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Abstract

We compute verified inclusions of eigenvalues and eigenfunctions of the Sturm-
Liouville equation. The bounds are calculated on a computer. Using machine interval
arithmetic, all truncation and rounding errors are enclosed.

1. INTRODUCTION

We consider the Sturm-Liouville boundary value problem

Il

-u" + gx)u Au , xe[0, 7] (1)
u0) = u(r) =0

where q(x) is a continuous functionin [0, 7] and A a real parameter. A\ is called
an eigenvalue of (1), if there exists a non-trivial solution u(x) . In this case u(x) is
called an eigenfunction of (1).

In the following we state some well-known results about (1) that can be found in any
standard text book on ordinary differential equations (see Walter [5] , for example).
The first is about existence of eigenvalues:

Theorem 1: Under the above assumptions on q(x) , (1) has an infinite number of
(simple) eigenvalues )\0 < Al < )\2 < ... , that tend to infinity. A corresponding
eigenfunction u_(x) has exactly n zeroesin (0, 7).



Now consider the following initial value problem for u = u(x,u) :

-u" + gx)u = pu , xe[0, 7] 2)
u@0) =0, u'(@ =1

(2) has a unique solution u(x,u) for every p € R and p is equal to an eigenvalue
’\n , NE 1NO , of (1), iff u(mu) = 0. Counting the zeroes of u(x,u) in (0, 7] we
get lower and upper bounds of eigenvalues of (1) from

Theorem 2: Let u(x,x) be a solution of (2) for a given p € R. Denote by N(z) the
number of zeroes of u(x,u) in (0, 7] andlet A _ :=-00. Then N(x) is an in-

creasing function of x and ’\N(,u,)—l < po <A

N(p)
Corollary 1: For XA = )X-, A with N(A) < n, N(A*) > n+ 1 it holds that
A = )\n < A

The next theorem will be needed in chapter 4 to derive approximations of eigenvalue
bounds:

Theorem 3: The Sturm-Liouville problem is monotone in q(x) , that is if
p(x) < q(x) forall xe [0, 7] then A (p(x)) < Ay( q(x)) forall neN,; .

2. INCLUSION OF EIGENVALUES

Suppose we solve (2) for two numbers A-, A* satisfying the assumptions of
corollary 1. Then we have an immediate but presumably rough inclusion of the n-th
eigenvalue A~ of (1). Note that we obtain an inclusion of A =~ without knowledge of
the other eigenvalues of (1) .

To improve given bounds of A G solve (2) for some p€[ A, A*] and apply
corollary 1 to A~ and p or p and A*. If we are close enough to A, that is if
N(X) =n and N(A*) = n+1, then convergence speed is improved be applying the
regula falsi (or any other method suited to compute inclusions of simple zeroes of a
real-valued function) to f(x) := u(7,p) .

Usually, computing bounds in every iteration step is a slow process and we can speed
up convergence considerably if we first compute a good approximation A* of A bya



fast method (using real machine arithmetic) and then derive bounds A~ and A* adding
or substracting a suitable number ¢ .

When applying the secant method we have to solve one (ivp) in every iteration step
(the same amount of work is due for bisection of [ A\-, A*] or the regula falsi method).
Newton’s method requires the computation of f'(y), where

£ () = u(mn) = (uxm)
ou X=

T

and v(x,u) := uﬂ(x,,u) satisfies
-v'+qx)v=pv+u, v(0)=v'(0)=0 .

In this case we have to solve two (ivp) per iteration.

3. PRUFER TRANSFORMATION OF (2)

There is an alternative approach to solve (2) applying the Priifer transformation.
Introducing polar coordinates

u'(x) =:p(x) cos §(x) , u(x) =: p(x) sin P(x)

in the phase plane (u'(x), u(x) ), and inserting these into (2) we get two first
order equations for ¢ and p :

¢'(x)
p'(x)

(A-1-gq(x))sin®¢p + 1, §0) =0 (3)
(1-A+q(x))pcosdsing , p0)=1 . 4

I

The following theorem holds:

Theorem4: a) A = A & ¢(r)) = (n+1) 7, neN

n 0

b &,(mA) = -L(d(xA)) > 0 for all AeR .
7)) X

=T



Note that we do not have to solve (4) to obtain eigenvalue inclusions. p(x) is only
needed to compute eigenfunctions of (1) . As (4) is a linear first order equation for p ,
it can be solved by quadrature, after (3) has been solved.

All methods described in chapter 2 apply to the transformed problem (3) , where

gw) = ¢(mp) —(n+l)

instead of f(u) is used. But there is a considerable simplification of Newton’s method.
The derivative g'(u) can be computed without solving an initial value problem, that

is g'(p) = ¢‘u(7r,,u,) , where U(x,u) := ¢H(x,,u) satisfies
U'(x) = (A=1-q(x))sin(29) ¥ +sin’ ¢, ¥(0) =0 .

This is a linear first order equation for ¥ that can be solved by quadrature. Therefore,
in this case, we have to solve only one initial value problem in each Newton step.

4. INTERVAL INCLUSION [u](x,1) OF u(xz)

In applications we will not be able to solve the initial value problem (2) explicitly.
But if we only compute approximate solutions u*(x,u) to u(x,z) , we can not
guarantee that u*(x,z) and u(x,z) have the same number of zeroes in ( 0, 7 ].
Therefore we have to solve (1) with an interval method (see [1]), that computes an
inclusion

[u] (%) = [1b(u(x,p) ) , ub(u(x,p) ) |

of u(x,u) .

Now suppose that [u(x,x) ] has n zeroes in (0, 7). Then p is a guaranteed upper
bound of the (n-1)-th eigenvalue of (2) . It is a guaranteed lower bound of Ag s if
0 ¢ [u(mp)]. No decision about a lower bound can be made in the case 0 € [ u(mp) ],
as N( u(x,z) ) could be equal to either n or n+1, depending on the function value
u(mp) € [u(mp) .

Counting the zeroes of [u ] (x,z) one has to make sure that if [u ] (x,u) crosses the
real axis, the true solution u(x,x) € [ u ] (x,x) has only one zeroe there. This can be
guaranteed if we compute an inclusion [u' ] (x,u) of u'(x,z) as well and if for every

X€[0, ] with 0€[u](x,p) it holdsthat 0¢[u' ] (xp).



S. INITIAL APPROXIMATIONS

As we have seen in chapters 2 and 3 , improving eigenvalue bounds is — theoretically -
a simple task. Deriving good, reliable and easy-to—find initial approximations for the
eigenvalues proves to be more difficult. We state three well-known possible ways to
proceed.

First, due to theorem 3 there is the immediate estimate

2
| A -? | < llall,

as A = (n+1)2 for q(x)=0.

Secondly, if q(x) is smooth enough there is an asymptotic expansion of eigenvalues
due to Fix [2] :

VI =0+ Lq + 8—;3(QZ—Q%+q‘(7r)—q‘(0)) ¥ 0(_11-{1—)

2n

1

where Q= — qx)dx , Q,= % I a(x) - Qq ||%

O—x

Thirdly, the standard Rayleigh-Ritz method will supply upper bounds for the
eigenvalues, that can be used as eigenvalue approximations as well.

Eigenvalue expansions only lead to good approximations if Q; and Q, are small.
Likewise, the bounds given by the infinity norm are only usefull when the latter is
small. In most cases the Rayleigh-Ritz method is likely to produce the best results. But
note that it will not supply lower bounds of the eigenvalues.

6. INCLUSION OF EIGENFUNCTIONS

To compute eigenvalue inclusions in chapter 4 we had to have an interval solver for
(2) , that is we had to compute interval inclusions [u ] (x,x) of solutions u(x,z) of
(2), forall xe[0, 7] and X € R. Extending our solver to interval input for p, we

compute inclusions [u ] (x,[z,x*]) of solutions u(x,z) of (2) so that

u(x,u) € [u] (x[p,pu]) forall xe[0,n] andall pe[p, put]



Now we obtain eigenfunction inclusions of (1) in two steps. First we compute an
inclusion [A-, A*] of the n-th eigenvalue A of (1) . Secondly we enclose the
normalized n-th eigenfunction un(x) via

un(x) = u(x,/\n) € [u]l(x,[A,A1]) forall xe[O0, n].

7. NUMERICAL RESULTS

We used the algorithm AWA by Lohner [4] to solve (2). All computations were
performed on an HP Vectra (386-20) computer under PASCAL-XSC (see [3]). All dis-
cretation and rounding errors were taken into account.

To compute the Rayleigh-Ritz approximations, the symmetry of q(x) (and of the
eigenfunctions) was utilized to split the matrix eigenvalue problem into two problems
for the even and the odd eigenvalues, respectively. The standard trial functions
sin(jx), j =1, 2, ... were used.

In the following tables we show verified inclusions of eigenvalues compared to
Rayleigh-Ritz approximations and approximations by asymptotic formulae. The latter
are only shown where they lead to reasonable results.

Example I (Mathieu-equation) : Eigenvalues of q(x) = cos( 2x )

Nr. of Taylor — coefficients in AWA: 15  Step size: h =7 /90
Nr. of trial functions for the Rayleigh - Ritz method : 20

E_ asyr?pt. exp. Rayleigh-Ritz interval inclusion of AHP
0 1.125 000 0.470 654 0.470 654 354 933 83

1 4.041 250 3.979 188 3.979 189 215 751 305

2 9.013 888 9.013 719 9.013 719 838 920 30
10 121.001 033 121.001 042 121.001 041 672 5590

779




Example II : Eigenvalues of q(x) = 1000 cos( 2x )

Nr. of Taylor — coefficients in AWA: 15  Step size: h = 7/ 1000
Nr. of trial functions for the Rayleigh —Ritz method : 60

n Rayleigh-Ritz interval inclusion of A,
0  -955. 530 062 ~955. 530 062 027 4933
542
1 —867. 098 865 ~867. 098 865 357 G376
9070
2 779, 694 176 ~779. 694 175 891 goo0
909
10 -119. 964 807 ~119. 964 806 058 970,

Example III : Eigenvalues of q(x) = 1000 cos( 2000x )

Nr. of Taylor — coefficients in AWA: 15  Stepsize: h = 7 / 4000

interval inclusion of ’\n

10

0.37‘5l
3.87‘51
8.87‘5‘

4
120. 875

998
002

o
004

992
006

962
008
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