n}+1) \pi$
instead of $\mathrm{f}(\mu)$ is used. But there is a considerable simplification of Newton's method. The derivative $\mathrm{g}^{\prime}(\mu)$ can be computed without solving an initial value problem, that is $\mathrm{g}^{\prime}(\mu)=\phi_{\mu}(\pi, \mu)$, where $\Psi(\mathrm{x}, \mu):=\phi_{\mu}(\mathrm{x}, \mu)$ satisfies $\Psi^{\prime}(\mathrm{x})=(\lambda-1-\mathrm{q}(\mathrm{x})) \sin (2 \phi) \Psi+\sin ^{2} \phi, \Psi(0)=0$.

This is a linear first order equation for Ψ that can be solved by quadrature. Therefore, in this case, we have to solve only one initial value problem in each Newton step.

4. INTERVAL INCLUSION [u] (x, μ) OF $\mathrm{u}(\mathrm{x}, \mu)$

In applications we will not be able to solve the initial value problem (2) explicitly. But if we only compute approximate solutions $u^{*}(x, \mu)$ to $u(x, \mu)$, we can not guarantee that $\mathrm{u}^{*}(\mathrm{x}, \mu)$ and $\mathrm{u}(\mathrm{x}, \mu)$ have the same number of zeroes in $(0, \pi]$. Therefore we have to solve (1) with an interval method (see [1]), that computes an inclusion
$[\mathrm{u}](\mathrm{x}, \mu)=[\mathrm{lb}(\mathrm{u}(\mathrm{x}, \mu)), \mathrm{ub}(\mathrm{u}(\mathrm{x}, \mu))]$
of $u(x, \mu)$.
Now suppose that $[\mathrm{u}(\mathrm{x}, \mu)]$ has n zeroes in $(0, \pi)$. Then μ is a guaranteed upper bound of the $(\mathrm{n}-1)$-th eigenvalue of (2) . It is a guaranteed lower bound of λ_{n}, if $0 \notin[u(\pi, \mu)]$. No decision about a lower bound can be made in the case $0 \in[u(\pi, \mu)]$, as $\mathrm{N}(\mathrm{u}(\mathrm{x}, \mu)$) could be equal to either n or $\mathrm{n}+1$, depending on the function value $u(\pi, \mu) \in[u(\pi, \mu)]$.

Counting the zeroes of $[\mathrm{u}](\mathrm{x}, \mu)$ one has to make sure that if $[\mathrm{u}](\mathrm{x}, \mu)$ crosses the real axis, the true solution $u(x, \mu) \in[u](x, \mu)$ has only one zeroe there. This can be guaranteed if we compute an inclusion [$\left.u^{\prime}\right](x, \mu)$ of $u^{\prime}(x, \mu)$ as well and if for every $x \in[0, \pi]$ with $0 \in[u](x, \mu)$ it holds that $0 \notin\left[u^{\prime}\right](x, \mu)$.

5. INITIAL APPROXIMATIONS

As we have seen in chapters 2 and 3 , improving eigenvalue bounds is - theoretically a simple task. Deriving good, reliable and easy-to-find initial approximations for the eigenvalues proves to be more difficult. We state three well-known possible ways to proceed.

First, due to theorem 3 there is the immediate estimate

$$
\begin{aligned}
& \left|\lambda_{\mathrm{n}}-(1+\mathrm{n})^{2}\right| \leq\|\mathrm{q}\|_{\infty} \\
& \text { as } \lambda_{\mathrm{n}}=(\mathrm{n}+1)^{2} \text { for } \mathrm{q}(\mathrm{x}) \equiv 0 .
\end{aligned}
$$

Secondly, if $\mathrm{q}(\mathrm{x})$ is smooth enough there is an asymptotic expansion of eigenvalues due to Fix [2]:

$$
\begin{gathered}
\sqrt{\lambda_{\mathrm{n}-1}}=\mathrm{n}+\frac{1}{2 \mathrm{n}} \mathrm{Q}_{1}+\frac{1}{8 \mathrm{n}^{3}}\left(\mathrm{Q}_{2}-\mathrm{Q}_{1}^{2}+\mathrm{q}^{\prime}(\pi)-\mathrm{q}^{\prime}(0)\right)+\mathrm{O}\left(\frac{1}{\mathrm{n}^{4}}\right) \\
\text { where } \mathrm{Q}_{1}=\frac{1}{\pi} \int_{0}^{\pi} \mathrm{q}(\mathrm{x}) \mathrm{dx}, \quad \mathrm{Q}_{2}=\frac{1}{\pi}\left\|\mathrm{q}(\mathrm{x})-\mathrm{Q}_{1}\right\|_{2}^{2}
\end{gathered}
$$

Thirdly, the standard Rayleigh-Ritz method will supply upper bounds for the eigenvalues, that can be used as eigenvalue approximations as well.

Eigenvalue expansions only lead to good approximations if Q_{1} and Q_{2} are small. Likewise, the bounds given by the infinity norm are only usefull when the latter is small. In most cases the Rayleigh-Ritz method is likely to produce the best results. But note that it will not supply lower bounds of the eigenvalues.

6. INCLUSION OF EIGENFUNCTIONS

To compute eigenvalue inclusions in chapter 4 we had to have an interval solver for (2), that is we had to compute interval inclusions [u] (x, μ) of solutions $\mathrm{u}(\mathrm{x}, \mu)$ of (2), for all $x \in[0, \pi]$ and $\lambda \in \mathbb{R}$. Extending our solver to interval input for μ, we compute inclusions [u] (x, $\left.\left[\mu^{-}, \mu^{+}\right]\right)$of solutions $u(x, \mu)$ of (2) so that
$\mathrm{u}(\mathrm{x}, \mu) \in[\mathrm{u}]\left(\mathrm{x},\left[\mu^{-}, \mu^{+}\right]\right)$for all $\mathrm{x} \in[0, \pi]$ and all $\mu \in\left[\mu^{-}, \mu^{+}\right]$.

Now we obtain eigenfunction inclusions of (1) in two steps. First we compute an inclusion $\left[\lambda^{-}, \lambda^{+}\right]$of the n-th eigenvalue λ_{n} of (1). Secondly we enclose the normalized n -th eigenfunction $\mathrm{u}_{\mathrm{n}}(\mathrm{x})$ via
$u_{n}(x)=u\left(x, \lambda_{n}\right) \in[u]\left(x,\left[\lambda^{-}, \lambda^{+}\right]\right)$for all $x \in[0, \pi]$.

7. NUMERICAL RESULTS

We used the algorithm AWA by Lohner [4] to solve (2). All computations were performed on an HP Vectra (386-20) computer under PASCAL-XSC (see [3]). All discretation and rounding errors were taken into account.

To compute the Rayleigh-Ritz approximations, the symmetry of $\mathrm{q}(\mathrm{x}$) (and of the eigenfunctions) was utilized to split the matrix eigenvalue problem into two problems for the even and the odd eigenvalues, respectively. The standard trial functions $\sin (j x), j=1,2, \ldots$ were used.

In the following tables we show verified inclusions of eigenvalues compared to Rayleigh-Ritz approximations and approximations by asymptotic formulae. The latter are only shown where they lead to reasonable results.

Example I (Mathieu-equation) : Eigenvalues of $q(x)=\cos (2 x)$
Nr. of Taylor-coefficients in AWA: 15 Step size : $h=\pi / 90$
Nr. of trial functions for the Rayleigh - Ritz method: 20

n	asympt.	exp.	Rayleigh-Ritz		interval inclusion of λ_{n}				
0	1.125	000	0.470	654	0.470	654	354	9338	835
1	4.041	250	3.979	188	3.979	189	215	7513	372
2	9.013	888	9.013	719	9.013	719	838	920	416
10	121.001	033	121.001	042	121.001	041	672	5779	

Example II : Eigenvalues of $q(x)=1000 \cos (2 x)$
Nr. of Taylor - coefficients in AWA : 15 Step size : $h=\pi / 1000$
Nr. of trial functions for the Rayleigh - Ritz method: 60

n	Rayleigh-Ritz			interval inclusion of $\lambda_{\text {n }}$				
0	-955.	530	062	-955.	530	062	027	$49{ }_{28}^{68}$
1	-867.	098	865	-867.	098	865	357	0_{479}^{542}
2	-779.		176	-779.	694	175	891	$\begin{aligned} & 9070 \\ & 8999 \end{aligned}$
10	-119.	964	807	-119.	964	806	058	9780

Example III: Eigenvalues of $q(x)=1000 \cos (2000 x)$

Nr. of Taylor - coefficients in AWA: 15 Step size : $\mathrm{h}=\pi / 4000$

REFERENCES

[1] Alefeld, G., Herzberger, J., Introduction to Interval Computations (Academic Press, New York, 1983).
[2] Fix, G., Asymptotic Eigenvalues of Sturm-Liouville Systems, J. Math. Anal. Appl. 19 (1967), 519-525.
[3] Klatte, R., Kulisch, U., Neaga, M., Ratz, D., Ullrich, Ch., PASCAL-XSC, Sprachbeschreibung mit Beispielen (Springer, Berlin, Heidelberg, New York, 1991).
[4] Lohner, R., Einschließung der Lösung gewöhnlicher Anfangs- und Randwertaufgaben und Anwendungen , Ph. D. Thesis, Karlsruhe University, Karlsruhe, Germany, 1988.
[5] Walter, W., Gewöhnliche Differentialgleichungen, 3rd ed. (Springer, Berlin, Heidelberg, New York, 1986).

