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Abstract

We compute verified inc1usionsof eigenvalues and eigenfunctions of the Sturm-
Liouville equation. The bounds are calculated on a computer. Using machine interval
arithmetic, all truncation and roundingerrors are enc1osed.

1. INTRODUCTION

We consider the Sturm-Liouville boundary value problem

- u" + q(x) U =

u(O) = u( 71-)=

.Au , XE[O,1I"]

o
(1)

where q(x) is a continuous function in [0, 11"]and .A a real parameter. .Ais called

an eigenvalue of (1), if there exists a non-trivial solution u(x). In this case u(x) is

called an eigenfunction of (1).

In the following we state some well-known results about (1) that can be found in any

standard text book on ordinary differential equations (see Walter [5] , for example).

The first is about existence of eigenvalues:

Theorem 1: Under the above assumptions on q(x), (1) has an infinite number of

(simple) eigenvalues .Ao < \ < .A2 < ... , that tend to infinity. A corresponding
eigenfunction un(x) has exactly n zeroesin (0, 11").



Now consider the following initial value problem for u = u(x,tt) :

- u" + q(x) u = tt u , x E [ 0, 11"]
u(O) = 0 , u' (0) = 1

(2)

(2) has a unique solution u(x,tt) for every tt E IR and tt is equal to an eigenvalue

An' n E!No' of (1), iff u(1I",tt)= o. Countingthe zeroesof u(x,tt) in (0, 11"]we
get lowerand upper bounds of eigenvaluesof (1) from

Theorem 2: Let u(x,tt) be a solution of (2) for a given tt E IR .
number of zeroesof u(x,tt) in (0, 11"] and let A-1 := - 00 .
creasingfunction of tt and AN(tt)-1 ~ tt < AN(tt)

Denote by N(tt) the

Then N(tt) is an in-

Coro1Iary1: For A = A-, A+ with N(A-) ~ n, N(A+) > n + 1 it holds that
A- < A < A+n -

The next theorem will be needed in chapter 4 to derive approximations of eigenvalue
bounds:

Theorem 3: The Sturm-Liouville problem is monotone in q(x), that is if

p(x) ~ q(x) for all x E [ 0, 11"] then An( p(x» ~ An(q(x» for all n E !No.

2 INCLUSIONOF EIGENVALUES

Suppose we solve (2) for two numbers A-, A+ satisfying the assumptions of

corollary 1. Then we have an immediate but presumably rough inclusion of the n-th

eigenvalue An of (1). Note that we obtain an inclusionof An without knowledgeof
the other eigenvalues of (1) .

To improve given bounds of A we solve (2) for some tt E [ A- , A+] and applyn
corollary 1 to A- and tt or tt and A+. If we are closeenough to An' that is if
N(A-) = n and N(A+) = n+1, then convergencespeed is improved be applying the
regula falsi (or any other method suited to compute inclusionsof simple zeroes of a
real-valued function) to f(tt): = u(1I",tt).

Usually, computingbounds in every iteration step is a slowprocess and we can speed

up convergenceconsiderablyif we first compute a goodapproximation A* of An bya



fast method (using real machine arithmetic) and then derive bounds >.- and >.+ adding

or substracting a suitable number (;.
When applying the secant method we have to solve one (ivp) in every iteration step

(the same amount of work is due for bisection of [>.- , >.+] or the regula falsi method).

Newton's method requires the computation of f' (J.L), where

- v" + q(x) v = J.Lv + u, v(O) = v' (0) = 0

In this case we have to solvetwo (ivp) per iteration.

3. PRÜFER TRANSFORMATIONOF (2)

There is an alternative approach to solve (2) applying the Prüfer transformation.
Introducing polar coordinates

u' (x) =: p(x) cos <I>(x),u(x) =: p(x) sin <I>(x)

in the phase plane (u' (x) , u(x) ), and inserting these into (2) we get two first
order equations for <I>and p :

<1>'(x) = (>. - 1 - q(x) ) sin2 <I>+ 1 , <1>(0)= 0

p' (x) = (1 - >. + q(x) ) P cos <I>sin <1>, p(O) = 1

(3)

(4)

The following theorem holds:

Theorem 4: a) >. = >'n {:::} <1>(11",>.)= (n + 1) 11", n E !No

b) <1>>.(11",>')= ~ <I>(x,>,))
I

> 0
B>' X=11"

for all >. E IR .



Note that we do not have to solve (4) to obtain eigenvalueinclusions. p(x) is only

needed to compute eigenfunetions of (1). As (4) is a linear first order equation for p ,
it can be solvedby quadrature, after (3) has been solved.

All methods describedin chapter 2 apply to the transformedproblem (3), where

g(p,) : = <1>(1r,p,) - ( n + 1 ) 1r

instead of f(p,) is used. But there is a considerable simplification of Newton's method.

The derivative g' (p,) can be computed without solving an initial value problem, that

is g' (p,) = <I>(1r,p,), where w(x,p,):= <I> (x,p,) satisfiesp, p,

w' (x) = ( A- 1 - q(x) ) sin(2<f»W + sin2 <1>,w(O) = 0 .

This is a linear first order equation for W that can be solved by quadrature. Therefore,

in this case, we have to solve only one initial value problem in each Newton step.

4. INTERVALINCLUSION [u] (x,p) OF u(x,p)

In applications we will not be able to solve the initial value problem (2) explicitly.

But if we only compute approximate solutions u*(x,p,) to u(x,p,), we can not
guarantee that u*(x,p,) and u(x,p,) have the same number of zeroes in (0, 1r].
Therefore we have to solve (1) with an interval method (see [1]), that computes an
inclusion

[u ] (x,p,)= [ lb( u(x,p,)) , ub( u(x,p,)) ]

of u(x,p,).
Nowsupposethat [u(x,p,)] has n zeroesin ( 0, 1r). Then p, is a guaranteed upper

bound of the (n-1)-th eigenvalueof (2). It is a guaranteed lower bound of An' if
o ~ [u(1r,p,)]. Nodecisionabouta lowerboundcanbe madein the case0 E [u(1r,p,)] ,

as N( u(x,p,» could be equal to either n or n+1 , dependingon the function value
u( 1r,p,) E [u( 1r,p,) ] .

Counting the zeroesof [u] (x,p,) one has to makesure that if [u] (x,p,) crossesthe

real axis, the true solution u(x,p,)E [ u ] (x,p,) has only one zeroe there. This can be

guaranteed if we compute an inclusion [u' ] (x,p,) of u' (x,p,) as wen and if for every

x~ [ 0, ~] with 0 ~ [U] (X,JL)it holdsthat 0 ~ [U' ](X,JL).



5. INITIAL APPROXIMATIONS

Aswehaveseenin chapters2 and3 , improvingeigenvalueboundsis - theoretically -
a simple task. Deriving good, reliable and easy-to-find initial approximations for the
eigenvaluesproves to be more difficult. We state three well-known possible ways to

proceed.
First, due to theorem 3 there is the immediate estimate

2
as An = (n+l) for q(x) ==O.

Secondly, if q(x) is smooth enough there is an asymptotic expansion of eigenvalues

due to Fix [2] :

7r

where Ql = ~ J q(x) dx
o

1 2
Q2 = -:;r 11 q(x) - Ql 112

Thirdly, the standard Rayleigh-Ritz method will supply upper bounds for the

eigenvalues, that can be used as eigenvalue approximations as weIl.

Eigenvalue expansions only lead to good approximations if Ql and Q2 are small.
Likewise, the bounds given by the infinity norm are only usefull when the latter is

small. In most cases the Rayleigh-Ritz method is likely to produce the best results. But

note that it will not supply lower bounds of the eigenvalues.

6. INCLUSlONOF EIGENFUNCfIONS

To compute eigenvalueinclusionsin chapter 4 we had to have an interval solver for
(2), that is we had to compute interval inclusions [u] (x,p) of solutions u(x,p) of

(2), for all x E [ 0 , 7r] and AEIR. Extendingour solver to intervalinput for p, we
compute inclusions [u] (x,[p-,p+])of solutions u(x,p) of (2) so that

u(x,p) E [u] (x,[p-,p+]) for all x E [ 0, 7r] and all pE [p- , p+] .



Now we obtain eigenfunction inclusions of (1) in two steps. First we compute an
inclusion [A- , A+] of the n-th eigenvalue A of (1). Secondlywe enclose then
normalizedn-th eigenfunction u (x) vian

un(x) = U(X,An) E [u] (X,[A-,A+])for all xE [0, 7r].

7. NUMERICALRESULTS

We used the algorithm AWA by Lohner [4] to solve (2). All computations were

performed on an HP Vectra (386-20) computer under PASCAL-XSC (see [3]). All dis-

cretation and rounding errors were taken into account.

To compute the Rayleigh-Ritz approximations, the symmetry of q(x) (and of the

eigenfunctions) was utilized to split the matrix eigenvalue problem into two problems

for the even and the odd eigenvalues, respectively. The standard trial functions

sin(jx), j = 1, 2,... were used.

In the following tables we show verified inclusions of eigenvalues compared to

Rayleigh-Ritz approximations and approximations by asymptotic formulae. The latter

are only shown where they lead to reasonable results.

Example I (Mathieu-equation): Eigenvalues of q(x) = cos(2x )

Nr. of Taylor - coefficients in AWA: 15 Step size: h = 7r/ 90

Nr. of trial functions for the Rayleigh- Ritz method: 20

n asympt. exp. Rayleigh-Ri tz interval inclusion of An--

0 1.125 000 0.470 654 0.470 654 354 933 8

1 4.041 250 3.979 188 3.979 189 215 751 3

2 9.013 888 9.013 719 416
9.013 719 838 920 367

10 121. 001 033 121.001 042 800
121.001 041 672 5779

--



Example 11: Eigenvalues of q(x) = 1000cos( 2x )

Nr. of Taylor - coefficients in AWA: 15 Step size: h = 'Ir / 1000
Nr. of trial functions for the Rayleigh- Ritz method: 60

Example 111: Eigenvalues of q(x) = 1000cos( 2000x )

Nr. of Taylor - coefficients in AWA: 15 Step size: h = 'Ir / 4000

n Rayleigh-Ri tz interval inclusion of An--

0 -955. 530 062 -955. 530 062 027 49

1 67. 098 865
542

67. 098 865 357 0479

2 -779. 694 176 9070
-779. 694 175 891 8999

10 -119. 964 807 909
-119. 964 806 058 9780

-----

n interval inclusion of An

0 0.8

1 3.8

2 8.8

10 4 962
120.875 008
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