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Foreword

Will future mobile communication systems need network planning or
not? There are presently numerous activities going on for the
development of products for ad hoc networks. Ad hoc networks consist
of transceivers, mostly mobile, which connect themselves with their
neighbors and thereby create a communications network without any
planning process. A deeper look into this subject shows, however, that
ad hoc networks are a solution for small limited areas. They can not
handle high-density traffics and they can not work over long distances.
The conclusion is that the planning of mobile communication networks,
especially base station placement will be one of the primary tasks also
in the future.

The Ph.D. thesis of Dr. Huang delivers significant new ideas, concepts
and results for mobile network design. The design process of base
station placement and dimensioning is modeled and optimized by a
multi-objective genetic algorithm. Genetic algorithms allow to include
easily a number of incommensurable criteria, for example cost and
coverage. The planning process is, as it follows biological evolution,
easily understandable. | wish that the results of this thesis are well
accepted by the community and the ideas spread out throughout the
world.

Prof. Dr.-Ing. Werner Wiesbeck
- Institutsleiter -
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Chapter 1

Introduction

The future is mobile. On the one hand, more and more people will spend much of
their time on the road, whether working or during vacation. People want access to the
telecommunication services in any place at any time. On the other hand, more and
more communication devices are portable, such as pagers, mobile phones, personal
digital assistants (PDAs), laptops, and palmtops. The development of wireless
communications takes these facts into account. New technologies and services are
continuing to come forth. The number of subscribers to mobile services is
tremendously growing worldwide. Therefore, the proper design of mobile networks,
in order to meet the increases in demand, is of utmost importance.

This thesis is devoted to the network planning aspects of mobile communication
systems. The following section highlights the background and motivation for this
research. The research scope and objectives will be introduced in Section 1.2. This
chapter concludes with an outline of the thesis.

1.1 QUALITY, CAPACITY, AND ECONOMIC ISSUES OF MOBILE
NETWORK DESIGN

The increasing demand for mobile communications leads mobile service providers to
look for ways to improve the quality of service and to support increasing numbers of
users in their systems. Since the amount of frequency spectrum available for mobile
communications is very limited, efficient use of the frequency resource is needed.
Currently, cellular systems such as the global system for mobile communications
(GSM) are widely deployed because the cellular concept uses frequencies in a more
efficient way compared to the conventional mobile radio systems [MacDonald
(1979)]. It allows frequency reuse such that the same frequency channel (FCH) can be
simultaneously used in different cells.

Theoretically a hexagonal geometry is assumed for cellular systems [Lee(1989)],
but this assumption is generally not fulfilled in real mobile networks. Since terrain
and other factors may result in weak radio signals in certain areas, the position of base
stations (BSs) must be changed in order to provide satisfactory coverage. Thus the
design of cellular systems needs a way to optimize the placement of BSs.
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Furthermore, the rapid development of cellular mobile networks increases the need
for economic use of the available frequency resource. Hence, worldwide research
activities have been done on the channel assignment problem (CAP), also called the
frequency assignment problem (FAP) in some literature [Koster(1999)]. Once the cell
sites and dimensions are determined, there is a lower bound i.e. the minimum
frequency spectrum required for assigning each cell a sufficient number of channels
[Gamst(1986)]. Such a lower bound is defined as spectral cost in this thesis. In order
to minimize the spectral cost, cell sites and dimensions must be optimized. This is one
of the tasks of cell planning.

Distinguished from the spectral cost, the cost for building a mobile network is
called financial cost. In an extremely competitive market, the financial cost is a key
element in determining the economic feasibility of any communication system.
However, economic aspects of mobile network design are not addressed effectively in
most of the existing network planning tools. These tools are basically “prediction
tools” [Cheung(1994)] because they merely predict the radio signal coverage and
some system performance measures, such as bit error rate (BER), outage probability,
and blocking probability, according to several established propagation models. The
handling of economic issues is usually left to the expertise of network planners. A
good design method should be able to minimize the financial cost, and to consider
tradeoffs among factors such as system performance criteria, service demand, and
system upgrade. This is another task of cell planning.

Currently, cellular system design is challenged by the need for a better quality of
service and the need for serving an increased number of subscribers. Cell planning is
becoming a key issue in the current scenario, with exceedingly high growth rates in
many countries which force operators to reconfigure their networks virtually on a
monthly basis. Therefore, the search for intelligent techniques, which may
considerably alleviate planning efforts (and associated costs), becomes extremely
important for operators in a competitive market.

1.2 RESEARCH SCOPE AND OBJECTIVES

Cell planning is a very complex task, as many aspects must be taken into account,
including the topography, morphology, traffic distribution, existing infrastructure and
so on. Things become more complicated because a handful of constraints are
involved, such as the system capacity, service quality, frequency bandwidth, and
coordination requirements. Nowadays, it is the network planner’s task to manually
place BSs and to specify their parameters based on personal experience and intuition.
These manual processes have to go through a number of iterations before achieving
satisfactory performance and do not necessarily guarantee an optimum solution. It
could work well when the demand for mobile services was low. However, the
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explosive growth in the service demand has led to a need for an increase in cell
density. This in turn has resulted in greater network complexity, making it extremely
difficult to design a high-quality network manually.

Furthermore, the forthcoming third-generation (3G) systems such as the universal
mobile telecommunications system (UMTS) aim to offer a multitude of
telecommunication services, ranging from speech communication and video
telephony to high data rate file transfer up to 2 Mb/s. The traffic density generated
will vary substantially as different services require different transmission rates that
can vary up to two orders of magnitude [Holma(2000)]. As a result, the traffic
distribution will be dynamic. This also makes the conventional design methods
insufficient for planning mobile networks in the future. Thus more advanced and
intelligent network planning tools are required. A promising planning tool should be
able to aid the human planner by automating the lower levels of the design processes
[Cheung(1994)]. These include automatic placement and dimensioning of BSs.

This thesis presents a novel automatic cell planning approach that aims to design
a high-quality mobile network which guarantees the system performance i.e. a
network which meets the requirements of coverage, capacity, and interference level,
while trying to minimize system costs, including the spectral cost and financial cost.
Since BSs can be located at any place in the service area and the cell dimensions are
very changeable, there are lots of variables to be determined, including the number of
cells and parameters of each cell. Suppose that the service area is digitized into nxm
pixels and each pixel is a potential cell site. The number of possible cell sets, i.e.,
different combinations of potential cells, is 2" when only considering the BS site. In
principle, this is a nondeterministic polynomial (NP) combinatorial optimization
problem [Garey(1979)]. Since the parameters of each cell, such as the transmitted
power, antenna type, height, and orientation, also need to be optimized, both
combinatorial and parametric optimization problems are involved in cell planning.

Although many studies have been reported in the area of optimization problems
in terms of algorithm and complexity, relatively few studies have been done regarding
the application of optimization algorithms for mobile network design. Basically, most
available channel assignment algorithms can be used to minimize the spectral cost,
such as those presented in [Box(1978), Kunz(1991), Mathar(1993), Ngo(1998), and
Beckmann(1999)], but they do not consider the optimization of cell sites and
dimensions. On the other hand, algorithms for minimizing the financial cost has not
been extensively investigated. [Calégari(1997), Chamaret(1997), and Molina(1999)]
studied genetic algorithms (GAs) for choosing a minimum number of cells from the
given potential cells, while [Tutschku(1997)] used neural network techniques in an
integrated cellular network planning tool. In [Hao(1997)], an algorithm based on
simulated annealing (SA) was applied to solve an economic optimization model for
cellular system design. SA algorithm was also used in [Hurley(2000)]. However, none
of them take spectrum efficiency into account.
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One important characteristic of the cell planning problem is that the design
criteria are interrelated: increasing the coverage probably causes higher financial cost,
improving the system capacity probably requires more channels. Thus there are
several objectives needed to be considered simultaneously. Usually the spectral cost
and financial cost are to be minimized, while maximum coverage or capacity are
desired. Such a problem is classified as multi-objective optimization problem (MOP)
because it involves simultaneous optimization of several objectives.

The common way of dealing with this class of problems is to use a weighted sum
of the normalized objective functions, or to optimize one of the objectives while
treating the others as constraints, such that the MOP is converted into and
subsequently solved as a single objective optimization problem (SOP). In MOP,
however, because the objectives may be conflicting, there does not exist a unique
optimal solution that is global optimum with respect to all the objectives. Instead,
there is a set of optimal solutions which represent tradeoffs between the conflicting
objectives. These solutions are optimal in the wider sense that no other solutions in
the search space are superior to them when all objectives are considered. Ideally we
would like to obtain a set of tradeoff solutions, from which a good compromise
solution can be chosen subject to the preference of the decision maker.

The potential of GAs to become a powerful method for multi-objective
optimization has long been recognized [Schaffer(1985)]. GAs seem particularly
suitable to solve MOPs because they deal simultaneously with a set of possible
solutions, namely, a population. This inherent characteristic allows us to find a set of
tradeoff solutions in a single optimization run. Therefore, multi-objective genetic
algorithms (MOGAs) are studied in this work for the purpose of solving the cell
planning problem. This is the first step in the direction of automatic cell planning and
forms the basis for further research in this area.

1.3 THESIS OUTLINE

This thesis is arranged in seven chapters. Chapter 2 provides the fundamentals and
basic techniques of cell planning. The conceptual basis of cellular system design and
design objectives are first discussed. This is followed by a review of radio wave
propagation in a mobile communications environment. A typical design process of
cell planning is also outlined. The basic steps, including the coverage prediction,
capacity prediction, interference analysis, and channel assignment, are discussed in
detail from Section 2.3 to 2.6.

In Chapter 3 the cell planning problem is analyzed from the viewpoint of system
performance optimization. First, a general description of the problem is given. Four
kinds of problems can be distinguished: cell selection, cell dimensioning, automatic
base station placement and dimensioning (ABSPAD), and growth planning. For the
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first time, system performance criteria are addressed by the local conditions and
global conditions. The local conditions, including the traffic load and interference
probability, are defined on each single cell, while the global conditions are defined on
the whole system (a set of cells), including the coverage rate, spectral cost, and
financial cost. The global conditions are used as optimization objectives. Cell
planning problems are typical MOPs as several objectives need to be considered
simultaneously. The principle of multi-objective optimization is introduced in Section
3.5 which also reviews classical methods for solving MOPs.

The insufficiency of classical methods gives rise to the research on MOGAs. A
general introduction to GAs is given in Section 4.1. This is followed by a more
detailed analysis of the design aspects of GAs. Subsequently, real-valued GAs are
presented for continuous parameter optimization. Section 4.4 is devoted to MOGAs.
First, the key elements of GAs for multi-objective search are discussed, then, a
MOGA is presented which makes use of non-dominated sorting, crowded
comparison, and controlled elitism techniques [Deb(2000a), Deb(2000b)]. Hence it is
called an elitist non-dominated sorting genetic algorithm (NSGA). Moreover, a new
approach is proposed for solving MOPs by integrating the search and decision making
processes. This approach, together with the NSGA, will be applied to the cell
planning problems.

In Chapter 5 disk graph models (DGMs) are introduced for the purpose of
investigating algorithms for cell planning problems. In Section 5.2 test problems for
cell selection model are presented and the elitist NSGA is applied. Various GA
parameters are investigated in order to improve the algorithm performance. In Section
5.3 real-valued GAs are applied to cell dimensioning problems, in comparison with
binary GAs. Afterwards, the BS placement problem is considered in Section 5.4. The
computational complexity makes this problem intractable. To overcome this problem,
a novel method termed hierarchical approach is presented in this work, aiming to
effectively reduce the computational time.

The methodology and algorithms presented in this work have been tested in real
design scenarios. Numerical experiments have been made on all the four cell planning
problems: cell selection, cell dimensioning, ABSPAD, and growth planning. First, a
description of the simulation environment is given in Section 6.1. Afterwards, in
Section 6.2, simulation results are presented and analyzed for each of the experiments.

Finally, Chapter 7 summarizes main contributions of this thesis and offers future
perspectives.






Chapter 2

Cell planning fundamentals

This chapter provides background material and techniques for cell planning in cellular
radio networks. We start with the conceptual basis of cellular system design. The
design objectives of cell planning are then specified, and a typical design process is
outlined. This is followed by a discussion about radio wave propagation in a mobile
communications environment in Section 2.2. Some widely used propagation models
are reviewed. Afterwards, we will discuss the basic design steps in the following
sections. Section 2.3 presents a probabilistic model to predict the cell coverage.
Section 2.4 gives a traffic estimation model and an algorithm to calculate the number
of traffic channels (TCHs). In Section 2.5 the interference probability between a pair
of cells is calculated. Based on the interference probability the compatibility matrix
can be obtained which will be used for the channel assignment. The channel
assignment problem (CAP) itself is considered in Section 2.6.

2.1 WHAT IS CELL PLANNING?

2.1.1 Elements of cellular system design

A cell is the area served by a base station transmitter, which is the basic geographical
unit of a cellular system. In practice, engineers draw hexagonal-shaped cells on a
layout to simplify the planning and design of a cellular system because it approaches a
circular shape that is the ideal coverage area of a base station [Lee(1989)]. In the real
world, however, each cell varies depending on the radio environment. Due to
constraints imposed by the natural and man-made terrain, the real shape of cells is
very irregular. Based on the size of cells, they can be classified as one of the
following three types:

Macrocells provides overall coverage, especially to fast-moving mobiles like those in
cars. The base station antenna is mounted above the surrounding buildings,
providing a cell radius from around 1 to 30 km.

Microcells are used in areas with high subscriber density such as urban and suburban
areas. Base station antennas are placed at an elevation of street lamps, so the
shape of microcells is defined by the street layout. The cell length is up to 2 km.
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Picocells are designed for very high mobile user density or high data rate applications,

typically in indoor environments. Base station antennas are below the rooftop or
at the elevation of bookshelves so the coverage is dictated by the shape and
characteristics of rooms and the service quality is affected by the presence of
furniture and people. The radius of picocells is between 10 and 200 m.

Table 2.1 summarizes the three types of cells [Geng(1998), Prasad(1998)].

Table 2.1 Different cell characteristics

Cell T itted
Cell type 'e ransmite Antenna height Use
radius™® power
Large area coverage
> 30 m, top of . ’
Macrocell | 1 ~30 km I~10W tall buildings support high-speed

mobiles

Microcell | 02 ~1km 0.01~1w  10mstreet  High subscriber
lamp elevation density areas
Ceiling/top of

Picocell <200m <100 mW bookshelves

Mainly for indoor

*  Cell radius is used to indicate the cell size, although the cell shape is not circular.

Traditional mobile systems were constructed in a fashion similar to radio or

television broadcasting: One very powerful transmitter located at the highest spot in

an area broadcasts in a radius of up to 50 kilometers. The cellular concept structures

the mobile telephone network in a spectral efficient way. Instead of using one

powerful transmitter, many low-power transmitters are placed throughout the service

area. For example, by dividing a metropolitan region into one hundred different areas

(cells) with low-power transmitters using 12 channels each, the system capacity

theoretically can be increased from 12 channels using one powerful transmitter to
1,200 channels using one hundred low-power transmitters. This means that the
number of channels per area is greatly increased. The cellular concept includes the

following basic elements:

Frequencies (channels) used in one cell can be reused in other cells some distance
away.

Conversations can be handed off between cells to maintain seamless service as
mobile users travel from cell to cell.

Variable power levels allow cells to be dimensioned according to the subscriber
density and service demand within a particular region.

As the demand for mobile services grows the system should be able to
accommodate that growth by subdividing a congested cell into smaller cells.
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In the following, these basic elements will be explained from the point of view of
cellular system design.

A Frequency reuse

Frequency reuse is the core concept of the cellular radio system, in which users in
different geographical locations (different cells) may simultaneously use the same
frequency channel (FCH). The frequency reuse concept can drastically increase the
spectral efficiency, but if the system is not properly designed, serious interference
may occur. Interference due to the common use of the same channel is called co-
channel interference (CCI) and is our major concern in cell planning.

Reuse distance D

Figure 2.1  Frequency reuse pattern. In this example, the cluster size is 7 i.e. each cell
uses 1/7 of the available FCHs. Cells with the same number have the same set of
channels. Each cell has six co-channel interfering cells in the first tier.

The set of frequencies available in the system is assigned to a group of cells
constituting a cluster as shown in Figure 2.1. Cells are assumed to have a regular
hexagonal shape and the number of cells per cluster determines the frequency reuse
pattern. Only certain reuse patterns can tessellate because of the hexagonal geometry.
The cluster size K (the number of cells per cluster) is given by
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K=i"+ij+j’ 2.1

where 7 and j are integers. Thus, the clusters can accommodate only certain numbers
of cellssuchas 3,4, 7,9, 12, 13, 16, 19, 21, and so on.

In a cellular system, when the size of each cell is approximately the same, CCI is
independent of the transmitted power and becomes a function of the cell radius R and
the distance between the nearest co-channel cells D. The ratio D/R, called the co-
channel reuse ratio, is related to the cluster size. In a hexagonal geometry it is found
that

D/R=43K . (2.2)

Obviously, a small cluster size provides a higher spectral efficiency that is defined as
the number of subscribers per FCH supported by the system. The fewer cells per
cluster, the larger the number of channels per cell and the more the reuse times of
channels. And thus more subscribers can be accommodated. In practice, however, the
cluster size is selected according to the requirement of the carrier-to-interference ratio
(C/I). Let n be the number of co-channel interfering cells, the C/I ratio at a mobile unit
can be expressed as

== (2.3)

where C is the carrier signal power and /; is the interference power caused by the ith
co-channel cell. It is demonstrated in [Rappaport(1996)] that the C/I ratio is directly
proportional to the cluster size K:

C_@IR _(BK) 2.4)
n

I n

where y is the path loss exponent, typically ranging from 2.7 to 4 for ground-to-
ground mobile communications. In a hexagonal cellular system there are six co-
channel interfering cells in the first tier (see Figure 2.1). The interference caused by
co-channel cells in the second and higher tiers can be neglected, thus n» = 6. Suppose
the path loss exponent y=4. If a C/I ratio of 21 dB is required for satisfactory channel
performance, i.e.

C_GBKY 6K’ 1 m (2.5)
222148, .

I n

we get K > 12. Therefore the 12-cell reuse pattern can be employed for maximum
spectral efficiency. This example indicates that the CCI determines the transmission
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quality, which in turn dictates the frequency reuse plan and the overall capacity of
cellular systems.

B Traffic engineering

A decisive factor in determining how many subscribers can share a mobile network is
the amount of traffic caused by each subscriber. The traffic per subscriber is defined
by the call rate and average duration of a call. Because the call rate is measured in
calls/second and call duration is in seconds/call, the traffic is a dimensionless quantity
that, however, is given in units of Erlang. Since the traffic fluctuates with the time of
day and the day of the week or year, a cellular system is usually dimensioned for the
busiest hour, the so-called busy hour. Providing the average conversation time is 7'
seconds and the number of calls per subscriber at the busy hour is A, the traffic
offered by an average subscriber is

A-T
a = —— FErlang. 2.6
3600 8 2.6)

This can be interpreted as the fraction of time that each user occupies a channel.

The maximal traffic load that can be carried by a cell with » channels depends on
how the system handles the calls when the n channels are fully occupied. There are
three major blocking formulas [Minoli(1993)]:

Poisson: Blocked calls will wait no longer than their average holding time. If a
channel becomes idle before the holding time expires, the call will seize it and
use it for the remaining part or duration of its holding time.

Erlang B: Blocked calls are not willing to wait, and abandon the call attempt
immediately. The user is not making another call attempt.

Erlang C: Blocked calls wait an indefinite time to obtain a channel.

A common practice in the cellular industry is to assume a loss system (all blocked
calls are cleared), when evaluating the amount of traffic that can be serviced while
keeping the blocking probability at or below a certain level e.g. 2%. Therefore the
Erlang B formula is often used for this purpose, which is expressed as

Al’l

n!
n Al

Ppiock = (2.7)

It describes the relationship between three variables: the blocking probability Ppiocs
the traffic load 4 (in Erlang), and the number of channels #n. Obviously, the blocking



12 CHAPTER 2. CELL PLANNING FUNDAMENTALS

probability increases with the traffic load and decreases with the number of channels,
as shown graphically in Figure 2.2. Because of its importance, the formula has been
widely tabulated. Readers are referred to [Lee(1989)] for a complete Erlang B table.
By knowing any two of the three variables (4, n, and Pj;,cx), one can derive the third.

If the number of channels and the maximum allowed blocking probability are
known, the traffic capacity of a cell can be determined, say A4; Erlang. Providing there
are N cells in a cellular system, the system capacity is then

N
A= ZA,- Erlang. (2.8)
i=1

And thus, the number of subscribers that can be supported during the busy hour is

M=A4la. (2.9)

n=7

E‘O'S I n=14
5 n=22
@®
2 06 r
e n=29
o
=2 n=37
-_% 04 ~
5 n=44
@ 02 * n=>52

/ n=>59

0 =t 1
0 10 20 30 40 50 60

Traffic in Erlang

Figure 2.2  Erlang B curves. Each curve is marked with the number of channels.

C  Handoff

Handoft, also called handover, is a process to transfer an ongoing call from one cell to
an adjacent cell as a mobile user approaches the cell boundary. Handoffs must be
performed successfully, be imperceptible to the users, and as infrequently as possible.
In order to meet these requirements, the following design factors must be considered
in cell planning:

e The cellular system must be designed in such a way that there are adequate
overlapping area between cells.
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In high traffic density areas where microcells are normally used, high speed users
may suffer many handoffs. This situation can be improved by employing the so-
called umbrella cells [Rappaport(1996)], and thus a hierarchical cellular system is
constructed.

A handoff is initiated when the received signal strength reaches the threshold for
handoff Pj, which is higher than the minimum usable signal strength P,,;, for
acceptable voice quality. The handoff margin, given by Az, = Ppo = Ppin, must be
carefully chosen. If A, is large, many unnecessary handoffs may occur simply
because the handoffs are taken too early. If A, is small, there may be insufficient
time to complete a handoff before a call is lost due to weak signal conditions. It is
evident that the handoff margin gives influence on the coverage and capacity of
cells. This will be discussed in Subsection 2.3.2.

Cell splitting and sectoring

There are two kinds of cell splitting: coverage-oriented splitting and capacity-oriented
splitting. Figure 2.3(a) illustrates the coverage-oriented cell splitting in which four
new cells are placed in the vicinity of the original cell. The radius of the new cells is
the same as that of the original cell, and the coverage increases by a factor of

2 2
4R” +27R
= =507, (2.10)
7R
Original cell Original cell

I/, //A\\ \\
; ; /
\ !

\ - ~_ /

/&\ <\
/I = N
' ‘u
“\ N /

\\\ /\/<i ////

(a) Coverage-oriented cell splitting (b) Capacity-oriented cell splitting

Figure 2.3  Coverage-oriented cell splitting and capacity-oriented cell splitting. In (a)
the radius of new cells is the same as that of the original cell. The new cells cover a
larger area. In (b) the radius of new cells is half of the original cell. The traffic capacity

increases.

This cell splitting technique can be used if the coverage area needs to be increased.
The second is capacity-oriented cell splitting, see Figure 2.3(b). A cell is split into
smaller cells, each having the same number of channels as the original large cell.
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Suppose the splitting is executed in such a way that the radius of the new cells is half
of the original cell. To cover the complete area of the original cell at least four new
cells are needed. Thus, the traffic capacity increases by four times. For the new cells
to be smaller in size, the transmitted power P, of these cells must be reduced by 12 dB
[Lee(1993)] i.e.

P/ =P, —12dB. 2.11)

Another way to increase capacity is to keep the cell radius unchanged and
decrease the cluster size as well as the co-channel reuse ratio D/R. From the above
discussion it is clear that the CCI determines the cluster size, and thus the frequency
reuse plan of cellular systems. The CCI may be reduced by replacing a single omni-
directional antenna at the base station by several directional antennas. This technique
is called sectoring. A cell is normally partitioned into three 120° sectors or six 60°
sectors. In [Lee(1998)], it is demonstrated that the C/I improvement of sectoring for
three sectors per cell is 3.16 dB.

As described before, a cluster size of 12 should be used for the required C/I ratio
of 21 dB. If there are, e.g., 396 channels, each cell may have 33 channels. Assume
that the maximum allowed blocking probability is 1%. From the Erlang B table, it can
be found that each cell may accommodate 22.9 Erlang traffic for an omni-directional
antenna system. For a three-sector system, the cluster size of 7 can be used as C/I =
(3x7)*/ 6 +3.16 dB =21.82 dB > 21 dB. There are about 57 channels per cell and 19
channels per sector. For the same blocking probability, it can be found that each
sector can handle 11.2 Erlang traffic, giving a cell capacity of 33.6 Erlang. The
capacity increases by a factor of 33.6/22.9 = 1.47.

2.1.2 Objectives of cell planning

One important goal when planning a cellular system is to achieve a high spectral
efficiency. In other words, we want that a large number of subscribers per square
kilometer would be able to use the system while maintaining an acceptable grade of
service (GOSI) and minimizing the system cost. This includes the following aspects:

Coverage. The radio signal coverage must be guaranteed. The received signal
strength must always be higher than a threshold according to the receiver
sensitivity, and holes in the coverage area should be avoided.

Capacity. In each cell, a sufficient number of channels must be available in order to
meet its traffic demand for new calls and handoffs. Usually, handoffs should be
given a priority. An acceptable GOS must be maintained for the whole system.

' GOS is a measure of congestion which is specified as the blocking probability (for Erlang B), or the
probability of a call being delayed beyond a certain time (for Erlang C).
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Transmission quality. The C/I ratio of radio channels must satisfy the requirement of
transmission quality. The compatibility matrix used for channel assignment
specifies the restrictions for channel separation that guarantees the required
signal quality.

Cost. Since the cost and complexity of a mobile network is closely related to base
stations (BSs), the number of BSs must be minimized so as to reduce the cost
and the time of system deployment. Furthermore, it is essential to use the
spectrum efficiently.

System growth capability. Cell planning is an endless task because the demand for
mobile services keeps growing. New cells are needed to accommodate that
growth. The new deployed cells must be integrated with the existing
infrastructure. This usually means that the cell design should fit some
coordination requirements. It is also required for the evolution to new
generation systems.

These design objectives are all reflected in cell planning which is one of the basic
steps to take when a cellular system is to be implemented.

2.1.3 Design process

Figure 2.4 shows the typical workflow of cellular system design. The traffic demand
i.e. how many subscribers will join the mobile system and how much traffic they will
generate, provides the basis for all the cellular network engineering. The geographical
distribution of traffic demand can be estimated by using demographic data such as the
population distribution, land usage, income level, and other factors.

Traffic Coverage prediction Site survey &
estimation - J measurement

Capacity prediction*

Initial cell System
plan . \ optimization
Interference analysis

Channel assignment

[

Figure 2.4  Cellular system design workflow.
*  Capacity prediction may be skipped in some cases.
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The initial cell plan gives a preliminary structure of the cellular system based on
available sites of the network operator, called friendly sites. Besides, the traffic
distribution is taken into account for specifying the BS configuration. For example, a
BS at a rural site may have 3 sectors and 2 transceivers (TRXs), whereas an urban BS
may have 3 sectors and 6 TRXs. The design principles presented in Subsection 2.1.1
can be used in this step.

Next, the field strength is calculated for each cell. Since radio propagation is
affected by the terrain profile as well as the land usage type, e.g., the building
structure and vegetation type, the topographical data and morphological data of the
service area should be used for field strength prediction. The following steps
including the coverage prediction, capacity prediction, interference analysis, and
channel assignment are all based on the field strength prediction. These steps will be
discussed in detail from Section 2.3 to Section 2.6.

In order to get accurate radio coverage prediction and information about the
signal quality, site surveys and field measurements should be performed. Each BS site
must be visited in order to determine whether to accept it, or reject it and find a new
one.

System optimization means analyzing the extensive measured data from an
operating network in order to tune the system parameters so that the service quality of
the whole system can be improved. For instance, add FCHs to cells if they are often
congested, and reduce the number of channels in cells with lower traffic than
expected.

2.2 RADIO WAVE PROPAGATION ASPECTS OF CELL PLANNING

A profound knowledge of the radio wave propagation or the radio channel
characteristics is a prerequisite to achieving an optimum system design. In this
section, an overview is presented on several propagation models that are widely used
in practice. More detailed discussions of wave propagation models can be found in
[Steele(1992), Rappaport(1996), Geng(1998), Saunders(1999), Catedra(1999)].

Modeling the radio channel is one of the most difficult parts of mobile system
design. Hence, worldwide research activities have been done to develop propagation
models which aim at providing an accurate estimation of the mean received power or
path loss (PL) for a specified frequency band based on more or less detailed
geographical information about the environment. According to their nature, the
propagation models can be classified as empirical, semi-empirical (or semi-
deterministic), and deterministic models [Fleury(1996), COST 231(1999)].

Empirical models are described by equations or curves derived from statistical
analysis of a large number of measured data. These models are simple and do
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not require detailed information about the environment. They are also easy and
fast to apply because the estimation is usually obtained from closed expressions.
However, they can not provide a very accurate estimation of the path loss.

Deterministic models are calculation methods which physically simulate the
propagation of radio waves. Therefore the effect of the environment on the
propagation parameters can be taken into account more accurately than in
empirical models. Another advantage is that deterministic models provide a
prediction for the wideband characteristics of radio channels, which could be
used as system performance criteria instead of (or in addition to) the signal
strength. Most of the deterministic models are based on ray-optical modeling
approaches [Lebherz(1992), Kiirner(1993), Cichon(1994), Didascalou(2000)].
The serious drawback of deterministic methods is the computational
complexity.

Semi-deterministic models result from an empirical modification of deterministic
models in order to improve the agreement with measurements. These methods
require more detailed information about the environment than the empirical
methods but not as much as the deterministic models. They are relatively easy
and fast to apply because the results are obtained from closed expressions in a
similar way to the empirical models.

For the practical application of propagation models there is an important tradeoff
between the accuracy of the prediction and the speed with which the prediction can be
made. In general, there is a relationship between these three types of models and the
types of cells for which they are suitable. Due to their inherent empirical nature, the
empirical and semi-deterministic models are suitable for macrocells. The semi-
deterministic models are also suitable for homogeneous microcells where the
parameters considered by the method characterize the whole scenario well. The
deterministic models are suitable for microcells and picocells independently of their
shapes, but they are not adequate for macrocells because the CPU time required in
such environments makes these methods impractical.

2.2.1 Macrocell propagation models

In macrocells, it is important to predict the average received signal strength at a given
location. Usually radio transmission takes place over irregular terrain. The terrain
profile of a particular area, as well as the presence of trees, buildings, and other
obstacles, must be taken into account for estimating the path loss. The data needed to
describe such environments would be very large and the computational effort
involved would be excessive. As a result, empirical models are widely used for
propagation prediction in macrocells because these models have the advantage of
implicitly taking account of all propagation factors, both known and unknown,
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through actual field measurements.

Among numerous propagation models, the Okumura-Hata model is considered to
be one of the most significant. It is a fully empirical model developed on the basis of
an extensive series of measurements in urban environments. Hata presented a standard
formula in [Hata(1980)], which has been extended to cover the frequency range above
1500 MHz by COST 231 study group of the European Cooperation in the Field of
Scientific and Technical Research [COST 231(1991)]. The general path loss formula
of the model is

Ljara = @) + ay log(f) —13.821log(hpg) + [44.9 — 6.5510g(hpg ) [log(d) — L,y
(2.12)

where

Lya, - Path loss in dB;

f: Frequency in MHz (150 MHz < /<2000 MHz);

hps . Effective BS antenna height2 in meters (30 m < /s <200 m);

d: Distance between BS and the mobile in kilometers (1 km < d < 20 km);

a =69.55 for 150 MHz < /< 1500 MHz
=46.3 for 1500 MHz < <2000 MHz;
a =26.16 for 150 MHz < /<1500 MHz

=33.9  for 1500 MHz < <2000 MHz.

L, 1s the mobile antenna height correction given by

Ly, =3.210g2 (11.75 - hyyppise) — 4.97 (2.13)

where /081 1S the mobile antenna height in meters (1 m < A0pi. < 10 m).

Equation (2.12) is formulated for flat terrain in urban environments. Corrections
have to be applied for hilly terrain and other land usage types (i.e., morpho classes)
such as suburban, forest, and open area. Thus the path loss is calculated as

Linacro = LHata + Ldiff - Lmorpho . (2.14)

Ly is the diffraction attenuation in dB, which is caused by obstacles in the
propagation path. Various algorithms are implemented to calculate it. Among them,
Epstein-Peterson model [Epstein(1953)] and Deygout model [Deygout(1966)] are
commonly used. Lyopno 1S the morpho correction in dB. In practice, a map containing
detailed morphological information should be wused. The correction factor
corresponding to each morpho class is obtained from measurement data. A table of

% The effective BS antenna height is measured with reference to the mean height above sea level along
the terrain profile in range between 3 km and 15 km from BS.
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morpho correction factors is given in Chapter 6.

2.2.2 Microcell propagation models

Experimental observations reveal that in microcells the path loss as a function of the
distance between the transmitter and receiver is well described by a power law with
the exponent close to two up to a distance called “breakpoint”. Beyond this breakpoint
a power decay with a considerably larger exponent (» 4~5) is observed [Green
(1990)]. In this case the path loss is modeled as

Ll +10}/1 log(d), dﬁdb
Lonicro = { (2.15)

| Ly +10y, log(dp) + 10y, log(d /dp),  d > dy,.

This is known as the dual-slope model. L, is the reference path loss at d =1 m, dj is
the breakpoint distance given by

where hps and hyep. are BS and mobile antenna heights, respectively. A is the
wavelength. Typical values of the exponents are found by measurements to be around
7 =2 and » = 4, with breakpoint distances of 200~500 m. In order to plan the sites of
microcells effectively, it is important to ensure that co-channel cells have coverage
areas which do not overlap within the breakpoint distance.

A Two-dimensional models

For microcells the BS antennas can be above, below, or at the same level as the
surrounding buildings. Usually, two situations are distinguished according to the
relative locations of the transmitter and receiver: line-of-sight (LOS) in case of no
obstacles in the propagation path, otherwise non-line-of-sight (NLOS).

The COST 231-Walfisch-Ikegami model [COST 231(1999)] provides good
results in situations where wave propagation above rooftops is dominant. This semi-
deterministic model takes account of statistical parameters describing the character of
urban environments, including the average building height #4,,,, the average building
separation b, the street width w, and the street orientation ¢ with respect to the
propagation path. The path loss is calculated as

L., for LOS
Ly = (2.17)

LO + Lrsd + Lmsd , for NLOS.

Ly is the propagation loss due to the street canyon phenomenon, see [Déttling(1997)].
It is calculated as
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Ly, =42.6+20log(f)+26log(d) (2.18)

where f is the frequency in MHz, d is the distance between the transmitter and
receiver in kilometers. Ly is the free space loss defined as

Lo =32.44+20log(f) +20log(d) . (2.19)

L,y 1s the loss due to the diffraction and scattering from the rooftops of adjacent
buildings to the street, and L, accounts for the multiple screen diffraction along
rooftops. L,s; is given by

L,.oq =-16.9+10log(f)—10log(w) +201og(Ah,,0pite) + Lori (2.20)

where w is the width (in meters) of the street where the mobile user is. Ak,opie 1S the
difference between the average height of the buildings and the mobile antenna height
in meters i.e. Ahuopite = Hroof = Pmobite, and Lo, 1s a function of the street orientation ¢ .

~10+0.354- ¢, 0° < ¢ < 35°
Lyyi =42.5+0.075- (¢ —35), 35° < @ < 55° 2.21)
4+0.114- (¢ —55), 55° < @ < 90°.

Finally, the multiple screen diffraction loss L,; is given by

Lynsa = Lpgh + kq + kg log(d) + k ¢ log(f) —9log(b) (2.22)

where b is the average building separation. L,g, is the BS antenna height correction
with Ahgs = hps - /’lmaf.

—18log(1+ Ahpg), hps >h
bsh = {0 h < hraaf (223)
s BS = "roof -
The other empirical correction factors are given as follows:
54, hBS > hroof
k, =154-0.8-Ahpg, hps < hpoor. d20.5km (2.24)
d
54—0.8'AhBS 'E, hBS Shroofb d < 0.5km.
18, hBS > hroof
= A
ka=q1g-152088 o< (2.25)
hroof ‘
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kp=—4+ a(— - 1) : (2.26)

a is 1.5 if the mobile is in metropolitan centers, otherwise a is 0.7.

The COST 231-Walfisch-Ikegami model is valid for the following ranges: 800
MHz < f<2000 MHz, 4 m < hgg <50 m, 1 m < Ayopie <3 m, 0.02 km < d < 5 km.
This model exclusively considers the propagation in the vertical plane.

Two-dimensional (2D) models considering the propagation in the horizontal
plane have been proposed for the case where the antenna height is below the rooftops
and the building height is assumed to be infinite. The propagation paths are
determined by means of the ray-tracing method. The path loss is computed either with
the uniform geometrical theory of diffraction (UTD) [Wiart(1993)], by placing virtual
sources at the building corners [Wagen(1993)], or by using the free space propagation
model with a hypothetical distance recursively determined as a function of the number
of street intersections along the paths [Berg(1995)].

B Three-dimensional models

Three-dimensional (3D) models are proposed for an arbitrary antenna height, e.g., the
3D-URBAN-MICRO model developed at IHE, the University of Karlsruhe
[Kiirner(1993), Cichon(1994)]. This model takes account of the propagation paths in
both the vertical and the transverse plane. Multiple knife-edge diffraction effects are
evaluated by successively computing single knife-edge diffraction based on the UTD.
Additional 3D propagation paths via scattering at ground and building walls are
separately regarded. A modified Kirchhoff Method with a scalar approximation is
applied for surface scattering calculations.

2.2.3 Indoor propagation models

It has been observed that propagation within buildings is strongly influenced by
specific features such as the layout of the building, construction materials, and the
building type [COST 231(1999)]. An empirical method that considers the attenuation
through the individual walls and floors is given by

w
Lindoor = Lo +Lc + Z Ry Lyyi + (nf)e Ly (2.27)
i=1
where
Ly:  Free space loss between the transmitter and receiver;

Lo Constant loss;
W:  Number of wall types;
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ny; :  Number of penetrated walls of type i;
L,;: Penetration loss through a wall of type i;
ne:  Number of penetrated floors;

L;: Loss between adjacent floors;

e = (ns+ 2)/(ns+ 1) — k, where k is a constant.

Lc and k& must be determined empirically. Some recommended values at 1800 MHz
are [Catedra(1999)]: L, = 3.4 dB for light walls, L,,» = 6.9 dB for heavy walls, Ly =
18.3 dB and £ = 0.46.

Indoor radio propagation is dominated by the same mechanisms as outdoor. Ray-
tracing and the geometrical theory of diffraction (GTD) have been applied for indoor
propagation prediction. These deterministic methods can be used for site-specific
predictions, provided that sufficient details of the building geometry and materials are
available. However, there are limitations in using such methods for practical picocell
planning due to the difficulty of obtaining and using sufficiently accurate physical
data. In addition, the influence of furniture and the movement of people can have a
significant (and time-varying) effect on signal coverage. Therefore, the combination
of deterministic modeling with statistical measurements is expected to be more
practical for the prediction of indoor radio propagation [Zwick(2000)].

2.3 COVERAGE PREDICTION

A proper description of cell shapes is important for many design processes, e.g.
coverage and capacity prediction, interference analysis, and channel assignment.
Nominal cell descriptions assume hexagonal cell shapes. The hexagonal cells are
based on the assumption of isotropic propagation conditions and a regular distribution
of base stations. These assumptions are generally not fulfilled in real radio networks.
This section presents a probabilistic model to describe the realistic cell shapes based
on path loss prediction.

2.3.1 Coverage probability

Providing the service area is digitized as mxn pixels and the pixel size is AxxAy. The
values of Ax and Ay depend on the accuracy of available maps. Each pixel can be
viewed as a mobile location, which is denoted by (x, y), x € [1, m] and y € [1, n]. The
local mean received power P, (in dB) i.e. field strength at a specific location can be
calculated as

Pr=P+G,+G,-L, (2.28)

where P; is the transmitted power. G, and G, are the transmitter and receiver antenna
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gains, respectively. L, is the path loss that can be predicted using a suitable
propagation model. A location is considered to be covered by a cell if the received
power level is higher than a given threshold. Due to the random shadowing effects,
however, the actual received power P, is a Gaussian distributed random variable
around the mean value P, with standard deviation o Typically in an urban
environment o= § dB. It could be any value between 4 dB and 12 dB, depending on
the actual surroundings. The distribution of P, is therefore described as the Gaussian
(normal) probability density function (pdf)

1 —(x=Pr)?

(2.29)

The probability that the field strength received from a transmitter is higher than a
particular value @1is the integral of the pdf over the range (6, «), expressed as

PP, >0} = [g(x)dx
o

D 2
—x=Pr) de (2.30)

<
= ex
(9J.«/27z0 p[ 252

{2

where Q(z) is the so-called Q-function defined as

1 % x2
0(z) = N Jexp[—jldx. (2.31)
Obviously,
0(z) =1-0(-2). (2.32)

The coverage probability i.e. the probability of a location (x, y) being covered by
a cell ¢;, is then given by

(2.33)

PCOv (X, Y, Ci) = Q(w]

where 6 represents the desired received power threshold and Fi(x, y) is the predicted
field strength i.e. P .

Figure 2.5 shows an example of the coverage probability calculation of a single
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cell. The field strength shown in Figure 2.5(a) is predicted by using the COST 231-
Okumura-Hata model. The dark area in Figure 2.5(b), in which the field strength is
below the given threshold, is taken as the uncovered area according to the simple
threshold method. The coverage prediction based on the probabilistic model is shown
in Figure 2.5(c). The probability of each pixel is calculated by applying (2.33) with 8

=-92 dBm and o= 6 dB. Because of the radio signal characteristics, the boundary of

cells is not crisp. Therefore, the probabilistic model gives a more realistic description
of the cell shape.

I -255

(a) Field strength calculated by using Fielciﬂsstrength (b) Covered area with the field
the COST 23 1-Okumura-Hata model (dBm) strength higher than -92 dBm
1 100 %
0%
Probability

(c) Coverage probability

Figure 2.5 An example of the coverage probability calculation of a single cell. (a)
shows the field strength in the whole area (30x30 km?). In (b) a simple threshold method
is used. The dark area in which the field strength is below the given threshold is taken as
uncovered area. In (c) the coverage probability is calculated with & =-92 dBm and o =
6 dB. A pixel with higher field strength has larger coverage probability.
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2.3.2 Assignment probability

Traditionally the coverage areas are assigned to cells using the best server model. This
model is based on the field strength prediction. It assigns a mobile location to a cell
that provides the strongest signal. The drawback of this model is that a dedicated
assignment of each location to a single cell is assumed i.e. overlapping of cells is
neglected. A more advanced method is to assign a location to a cell with a certain
probability, considering the handoff between cells.

The assignment probability is defined as the probability of a mobile unit at (x, y)
being served by a cell ¢;. In principle, it is calculated according to the signal strength
received from c; relative to the strongest signal strength at (x, y) i.e.

Fpa (. 9) =mlax{Fi<x,y>}. (2.34)

Handoff strategies influence the assignment of a mobile to cells [Kiirner(1998)]. Cells
from which the signal strength plus the handoff margin A, is still less than the
strongest signal strength i.e.

Fi(%,9) < Fygye (X, 9) = Appg s (2.35)

will be discarded. The assignment probability of the discarded cells is 0. This means
that these cells can not serve a mobile unit at the location (x, y). The assignment
probability of each of the remaining cells is calculated as

Fi(x,¥) = Fppax (X, ) + A,

Pass (%, 3,¢;) = =5 (2.36)

Z(Fj(xay)_Fmax(xay)+Ah0)
=1

where N'is the number of remaining cells.

Figure 2.6 shows a cellular system containing three cells. The field strength of
these cells are shown in Figure 2.6(a), (b), and (c), respectively. The best server
coverage is shown in Figure 2.6(d), where a pixel is exclusively assigned to only one
cell. Consequently the coverage area breaks into fragments. As seen in the figure,
there are numerous small holes in the coverage area. This means that frequent
handoffs are inevitable when the mobile user moves. Fortunately, this is not the case
in reality because the handoff margin is considered. Therefore, a mobile unit in the
coverage area could be served by one of several cells if they overlap each other. The
assignment probability is calculated pixelwise by applying (2.35) and (2.36) with A,
= 5 dB. The results are shown in Figure 2.6(¢), (f), and (g) for each cell
correspondingly. The assignment probability also indicates that the boundary of cells
is not crisp.
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-255

(a) Field strength of ¢, Field strength
(dBm)

i ; PP I LR L .
i b § A,
o # e,

(c) Field strength of c;

Coverage of ¢;

Coverage of ¢,

Coverage of c3

Uncovered area

(d) Best server coverage
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100 %

0%

(e) Assignment probability of ¢, Probability

(f) Assignment probability of ¢, (g) Assignment probability of ¢3

Figure 2.6 An example of the assignment probability calculation. (a), (b), and (c)
show the field strength of cells ¢y, ¢,, and c;, respectively. The result of the coverage
prediction based on the best server model is shown in (d). The assignment probability is
calculated with A, = 5 dB. Results are shown in (e) - (g).

In the preceding section, we use the coverage probability to define the area
covered by a single cell. Besides, the assignment probability presented in this section
is useful for a set of cells. This probabilistic model gives a realistic description of the
cell shapes. Next we will use this model to predict the cell coverage. The coverage of
a cell ¢; is calculated as the sum of the pixels covered by it i.e.

m n
Agrea(ci) = z ZPcov(x,y,ci)-Pass(x,y,ci)-Ax-Ay. (2.37)
x=ly=1
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There are mxn pixels and the pixel size is AxxAy. Each pixel is weighted by the
coverage probability P (x, ¥, ¢;) and assignment probability P,(x, y, ¢;). In case
there is only one cell, the assignment probability is set to be 1 for every pixel.

2.4 TRAFFIC CAPACITY

2.4.1 Traffic estimation

As discussed in Subsection 2.1.3, traffic estimation is a basic step of cellular system
design. The primary task of cell planning is to locate and configure transmission
facilities i.e. BSs in the service area. These facilities should be located close to the
expected traffic in order to increase system efficiency. A traffic model that describes
the traffic distribution as observed from the nonmoving network elements e.g. BSs
and switches, is required to estimate the spatial extended traffic demand. In
[Tutschku(1998)], a simple linear model is presented for this purpose.

The traffic density z")(x, y) (in Erlang/kmz) represents the amount of traffic
caused in a unit area at time ¢. It is usually defined on a 2D grid with a pixel size of
AxxAy. The values of Ax and Ay are the same as those used for coverage prediction.

O (x,y) = A (x,9)-T (2.38)

where ﬂ(’)(x, ) is the number of call attempts in a unit area element at location (x, )
during time interval (#, t+Ar). T is the mean call duration. In practice, it is almost
impossible to directly calculate the call attempts /I(t)(x, y). The traffic density therefore
has to be derived from measurements of a real network. Generally, the mobile system
must be dimensioned to offer a minimum GOS (i.e. blocking probability) during the
busy hour. Consequently, we assume that all figures and equations refer to the busy
hour traffic and thus the time-varying traffic model is reduced to a stationary model
describing the peak traffic.

The spatial traffic distribution heavily depends on the morphological and
demographic factors like population, vehicular traffic, income per capita, and so on.
Providing morphological information of the service area is available, the whole area is
divided into clusters such that each cluster is composed of the adjacent pixels with the
same morpho class (e.g. urban, suburban, rural). To estimate the traffic demand, a
linear prediction model is applied for every cluster ;.

Ej= Y g+ (2.39)

all factors i

where E; represents the Erlang value of cluster j. & is the cluster type i.e. morpho
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class. Assume that the area of clusterj is.S;, then

T, =Cy S] (240)

is the primary traffic load based on the cluster type and size, and
Mij =big-x; (2.41)

is the expected traffic resulting from factor i under the circumstances of morpho class
k. x; is the quantity of the factor i, e.g. the population of a city or vehicular traffic of a
highway. The parameters b;; and ¢, can be determined by training this linear model
using measured data from an operating network. Finally, the traffic density in cluster j
is derived as

(53) = (2.42)
(x,y)=—. .
S

By applying the linear model i.e. equations from (2.39) to (2.42), in the service
area, we can obtain a 2D traffic density matrix that describes the spatial traffic
distribution. The proposed model appears to be simple. However, due to its structure
this model can be adapted to the proper parameters. This capability enables its
application for mobile network design.

Obviously, the total traffic inside the service area is expected to be

m n
Ar =) > 1(x,y)- Ax-Ay. (2.43)
x=ly=1

And the traffic coverage of a cell ¢; is calculated as the sum of the estimated traffic
offered to this cell i.e.

m n
Atrff(ci) = Z ZPcov(xayaci) Puss (X, 3,¢;) - 7(x,y) - Ax - Ay (2.44)
x=ly=1

where 7(x, y) is the traffic density at location (x, y), weighted by the coverage
probability P (x, ¥, ¢;) and assignment probability P,(x, v, ¢;) which are defined in
(2.33) and (2.36), respectively. In case of a uniform traffic distribution, the traffic
density #(x, y) = 1, thus the traffic coverage is equivalent to the area coverage, i.e.
Ayfci) = Aarea(Ci), se€ (2.37).

2.4.2 The number of channels required

The amount of traffic offered to a cell may not be equal to the traffic carried by the
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cell. Some of the traffic may be blocked (or potentially delayed). The Erlang B
formula, see (2.7), describes the blocking probability Py as a function of the traffic
load 4 (in Erlang) and the number of traffic channels »n. A traffic channel (TCH) is a
logical channel over which the information is exchanged between mobile users during
a connection.

For every cell, the blocking probability must be lower than an acceptable level in
order to guarantee the desired GOS of the cellular system. If the traffic offered to a
cell is known, the blocking probability is then a function of the number of channels 7.
From (2.7) we get

A~ Pyrpex (n=1)
A+ Ppjoek (n=1+n

Pprock (n) = (2.45)

It is clear that Pp,q(0) = 1. Therefore, the blocking probability can be calculated by
iteratively applying (2.45).

In cellular system design, it is more useful to determine the number of TCHs
required to achieve the desired GOS. Based on (2.45), an iterative algorithm can be
applied to calculate the number of channels required by a cell with certain amount of
traffic. The algorithm is described as follows:

Algorithm 2.1 (Number of traffic channels)

Input: A —The traffic in Erlang
P, —Maximum allowed blocking probability

Output: ~ The number of channels »

Step 1 (Initialization):
Setn=0and p=1.0

Step 2 (Iteration):
While p > P, do
1) n=n+1;
2) Calculate the blocking probability p = A- p/(A4- p + n).

This algorithm is quite efficient because it is not necessary to calculate the factorial ».
Just imagine how large 100! would be, i.e. completely impractical.

2.4.3 Demand vector

The number of TCHs is not equal to the number of FCHs. Usually a frequency band is
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divided into a number of channels by frequency division multiple access (FDMA),
and a FCH may be shared by multiple users with a certain access scheme such as time
division multiple access (TDMA) or code division multiple access (CDMA). The
GSM system for example uses TDMA. Each FCH is divided into eight timeslots to
enable eight simultaneous communications between users i.e. each FCH can provide a
maximum of eight TCHs. Besides, control channels (CCHs) are needed to transmit
the system control signal. Table 2.2 gives the required number of CCHs
corresponding to a given number of TCHs. The number of FCHs is simply determined
by the fact that each channel can hold eight timeslots, regardless whether they carry
traffic or control signal i.e.

n +n
nEcy = {—T i 5 ccn 1 (2.46)
where nrcp, nrcn, and necy are the number of FCHs, TCHs, and CCHs, respectively.
The operation [x ] makes a real value x to be rounded up to the closest larger integer
value.

Table 2.2 The numbers of CCHs and FCHs corresponding to the number of TCHs

Number of channels required

Traffic channels* Control channels Frequency channels

1~7 1 1

8§~14 2 2
15~22 2 3
23 ~29 3 4
30 ~37 3 5
38~44 4 6
45 ~52 4 7
53~59 5 8

* If more than 59 TCHs are required, the number of CCHs is set to 5 and the number of
FCHs is calculated as 8 timeslots per frequency.

In the following, a vector W is used to represent the number of FCHs required by
a set of cells:

W = (W, W Wy) (2.47)

where N is the number of cells. 7 is called the demand vector that will be used in the
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channel assignment procedure.

2.5 INTERFERENCE ANALYSIS

The next step is to assign a sufficient number of FCHs to each cell. Before assigning
channels an interference analysis must be done because the interference resulting
from frequency reuse is the major concern in cell planning. A large number of
references can be found in the literature for detailed discussions about the interference
in cellular systems [Lee(1993), Prasad(1993), Perez(1998)]. This section is concerned
with the mutual interference calculation in order to determine the necessary channel
separation between each pair of cells.

Protection ratio

Carried signal strength Interfering signal strength

Coverage area with
one interferer

Coverage area
with noise only

Figure 2.7 Mutual interference between two cells (adapted from [Quellmalz(1993)]).

2.5.1 Mutual interference

Mutual interference is calculated for a pair of cells: the serving cell and interfering
cell. The interference between two cells is illustrated in Figure 2.7. For each pixel (x,
y) in the calculation area, the actual C/I ratio is calculated based on the field strength
prediction. Assume that the received power at (x, y) is Fi(x, y) for the serving cell ¢;
and Fj(x, y) for the interfering cell ¢;, the C/I ratio of these two cells is given by
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Ci/1;(x,y) = Fi(x,y) = Fj(x. ). (2.48)

The CCI probability at this pixel is then calculated as

(2.49)

Cill;j(x.y)=0c/ |
Pco(x,y,c,-,cj)=1—erf[l J\/EO'

where G- is the threshold for C/I ratio in dB and o is the standard deviation of the
received signal power. erf(z) is the error function defined as

erf(z) = % Jexp(-x?)ex . (2.50)
0

On adjacent channels, the interfering power level is attenuated by an additional
loss due to the filter characteristics of the receiver. Assume that the filter has a slope
of p dB/oct, and that the bandwidth of each channel is f3. If the frequency difference
between two adjacent channels is Ay, the 4-th adjacent channel attenuation is given by
[Lee(1993)]

kA
L(k)=£log[ fj,k= 1,2,3, .. (2.51)
03 2\ fz

k is just the channel separation. Table 2.3 gives some values of the channel separation
for GSM900 system, k£ = 0 is considered for co-channel usage. Providing p = 6
dB/oct, f3 = 25 kHz, and A= 200 kHz, then the first adjacent channel attenuation is

6 200
L) =2 xloof 22V | = 1848, 252
M 0.3“‘{25) 2:52)

Table 2.3 The values of the channel separation

. Frequency difference* Protection ratio
Channel separation
(kHz) (dB)
0 0 9
1 200 -9
2 400 -41
3 600 -49

* The values of frequency difference are specified for GSM900, see [ETSI
05.05(2000)].
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Since the protection ratio is very small if the channel separation is greater than 3, the
adjacent channel interference (ACI) can be neglected for £ > 3. Therefore, the
interference probabilities at the pixel (x, y) for channel separations from 1 to 3 are
calculated as

C. /1 L(k)-6
Pk(x,y,cl-,cj)zl—erf[ ’ f(x’yi/ga() C”j, kell, 3] (2.53)

After the interference probabilities are calculated for each pixel in the calculation
area, the average CCI probability and ACI probabilities can be expressed as follows:

m n
Z ZPco(xayaciacj)'Pcov(xayaci)'Pass(xayaci)'Ax'Ay
x=ly=1

INERDE y e . (254
area\Cj
m n
Zsz(xoyvciacj)'Pcov(x:y:ci)'Pass(xay:ci)'Ax'Ay
- =1
Pi(cici) == .k ell,3].
k(l J) Aarea(ci) [ ]
(2.55)

The coverage probability and assignment probability of ¢; at the pixel (x, y) are P.o(x,
¥, ¢;) and P(x, v, ¢;), respectively. A,q(c;) is the area coverage of ¢;, see (2.37). Note
that, because of the adjacent channel attenuation, the following relationship exists:

Peo(cise ) > Pilcjse ) > Py(cjnc) > Py(cjnc;). (2.56)

2.5.2 Compatibility matrix

The compatibility matrix, also known as channel separation matrix, is a symmetric
matrix represented as Sy « y, which has as many rows and columns as the number of
cells N. Each row, as well as each column, corresponds to a cell. The element s;; of the
matrix indicates the channel separation between cells ¢; and ¢;. The channel separation
specifies the minimum frequency difference between two cells. A channel separation
of zero allows co-channel usage, while a channel separation of one forbids co-channel
but allows the first adjacent channel, and so on. The values of s; may be 0, 1, 2, or 3
according to the mutual interference between the corresponding cells.

First, the compatibility matrix is initialized, considering some restrictions such as
the minimum channel separation inside the same cell MIN,. and the minimum channel
separation between co-site cells MIN,;.
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MIN,,., ifc¢;=c¢;
Sl'j(o) =1MIN,, if ¢; and ¢ arelocated on the same site (2.57)
0, otherwise.

Typically, MIN,. is greater than or equal to five, MIN, is greater than or equal to
three.

In the next step, the interference probabilities for co-channel and adjacent
channels are used to calculate the channel separation.

0, if Prp(cinc;) <Oy
s =11, if B (ci.¢7) <O < Poylcuc) (2.58)
k+1, if Pyyy(cinc;) <Oy < Pi(cjnc), fork e1,2].

O 1s the threshold for interference probability. For s,-j(l) the cell ¢; is the server and ¢;

is the interferer, and for s, it is just the reverse case. Hence it usually holds that s,

# 5;"). The maximum of s, and s;'" will be taken as the final channel separation.

Finally, the initial value s, needs to be taken into account. Thus

Sij = max(s,-j(o), sl-j(l), sjl-(l)) , forije[l,N]. (2.59)

A typical compatibility matrix may look as follows.

BN (=
e L= LS BV B
(==X Fa R LU, 1N (VS I I \O)
N [ O = W
DN (N[O = |

2.6 CHANNEL ASSIGNMENT

The channel assignment problem (CAP), also known as the frequency assignment
problem (FAP), has two basic aspects. On the one hand, the demand vector W must
be satisfied. This means that a sufficient number of FCHs must be assigned to each
cell in order to satisfy the traffic demand. On the other hand, the frequencies used
simultaneously in different cells may incur interference resulting in loss of quality of
the signal. This requires that the assignment of the channels to the cells must comply
with the compatibility constraints, as specified by the compatibility matrix S. Both
aspects should be taken into account for allocating channels. Numerous algorithms for
channel assignment in cellular systems are available in the literature. Readers are
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referred to [Katzela(1996)] and [Koster(1999)] for a good survey. This section starts
with a general description of the CAP, and then presents a heuristic algorithm to solve
the CAP.

2.6.1 Channel assignment strategies

The frequency band [f,in, fmax] available to some provider of mobile communications
is usually partitioned in a set of channels that are all with the same bandwidth fz and
equally spaced by A.. For this reason the channels are usually numbered from 1 to a
given maximum M,

_ fmax fmm

M max
A f

(2.60)

The available channels are denoted by the domain Z = {1, ..., M}. In mobile
communication systems the traffic is usually bidirectional. Therefore, one needs two
channels for the data transmission between the BS and the mobile. One is for the
uplink direction (from the mobile to the BS), another is for the downlink direction
(from the BS to the mobile). Instead of one band [f,in, frnax], tWO bands [flm,-n, f lmax]
and [fzmin, I 2max] are used in real networks: one with the channels {1, ..., M}, and one
with the channels {s + 1, ..., s + M}, where s >> M. Thus, the downlink uses a channel
which is shifted s channels up. The choice of s prevents any interference of downlink
channels with uplink channels. Each assignment for the downlink channels can
directly be transformed to an assignment for the uplink channels with similar
performance. As a consequence, only downlink (or uplink) needs to be considered for
the channel assignment.

Channel assignment strategies can be classified as either fixed or dynamic. The
choice of channel assignment strategy impacts the system performance, particularly as
to how calls are managed when a mobile user is handed over from one cell to another
[Rappaport(1996)]. In a fixed channel assignment (FCA), each cell is allocated a
predetermined set of channels. Any call attempt within the cell can only be served by
the unused channels in that particular cell. If all the channels in that cell are occupied,
the call is blocked, even though there are channels available in adjacent cells. In order
to overcome the deficiencies of FCA schemes the dynamic channel assignment
(DCA) strategy is introduced. In DCA, channels are not allocated to different cells
permanently. Instead, each time a call request is made, the serving BS requests a
channel from the mobile switching center (MSC). The switch then allocates a channel
to the requested cell following an algorithm that takes into account the likelihood of
future blocking within the cell, the usage frequency of the candidate channel,
compatibility constraints, and other cost functions. At the cost of higher complexity,
the DCA strategy provides flexibility and adaptability to the time-varying traffic
distribution. It also increases the trunking capacity of the system since all the
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available channels are accessible to all of the cells.

In general, there is a tradeoff between the spectrum utilization efficiency and
implementation complexity of the channel assignment algorithms. It is proved in
[Johri(1994)] that DCA schemes perform better than FCA schemes under light traffic.
However, FCA schemes become superior at heavy traffic load, especially in the case
of uniform traffic distribution. To obtain a better overall performance, hybrid channel
assignment (HCA) algorithms are designed by combining the FCA and DCA
schemes. In one HCA strategy, called the borrowing strategy, a cell is allowed to
borrow channels from a neighboring cell if all of its own channels are already
occupied. The MSC supervises such borrowing procedures and ensures that the
borrowing of a channel does not disrupt or interfere with any of the calls in progress
in the donor cell.

It is widely recognized that FCA gives a bound on the performance of the DCA
schemes. Besides, in case the DCA scheme allows for complete rearrangement of the
channel allocation a FCA problem has to be solved every time the situation changes.
For these reasons, we concentrate on the FCA problem in the following.

2.6.2 A heuristic algorithm for channel assignment

A lot of research can be found in the literature for solving the CAP. Most of the
investigations are based on graph theoretic or heuristic approaches [Box(1978),
Gamst(1982), Sivarajan(1989), Smith(1998)]. Besides, algorithms employing neural
networks [Kunz(1991), Funabiki(1992), Chan(1994), Kim(1997), Smith(1997)],
simulated annealing [Mathar(1993), Duque-Anton(1993)], and genetic algorithms
[Lai(1996), Ngo(1998), Beckmann(1999)] have also been proposed.

Providing a system of N cells is represented by a set C' = {ci, ca, ..., cy}. Each cell
¢; requires w; channels (w; > 1). This forms the demand vector W = (w, wa, ..., wy),
see Subsection 2.4.3. The assignment of the channels to the cells subjects to the
constraints specified by the compatibility matrix S, in which the element s; indicates
the minimum separation between channels assigned to cell ¢; and those assigned to
cell ¢;.

Definition 2.1 (Channel assignment problem): Let a triple P = (C, W, S)
represent a CAP, let {1, ..., M} be a set of channels and H; the set of channels
assigned to cell ¢;. A solution of P is to find the minimum value of M such that there
exists an assignment pattern H = {H,, H,, ..., Hy}, which satisfies the following
conditions:

|H|=w;, fori=1,...,N;

VheHandh'e H,|h—h"|2sy, fori,j=1,..,N
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where |H;| denotes the number of channels in H,. 4 and &' denote an arbitrary channel
in H; and H,, respectively.

This problem 1is equivalent to a generalized graph coloring problem
[Sivarajan(1989)]. A CAP can be described by a graph G(V, E), where V' is the vertex
set and £ is the edge set. Each cell ¢; is represented by a vertex v; with weight w;. If s
> 0, the vertices v; and v; are joined together by an edge e; with label s;;. The resulting
graph is called an interference graph. The CAP is equivalent to assigning positive
integers {1, 2, ..., M} to the vertices such that each vertex v; has w; integers assigned.
The difference between the integers assigned to two adjacent vertices must not be less
than the edge label. The objective is to minimize the maximum integer used. In the
special case, where only CCI is considered, s; is either zero or one. This problem is
then reduced to the classical graph coloring problem. Since the graph coloring
problem is known to be nondeterministic polynomial (NP) complete [Garey(1979)],
the CAP is also NP-complete i.e. the computational complexity of searching for the
optimum solution grows exponentially with the problem size.

Based on the graph coloring model, a heuristic algorithm for solving the CAP is
proposed in [Sung(1997)]. Before introducing the algorithm, we have to define some
terms. First of all, we define the neighborhood of v, N(v) as the set of v’s adjacent
vertices. A set of vertices in a graph, which are all completely interconnected, is
called a clique. The weight of a clique is defined as the sum of weights of all the
vertices in it. A vertex typically belongs to more than one clique. We denote Cy(Vv)
as the clique, which contains v and has maximum weight. The maximum clique
weight of v, denoted as W(v), is defined as the clique weight of C,(v). When it is
necessary to make the corresponding graph G explicit, we write it as W(v|G).

Basically the heuristic algorithm uses sequential strategy described in [Gamst
(1982)], where a color z; is picked up and assigned to the vertices one by one until no
further assignment of that color is possible. Then, the next color z;; is used, and the
procedure is started over again. The question is how to determine which vertices
should be colored by z;. Here the vertex with the greatest weight is taken as the first
vertex. To choose the subsequent vertices, the principle of the maximum overlap of
denial areas® as defined in the third method in [Gamst(1982)] is used. This principle
states that a channel should be assigned to the cell whose denial area has maximum
overlap with the already existing denial area of that channel. The overlap is defined as
the number of cells within the intersection of the two denial areas. When there is a tie,
it is broken by choosing the vertex with the largest maximum clique weight with
respect to the topology graph induced by the intersection of the denial areas. The
rationale of this rule is that the larger the maximum clique weight is, the more

* The denial area for a cell ¢ is the set of neighboring cells which can not share the same frequency with
¢ due to co-channel interference. The denial area of a channel is the set of vertices which can not be
assigned with this channel [Sung(1997)].
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difficult it is for that vertex to be colored. This algorithm is called the sequential
packing (SP) algorithm, which is described in Algorithm 2.2. Note that K denotes the
set of vertices being colored by the current color z, and F denotes the vertices which
are forbidden to be colored by z:

Algorithm 2.2 (Sequential packing algorithm for channel assignment)
Input: G(V, E)  —The graph representing the CAP
Output: ~ Channel assignment pattern H = {H;, H>, ..., Hy}

Step 1:
Set z=1;

Step 2:
Set K= and F'= I,
Letvbe avertex in {v;:v; € Vand w; = maxvl_ eV Wit

Step 3:
While F'# V do
1) K=Ku {v};
F=Fu {v} UN®W);
m=max, cy_p| Nw) O F|;
2) Ifm =0 then
letvbe avertexin {v;:v; € V—Fand w; = max,, cy_p wit,
else
a) T={vivieV-—Fand| Nv)NF|=m};
b) If|7'| =1 then let v be the only vertex in 7, else
i) Foreachv;, € T do
Construct a subgraph G(v;) induced by the vertex set
(N N F) U {vif;
ii) Let v be a vertex in {vi: v; € T and W(v|G(v;)) =
max, o7 W|GO))}:
Step 4:

For each v, € K do
1) Hy=Hu {z};

W,':W,'—l;
2) Ifw;=0 then
a) V=V-{vj;

b) Delete all the edges connecting to v;;

Step 5:
z=z+1;
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If V= then return {H,, H>, ..., Hy},
else go to Step 2.

This algorithm ensures that the cells to which a channel is assigned are packed as
close to each other as possible. It turns out that this algorithm always yields an
optimal solution for cellular systems with a certain special structure. The proof is
given in [Sung(1997)]. The computational complexity of the algorithm is O(MN %,
where M is the number of channels used and N is the number of cells.

2.7 SUMMARY

This chapter discussed the fundamentals and basic techniques of cell planning. First,
the elements of cellular system design were considered, which include the frequency
reuse concept, traffic engineering, handoff mechanisms, and cell splitting techniques.
The cellular system design objectives were also specified.

Afterwards, radio wave propagation was taken into account. Propagation models
can be classified in three categories: empirical, semi-empirical (or semi-
deterministic), and deterministic models. An empirical model (COST 231-Okumura-
Hata model) and a semi-deterministic (COST 231-Walfisch-lkegami model) were
reviewed, which are widely used in practice to predict the propagation loss for
macrocells and microcells, respectively.

A typical design process of cell planning was outlined. The basic steps, including
the coverage prediction, capacity prediction, interference analysis, and channel
assignment, were discussed in detail. First, the probabilistic model based on the
coverage probability and assignment probability gives a more realistic description of
the cell coverage. Second, a linear model is used to estimate the traffic distribution.
Next, the number of TCHs required by a single cell is calculated using an algorithm
based on the Erlang B formula. The demand vector is then obtained. Afterwards, the
CCI probability and the ACI probabilities are calculated for each pair of cells. Based
on the interference probabilities, the compatibility matrix is generated. Both the
demand vector and compatibility matrix are used as input data in the channel
assignment procedure. Channel assignment strategies can be classified as fixed
(FCA), dynamic (DCA), or hybrid. The channel assignment problem is equivalent to a
graph coloring problem that is known to be NP-complete. A heuristic algorithm for
channel assignment was introduced.



Chapter 3

Cell planning as an optimization problem

In this chapter, we will discuss the cell planning from the viewpoint of system
performance optimization. Section 3.1 gives a general description of the cell planning
problem, followed by an overview of cell planning problems. Four kinds of problems
can be distinguished in cellular system design practice. They will each be discussed in
Section 3.2. The requirements of system performance, such as the coverage, capacity,
and signal quality, are addressed in the optimization objectives. The performance
requirements are classified as local conditions and global conditions because some of
them are defined on a single cell and the others are defined on the whole system (a set
of cells). The definitions of these conditions will be given in Section 3.3 and 3.4,
respectively. Cell planning is a typical multi-objective optimization problem (MOP)
as several objectives need to be considered simultaneously. In Section 3.5, the
principles of multi-objective optimization will be introduced, and the methods for
solving multi-objective problems will be discussed.

3.1 PROBLEM DESCRIPTION

Cell planning is a very complex task, as many aspects must be taken into account,
including the topography, morphology, traffic distribution, existing infrastructure, and
so on. Things become more complicated because several constraints are involved,
such as the system capacity, service quality, frequency bandwidth, and coordination
requirements. Nowadays, most radio network planning tools can only aid the network
planners in radio frequency calculations such as the coverage prediction, interference
analysis, and channel assignment. The network itself, however, has to be designed
manually by the planners based on personal experience and intuition. The manual
design process has to go through a number of iterations before achieving a
satisfactory performance, and does not necessarily guarantee an optimum solution.

The problem is how to place BSs at the optimum sites and how to specify the
optimum values for the parameters of each BS such that the optimal system
performance is achieved and the system cost is minimized. In order to solve this
problem, we first give a general description of the problem as follows:

Let ¢; = (xi, yi, pi» hi, a;) denote a cell, where (x;, y;) is the BS site, p; is the
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transmitted power, /4; is the antenna height, and g; is the antenna orientation. Several
cells may share the same BS site (called co-site cells). Let C = {ci, ca, ..., cy} be a cell
set, N is the number of cells. These cells influence each other with respect to the
coverage and interference. C will be called an admissible cell set if the following
conditions hold:

1. The traffic load of each cell is less than some maximum value 75, corresponding
to the available channels so as to guarantee the desired GOS of the cellular
system.

2. The interference probability of each cell is lower than a given threshold &,
corresponding to the required signal quality.

3. The coverage rate i.e. the proportion of the area (or traffic) covered by these cells,
is higher than a given threshold 4.,,, e.g., 95%.

4. The spectral cost, which is defined as the number of frequency channels required
for assigning all the cells a sufficient number of channels, does not exceed the
maximum available frequencies M,,y.

5. The financial cost for building and maintaining these BSs should be limited to the
budgetary infrastructure investment Ep,ge;.

Conditions 1 and 2 are called local conditions as they are defined on each single cell,
while the other three conditions (3-5) are called global conditions because they are
defined on a set cells. The local conditions and global conditions will be discussed in
more details in Section 3.3 and 3.4, respectively.

It is worth mentioning that these conditions are system-oriented. This means that
their definitions are based on the system performance requirements. Different systems
e.g. GSM or UMTS, could have their own definitions of the local conditions and
global conditions. Other conditions can also be included as necessary. In this work the
definitions are based on GSM system specification, but the methods presented here
are also applicable to other systems.

Conditions 1-5 are required to guarantee the system performance, such as the
coverage, capacity, and signal quality. The task of cell planning is to design an
optimal cellular system i.e. to determine the number of cells, cell sizes, BS locations,
and the parameters of each BS, which can guarantee the required performance goals
while minimizing the total system costs, including the spectral cost and financial cost.

Essentially the cell planning is an optimization problem, which can be viewed as
finding an optimal cell set from a large number of potential cells. If there are N
potential cells, the number of possible combinations of these cells is 2", thus the
computational complexity of searching for an optimal cell set grows exponentially
with the problem size. Such a combinatorial optimization problem is NP-complete
[Garey(1979)]. Since many factors and complicated constraints are involved, none of
the available algorithms can be directly used for cell planning problems to obtain an
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optimal solution in reasonable time. The key objective is therefore to develop an
algorithm, which can obtain approximate optimal results with reasonable
computational effort, taking into account all the above mentioned design factors.

Various optimization methods have been considered for this purpose. In
principle, most available channel assignment algorithms can be used to minimize the
spectral cost. The optimization of the financial cost, however, has seldom been
studied. Some studies, e.g., [Calégari(1997)], [Chamaret(1997)], and [Molina(1999)],
only considered the minimization of the number of cells. In [Hao(1997)], an economic
optimization model was presented. It considered the economic efficiency of cellular
system design, but did not address the efficiency of spectrum. The optimization
strategy presented in this work has the advantage of taking into account all the
requirements of system performance. It has the ability to minimize both the spectral
cost and financial cost and to make tradeoffs among the system performance criteria.

3.2 OVERVIEW OF CELL PLANNING PROBLEMS

As discussed in the preceding section, there are numerous variables to be determined
for an optimal cellular system design, including the number of cells N, cell site (x;, ),
and parameters of each cell (p;, 4, a;). In practice, some of the variables could be
given, or restricted in a very limited range. This gives rise to a variety of cell planning
problems, although their tasks are the same. Four kinds of problems can be
distinguished according to the given conditions. They are cell selection, cell
dimensioning, automatic base station placement and dimensioning, and growth
planning. We will discuss each of them next.

3.2.1 Cell selection

One of the key issues a mobile communication operator must face when deploying a
cellular network is the selection of good locations for BSs. In principle, BSs can be
located at any place in the service area. For some operators, however, the available
sites for BSs are very limited due to the economic or technical reasons. The available
sites where BSs may be installed are taken as input variables, and the goal is to find a
minimum subset of the given sites that allows a good service in the planning area.
This is the so-called cell selection problem i.e. to find an optimal cell set from a large
number of potential cells.

By changing the selection of cells affects not only the number of cells but also the
whole system performance and costs. Hence the cell selection is not a simple
optimization problem. Assume that there are N potential cells according to the
available BS sites, and furthermore the configurations of these cells are also given. As
analyzed in the preceding section, the complexity of cell selection problem is
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exponential (NP-hard). Several approaches have been investigated for this problem.
One of them, as presented in [Calégari(1997)], models the cell selection as the
minimum dominating set problem from graph theory and a genetic algorithm is
employed to solve the combinatorial optimization problem. Another approach uses
so-called demand nodes to represent control points in the service area [Tutschku
(1997) and Tutschku(1998)], and applies neural network techniques to find the
optimal cell set. In [Huang(2000a)], an approach based on genetic algorithms (GAs)
was proposed for solving the cell selection problem, taking advantage of an integrated
objective function of the coverage rate, spectral cost, and financial cost.

3.2.2 Cell dimensioning

In realistic mobile radio environments, the size of cells depends on the BS parameters
such as the transmitted power p;, antenna height 4,, and orientation a;. The task of cell
dimensioning is to specify these parameters so as to meet the requirements of system
performance, which are addressed by the local conditions and global conditions. This
is a parametric optimization problem. Since the number of cells and cell sites are
given, the financial cost is determined, it does not need to be optimized further. The
objective of cell dimensioning is then to minimize the spectral cost while keeping the
other requirements satisfactory.

As demonstrated in Section 2.6, the spectral cost i.e. the number of frequencies
required for channel assignment, depends mainly on the number of channels required
by each cell and the mutual interference between cells. Hence, the local conditions of
each cell must be fulfilled, which include the traffic load and interference as described
previously.

The complexity of the cell dimensioning problem is also NP-complete. It is clear
that the cells influence each other with respect to the local conditions. Any slight
change on one cell could result in substantial differences on the conditions of other
cells. The result of such a change is unpredictable, and can not be described by a
simple function. Therefore, stochastic optimization methods e.g. genetic algorithms
(GAs) and simulated annealing (SA), are good candidates for solving this problem.
Although no report can be found in the literature for the application of stochastic
optimization algorithms to the cell dimensioning problem, these algorithms have
already been widely used to solve channel assignment problems e.g. [Duque-
Anton(1993)], [Mathar(1993)], and [Beckmann(1999)]. However, the cell
dimensioning is much more difficult than the channel assignment as the
configurations of cells are unknown. The cell dimensioning problem was first
considered in [Huang(2000c¢)], where a fuzzy expert system was developed to use the
expert experience to adjust the BS parameters.
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3.2.3 Automatic base station placement and dimensioning

For cell selection and cell dimensioning, the sites or dimensions of the potential cells
must be given by the planner. This does not fulfil the task of automatic cell planning.
A real automatic planning approach should have the capability to search potential
cells (including BS locations and configurations) by itself. This kind of problems are
called automatic base station placement and dimensioning (ABSPAD).

Obviously, ABSPAD is more difficult than the cell selection and cell
dimensioning problems as more variables need to be determined. Suppose that the
service area is digitized into mxn pixels, each pixel is a potential cell site as the BS
can be located at any place in the service area. The number of possible cell sets, i.e.,
the combinations of potential cells, is 2" when only considering the cell site (x;, ;).
Since the other parameters such as the transmitted power p;, antenna height 4;, and
orientation ¢; are also unknown, the exponent is certainly much greater than n-m.
Therefore ABSPAD is also NP-complete.

Automatic cell planning has not been extensively studied yet. In [Hurley(2000)],
an approach based on SA is used for cell site selection and configuration. Four
specific neighborhood structures are used to generate new solutions based on given
probabilities. A SA algorithm controls the choice and acceptance of new solutions. In
[Huang(2000c¢)], a hierarchical approach is proposed for automatic BS placement. The
idea is to search optimal cell sites on a series of grids with different resolutions from
rough to fine. On each level only promising areas are searched, such that the size of
search space can be controlled and will not expand exponentially. The hierarchical
approach will be discussed in more detail in Chapter 5. Also, in Chapter 6, this
approach will be applied to real planning problems.

3.2.4 Growth planning

It is clear that a smaller cell size increases the traffic capacity. However, a smaller cell
size also means more BSs and a higher cost of the infrastructure. Obviously, we do
not want to work with an unnecessarily small cell size. What is needed is in fact a
method that matches cell sizes to the capacity requirements. So the system is usually
started using large cells. The cell size is as large as possible. When the system
capacity needs to grow, the cell size is decreased and the number of cells is therefore
increased in order to meet the new requirements [Back(1991)].

The method commonly used in practice is cell splitting i.e. reducing the existing
cell sizes and adding new cells. The problem is then to find optimal BS sites for new
cells and optimize dimensions of both original cells and additional cells so that the
growing demand can be met effectively, while offering minimum disturbance to the
existing network structure. This is the so-called growth planning problem.
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The growth planing problem becomes more and more important and frequently
faced by the network planners due to the tremendous growth in demand for mobile
services. This problem was first studied in [Vasudevan(1999)]. In an existing
network, if the subscriber growth makes some of the existing cells unable to carry the
increased traffic, the coverage of these cells is reduced by lowering the transmitted
power level, so that the traffic in the smaller area can be supported. At the same time,
new cells are needed to cover the remaining uncovered traffic. In [Huang(2000d)], the
above-mentioned hierarchical approach was applied to find the optimal new cell sites,
taking into account the existing cells. The automatic growth planning algorithm will
be presented in Chapter 5.

Table 3.1 summarizes the above-mentioned cell planning problems. The
difficulty of the problem increases from the cell selection to growth planning.

Table 3.1 Classification of cell planning problems

Number of Cell sites Cell dimensions Existing
Problem
Cells N (x5 ) (P hiy a;) cells*
Cell selection Unknown Known Known No
) Ce.l 1 . Known Known Unknown No
dimensioning
ABSPAD Unknown Unknown Unknown No
Gronth Unknown Unknown Unknown Yes
planning

* The dimensions of existing cells also need to be considered. This makes the growth
planning problem more difficult.

3.3 LOCAL CONDITIONS

As discussed in Section 3.1, two local conditions need to be considered for each cell:
traffic load and interference condition. Obviously, these two conditions are very
important for a high-quality cellular system design. Besides, these conditions have
great influence on the channel assignment, and therefore, are also important for a
spectrum efficient system design.

In the following, the two local conditions will be defined. We use a triple P = (C,
W , S) to represent a channel assignment problem, where C = {c|, c3, ..., ¢y} is the cell
set, N is the number of cells, W= (w;, wa, ..., wy) is the demand vector, S is the
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compatibility matrix. The spectral cost i.e. the minimum number of channels for
solving P, is denote by Fo(P).

3.3.1 Traffic load

According to traffic theory, the blocking probability increases with the traffic load
offered to a cell and decreases with the number of available channels. For each cell,
the blocking probability must be lower than an acceptable level in order to guarantee
the desired GOS. If the available channels are given, the traffic load within the cell
should be less than some maximum value 7}, corresponding to the allowed blocking
probability.

Theorem 3.1: Let {1, ..., M} be the available frequency channels, MIN,. be the
minimum separation between the channels used by the same cell. w; is the number of
channels required by the cell ¢;. For an admissible cell set, it is necessary that

w; < M -1 +1, fori=1,...,N. (3.1
MIN,,

The operation L] makes a real value x to be rounded up to the closest smaller integer
value.

Proof: According to the first-level lower bound given in [Gamst(1986)], we have
Fo(P)Z(Wi—l)'Sii'i‘l, fori=l,...,N,

where s; = MIN,, (typically greater than or equal to five). Since Fo(P) must be less
than M in order to solve the channel assignment problem with the available channels,
obviously,

M > (w; =1)-MIN,, +1, fori=1,...,N.

Therefore (3.1) is obtained. m

Assume that the maximum allowed blocking probability Ppjecr is known e.g. 2%.
Furthermore, let

n = M-1 +1
M MIN ’

which is the maximum number of channels that can be used by a cell. By knowing

Phioer and npq,, we can derive the traffic capacity of a cell according to the Erlang B
formula. The result gives the maximum traffic load 7,,.

Suppose that the service area is digitized as mxn pixels and the pixel size is
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AxxAy. The traffic density at the location (x, y) is represented by #(x, y). There are 7(x,
y)-Ax-Ay FErlang of traffic at (x, y). The traffic load of a cell ¢; is just its traffic
coverage A,Ac;) i.e. the sum of the traffic covered by c;. The traffic coverage has
already been defined in Section 2.4. Here we give the equation once again:

m n
Atrff(ci) = Z chov(xayaci)'Pass(xayaci)'T(xay)'Ax'Ay (3.2)
x=ly=1

where P, (x, v, ¢;)) and P,(x, y, c;) are the coverage probability and assignment
probability, respectively, see Section 2.3.

Now the condition of traffic load can be expressed as

A,rf(cl-)STmax, fori=1,...,N. (3.3)

3.3.2 Interference probability

The mutual interference between a pair of cells has been considered in Section 2.5.
The mutual interference probabilities are used to calculate the channel separation and
element s;; of the compatibility matrix indicates the channel separation between cells
c; and c¢;. This compatibility constraint must be fulfilled for a feasible channel
assignment.

Let P = (C, W, S) be a channel assignment problem. Suppose that there exists an
assignment that can satisfy the constraints specified by the compatibility matrix S,
such that the separation between channels assigned to cell ¢; and that assigned to cell
¢; is greater than or equal to s;. Also, let Fi(x, y) be the received power at the location
(x, y) from the cell ¢;. Then, the C/I ratio of ¢; at (x, y) can be calculated as follows,
taking into account all the possible interference with the other cells.

N
Ci/I(x, ) = Fx) - (i) = Lisy)). (3.4)

j=1#i

where L(s;) is the adjacent channel attenuation given by (2.51). In case of co-channels
i.e. s; = 0, there is no attenuation, thus L(0) = 0.

The interference probability of ¢; at the pixel (x, y) is then calculated as

(3.5)

C;/1(x,y)—6,
Pim(x,y,ci)=1—erf[’ (x. ) C/Ij

V2o

where 6. is the required C/I ratio in dB and o is the standard deviation of the
received signal power. erf(z) is the error function defined in (2.50). Furthermore, the
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average interference probability of ¢; can be obtained by

m n
Z Zpint(xay:ci)'Pcov(xayaci)'Pass(x:y:ci)'Ax'Ay
x=ly=1

Prr(e) = (.6

Aarea (Ci)

Again, P.,(x, y, ¢;) and Pu(x, y, c;) are the coverage probability and assignment
probability, respectively. Ag..q4(c;) is the area coverage of c;, as given by (2.37).

Now, the condition of interference probability can be expressed as
P, (c;)<6;,, fori=1,...,N. (3.7)

6. 1s an important system performance parameter, which is specified corresponding
to the required radio transmission quality.

3.4 GLOBAL CONDITIONS

The design objectives can be addressed by three conditions: coverage rate, spectral
cost, and financial cost. These conditions are called global conditions because they are
defined on a set of cells C = {cy, ¢, ..., cy}. An admissible cell set has to comply with
three threshold values (O.ov, Muaxs Epudger) corresponding to the global conditions. In
this section, we will discuss how to calculate the coverage rate, spectral cost, and
financial cost of a given cell set.

3.4.1 Coverage rate

First, the coverage rate is considered, which is defined as the proportion of the area
(or traffic) covered by the cells {ci, ¢, ..., cx}. Although two coverage rates can be
distinguished i.e. the area coverage rate and traffic coverage rate, they are highly
correlated (even equivalent in case of uniform traffic distribution). Therefore, either
the area coverage rate or the traffic coverage rate can be used as the measurement of
coverage condition, but not necessary both of them.

A Coverage probability of a cell set

The coverage prediction for the cellular system design has already been discussed in
Section 2.3. Because of radio signal characteristics, a mobile unit at a location (x, y)
can receive signals from a cell ¢; with a coverage probability P..(x, ¥, ¢;), which
specifies the probability of a location being covered by the cell.

In cellular mobile systems, there are overlapping areas between cells. This means
that a location could be covered by several cells simultaneously. In order to predict
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the coverage of a cell set C = {cy, ¢, ..., cy}, we introduce a random variable r;, i € [1,
N], to describe the event that ¢; covers (x, y). Such a random variable is defined as

ri: Fix,y)> 0,

where Fi(x, y) is the field strength of the signal received from c; and & represents the
desired received power threshold. Obviously, the probability of »; being true, denoted
as P{r;}, is just the coverage probability of ¢;, i.e.

Piri} = Peoy (X, 3.¢;) (3-8)
and
Piri} =1=Peoy(x.3.¢;) (3.9)

where 7; denotes the complement of ;. It means that ¢; fails to cover (x, y). If r;, and 7;
are unrelated, the following relationship exists:

P{rl-Ur]-}zl—P{Fl- ﬂfj}=1—P{Fl~}-P{Fj}. (3.10)

A mobile unit is considered to be served if the field strength of at least one of the
cells is above the threshold &, so the event of a location (x, ) being covered by a cell
set C is the union of r;. Assume that all the random events r; are independent i.e. ; and
r; are unrelated, for i, j € [1, N] and i # j. The coverage probability of C is then
calculated as

N N
Pcov(x,y,C)zP{ I}}=1—P{ﬂ7l}
=1 i=1
(1

" (3.11)
:1_1_[

1=

_Pcov(x>y>ci))'

—_—

The above equation means that a location (x, y) is uncovered if all of the cells fail to
cover it. Otherwise, it is considered to be covered by the cell set C.

B Area coverage rate

Based on the coverage probability given by (3.11), we can now calculate the area
coverage Agreq as

m n
Agrea(C) = Zzpcov(xayac)‘M‘Ay- (3.12)
x=ly=1

There are mxn pixels and the pixel size is AxxAy. Each pixel is weighted by the
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coverage probability P.,(x, y, C). The area coverage rate of C, Rg..(C), is then
calculated as the proportion of the covered area to the total area size, i.e.

m n
ZZPcov(x,y,C)-Ax-Ay
Aarea (C) _ x=ly=1

Rarea(C) = Ag m n
;UZ::IAX & (3.13)
m n
> Pepy(x.3.0)
_x=ly=1
B m-n

where Ag represents the service area size.

C  Traffic coverage rate

Since the traffic is usually distributed unevenly in the service area, the traffic
coverage rate is not equal to the area coverage rate. Assume that the traffic
distribution is known and #(x, y) is the traffic density at the location (x, y), then the
traffic coverage of the cell set C, 4,(C), can be calculated in a similar way to the area
coverage, but weighted by the traffic density:

m n
Apr(C)= 3" Prgy (x.3.0) - 7(x,y) - Ax- Ay, (3.14)
x=ly=1

where P .(x, y, C) is the coverage probability of C, as given by (3.11). Next, we can
get the traffic coverage rate R, as

m n
Z chov(xay,C)-T(x,y)-Ax.Ay
Al‘}"f‘ (C) — x=1y=1

! 3> r(x,p)- Ax- Ay

x=ly=1

Ry (C) = (3.15)

where A7 is the total amount of the estimated traffic in the service area. In case that a
uniform traffic distribution is assumed, the traffic density z(x, y) = 1. From (3.15) we
have

m n m n
Zszv(x’y’C)'Ax'Ay Zzpcov(x:yac)
x=ly=1 _ x=ly=1
m n -
D> Ax-Ay

x=ly=1

(3.16)
m-n
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We can see that the traffic coverage rate is just equal to the area coverage rate i.e. Ry

(€)= RareaC).

Hence, the area coverage rate can be viewed as a special case of the traffic
coverage rate. Besides, a satisfactory coverage of the traffic is one of the necessary
requirements for designing a cellular system in an efficient way. It is easy to
understand that a small region in a metropolis is more important than a vast desert,
even though the former is smaller in the area size. Therefore the traffic coverage rate,
rather than the area coverage rate, is often used in cell planning.

3.4.2 Spectral cost

The spectral cost is defined as the minimum number of frequency channels required
for assigning each cell a sufficient number of channels. This is the lower bound for
the channel assignment problem (CAP). In Section 2.6, the CAP is formulated as a
generalized graph coloring problem, which is known to be NP-complete
[Garey(1979)]. An exact search for the optimal solution is impractical for a large-
scale system due to its exponentially growing computation time. Instead of solving
the CAP itself, the lower bound for this kind of problem can be calculated
analytically. The computations of such a lower bound can be found in [Gamst(1986)]
and [Sung(1997)].

First, we recall the definition of the generalized graph coloring problem. Consider
the graph G(V, E) obtained by representing each cell ¢; by a vertex v;. The number of
channels w; required by ¢; is taken as the weight of v;. If the vertices v; and v, are not
allowed to use the same channels i.e. the channel separation s; > 0, they are connected
by an edge e; with label s;. An M-coloring of G is to assign positive integers {1, 2, ...,
M3} to the vertices such that each vertex v; has w; integers assigned. The difference
between the integers assigned to two adjacent vertices must not be less than the edge
label. By determining the chromatic number M, we also determine the minimum
possible number of channels required.

Definition 3.1 (Complete subset): Let P = (C, W , S) be a CAP and k be a positive
integer. A subset QO of C is called k~-complete if

s>k, forallc;, c;e Q.

Note that a 1-complete subset is equivalent to a clique. The concept of a k-complete
subset is just a generalization of a clique.

Theorem 3.2: Let P = (C, W, S) be a CAP and Q be a 1-complete subset of C.
For each cell ¢; € Q, there exist an integer u € [1, s;] and a subset R of O such that ¢;
¢ R and s; > u, for all ¢; € R. Furthermore, let
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wR= D W, (3.17)
cjeR
IfSil'—27/l+1S0
Fy(P)=(w; —1)-s5;; +1+wp (3.18a)
else
Fy(P) = (w; =1)-s;; +1+max(wp —(w; = 1)(s;; —2u +1), 0). (3.18b)

Proof: Define P'= (C, W', S"y with W' having only two nonzero components
wi=w, forc; e Q,
and
w)=wp, forc; eR.
The entries of the compatibility matrix S’ are
s =8, Sy=s8y=u, ands’;=1.

According to lemmas 4 and 5 in [Gamst(1986)], Fy(P) = Fy(P"). Now we want to find
Fo(P"). It is obvious that

Fo(PYzw'i—1)s;+1
since the channels used in ¢; must be separated with minimum distance s;;.

For any two channels in c¢;, spaced with distance s;;, the number of channels that
can be used by cells in R between the gaps is

p=(Sji—1)—2(7/l—1)=Sii—27/l+1.

If p<0, no gap exists and w’; more channels are needed. Hence (3.18a) is obtained.
On the contrary, if p> 0, there are p-(w'; — 1) usable channels left inside all the gaps.
If w'; < p(w'; — 1), no additional channel is needed. Otherwise, we need w'; — p-(W'; —
1) more channels. Hence (3.18b) is obtained. m

For a cell set C, once the cell sites and dimensions are fixed, the triple P = (C, W,
S) is determined. At the same time, the lower bound of Fy(P) is also determined. The
conclusion of Theorem 3.2 can be used to calculate the spectral cost of C, denoted as
M,eq(C). Assume that C has K 1-complete subsets, Oi, O», ..., Ok. Let
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(Wi—l)‘sl'i+1+WR, sl-l-—2u+1S0
VVi,u (Qk ) =
(w; —1)-s;; + 1+ max(wp — (w; =1)(s;; —2u+1), 0), s;; —2u+1>0
(3.19)
and
Fi(P)= max max W; ,(O;). (3.20)
c;€Qpu=ls;
The spectral cost of C is then calculated as
M,y (C) = max Fy(P). (3.21)
k=LK

If only the co-channel interference is considered i.e. s; € {0, 1}, the 1-complete
subset Oy is reduced to a clique. There are K cliques in the corresponding graph G. It
is clear that s;; = u = 1 and therefore s;; — 2u + 1 = 0. From (3.17) and (3.19) we have

Wi Q) =w; +wp = > w;. (3.22)

€0y

From the above equation, we see that ;,(QOx) has the same value for each cell ¢; €
Or. This value is defined as the weight of a clique, denoted as W(Qy). In this case,
Fi(P) is just equal to the clique weight W(Qy). As a result, the spectral cost

M,y (C) = [max. W) . (3.23)

This means that the maximum clique weight provides a lower bound for a pure co-
channel CAP since the channels assigned to the cells in the same clique must be
different.

3.4.3 Financial cost

In a mobile communications network, BSs constitute its backbone. The infrastructure
cost is therefore mainly determined by the BSs deployed in the system. In contrast to
the spectral cost, the cost for building and maintaining the BSs is called financial cost.
Usually the cost of a BS comprises two parts: the cost of the site and the cost of the
equipment.

In [Hao(1997)], an economic optimization model was presented for designing a
low-cost cellular mobile communication system. The cost of BS equipment was
considered in this model, but it did not include the cost of BS site. In our optimization
model, we define the financial cost for building and maintaining a mobile network as
follows:
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E in(C) = Eg + Y Egie(e) + Eoq(e)) + Ep(c))) (3.24)

c;eC

where

E;,(C): Financial cost of the cell set C;

Eo: Fixed cost for installing and maintaining the network;
Eg(ci): Cost of the BS site of a cell ¢;;

E.4(ci): Cost of the equipment of ¢;;

En(c;): Cost for maintaining the cell ¢;.

The system fixed cost £ includes the cost for switching centers, BS links, cables, and
so on. In some cases, it can be dropped from the financial cost as it does not affect the
optimization of the system design.

The site cost Egr(c;) is caused by renting or purchasing a place for building the
BS. It is difficult to calculate because such a cost strongly depends on the
environment where the BS is located. In a simple model, the site cost is just defined as
a function of the morpho class e.g. the urban, suburban, or rural areas. Geographic
information systems (GIS) are useful for evaluating the site cost. The more detailed
information we have, the more accurate cost we can obtain. In practical system
design, site surveys are usually made in order to get an exact cost of sites. Moreover,
the site cost also includes the cost of buildings and towers if required.

The equipment installed in the BS mainly consists of the antennas and
transceivers, so the equipment cost E.(c;) is determined by the antennas and
transceivers used. Since the price of antennas and transceivers can be found in the
products catalog, it is not difficult to calculate the equipment cost.

After a mobile network is installed, the cost for maintaining the network should
be considered. It is clear that the cost E,(c;) for running the cell ¢; is proportional to
its transmitted power. Thus, a linear relationship between the maintenance cost and
the transmitted power is assumed in our optimization model.

Ep(c;)=Ehy+p, Py 108 Prin < Pr< Prx (3.25)

where P; is the transmitted power, P,;, and P, are the minimum and maximum
power, respectively. For GSM systems, P, = 0.01 W and P, = 10 W [ETSI
05.05(2000)]. £, is the basic cost for P, = P,;,. pr is the cost coefficient with respect
to the transmitted power. £, and p; must be chosen empirically. The recommended
values are: E',, = 100, p, = 10.

From (3.24) we can see that the financial cost depends mainly on the number of
cells in C. Generally, the financial cost of C becomes higher if it consists of more
cells. This is why the number of required cells is often used as the cost function in
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some simple optimization models. Obviously (3.24) gives a more accurate evaluation
of the financial cost.

3.5 MULTI-OBJECTIVE OPTIMIZATION

Having measurements of system performance is only the first step toward solving the
cell planning problem. In order to find an optimal solution, an efficient optimization
strategy is needed. One important characteristic of the cell planning problem is that
the global conditions are interrelated. Increasing the coverage rate probably causes
higher financial cost. Improving the system capacity probably requires more
frequency channels. So these conditions need to be considered simultaneously.
Usually the spectral cost and financial cost are to be minimized, while maximum
coverage rate is desired. Such a problem is classified as multi-objective optimization
problem (MOP) as it involves simultaneous optimization of several objectives, which
is distinguished from the single objective optimization problem (SOP).

Almost every real-world engineering design or decision making problem can be
classified as MOP. Unfortunately, most optimization algorithms confine to SOP,
where only one “best” solution could be found based on the single objective. In MOP,
because the objectives may be conflicting, there does not exist a unique optimal
solution that is a global minimum (or maximum) with respect to all the objectives.
Instead, there is a set of optimal solutions which represent tradeoffs between the
conflicting objectives. These solutions are optimal in the wider sense that no other
solutions in the search space are superior to them when all objectives are considered.
They are called Pareto optimal solutions, named after the economist and sociologist
Vilfredo Pareto (1848-1923). The concept of Pareto optimality will be given later in
this section.

This section is an introduction of multi-objective optimization, which consists of
two parts. In the first part, the principles of multi-objective optimization are outlined
and basic concepts are defined. The second part gives a review of classical methods
for solving MOPs and in particular their potential disadvantages. More discussions
about multi-objective optimization can be found in [Fonseca(1995a), Deb(1999), and
Zitzler(1999a)].

3.5.1 Basic concepts and definitions

Multi-objective optimization problems are characterized by several incommensurable
and often conflicting measures of performance i.e. objectives. Formally, this can be
defined as follows:

Definition 3.2 (Multi-objective optimization problem): A general MOP includes a
set of m objective functions that map a decision vector X to an objective vector y.
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The optimization goal is to
minimize/maximize Yy = f(¥) = (f1(X), f5(X),..., [;,,(X))
where X = (x1, x2, ..., X)) € X,

Yy =012 ym) €Y.

X is called the decision space, and Y is the objective space.

Without loss of generality, a maximization problem is assumed here. For
minimization or mixed maximization/minimization problems the definitions presented
in this section are similar. In single objective optimization the optimal solution is
usually clearly defined, as the solutions can be totally ordered according to the
objective function f. For any two solutions Xj, X, € X, either {(X]) >2f(Xy) or f{(Xy) 2
A(x)). The solution that gives the maximum value of f is the optimal solution.
However, when several objectives are involved, the situation changes. The solutions
are, in general, not totally ordered, but partially ordered. Let us consider the cell
planning problem. For the purpose of illustration, we assume that only two objectives
are to be maximized, namely, the coverage rate (f;) and cheapness (f2) - the inverse of
financial cost. The 2D objective space is shown in Figure 3.1. Obviously, the solution
represented by point B is better than the solution represented by point C because B
provides higher coverage at lower cost. It would even be preferable if it would only
improve one objective, as is the case for C and D: despite equal cost, C achieves
better coverage than D. In order to express this situation mathematically, the relations
=, >, and > are extended to objective vectors by analogy to the single objective case.

Pareto optimal front

Q\
o YO 4
E SO,
(6) N
B D
\
o o \
D C N

. . \
Feasible region
AY

Figure 3.1 Illustrative example of Pareto optimality in a 2D objective space.
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Definition 3.3: For any two objective vectors y; and y,,

Vi =y, 1Ml yi;=y foralliel[l,m];
yizy, Mt yi; 2y forallie[l, m];
.)71>.)72 iff ylz)jZaandEIie[lam]a yl,i>y2,i-

The relations < and < can be similarly defined.

Using this definition, it holds that B > C, C > D, and, as a consequence, B > D.
However, when comparing B and E, neither can be said to be superior, since B #* E
and £ ¥ B. Although the solution associated with £ is cheaper, it provides lower
coverage than the solution represented by B. Therefore, two decision vectors Xj, X;
can have three possibilities with MOPs regarding the relation “>” (in contrast to two

with SOPs): (X)) 2 f(X7), (Xy) 2/ X)), or (X]) # f(Xy) Af(Xy) # A X]). In order to

classify the different situations, the following symbols and terms are used.
Definition 3.4 (Pareto dominance): For any two decision vectors X and X,,
5(31 > )?2 (fl dominates )?2) iff f()_q) >f( )?2)
X] = Xp (X partially dominates X,) iff f(¥)>f(x,)

X| ~ X, (X is indifferent to X, ) iff f(x;) 2 (X)) Af(Xy) 2 (%)

The definitions for a minimization problem (<, <, ~) are analogous.

S
dominate
(@]
indifferent
O
(@] (@) A
E O
©
is dominated B 0]
(0] (@)
D C indifferent
A

Figure 3.2  Possible relations between solutions in multi-objective space.

In Figure 3.2, the light gray rectangle encapsulates the region in objective space
that is dominated by the decision vector represented by B. The dark gray rectangle



3.5, MULTI-OBJECTIVE OPTIMIZATION 59

contains the objective vectors whose corresponding decision vectors dominate the
solution associated with B. All solutions for which the resulting objective vector is in
neither rectangle are indifferent to the solution represented by B.

Based on the concept of Pareto dominance, the optimality criterion for MOPs can
be introduced. Referring to Figure 3.1, 4 is unique among B, C, D, and E as its
corresponding decision vector a is not dominated by any other decision vector. That
means, a is optimal in the sense that it can not be improved in any objective without
causing a degradation in at least one other objective. Such solutions are known as
Pareto optimal. They are also called non-dominated or non-inferior solutions.

Definition 3.5 (Pareto optimality): A decision vector a is said to be non-
dominated regarding a set 4 — X iff

i

ed X >a

=l

Furthermore, a is said to be Pareto optimal iff @ is non-dominated regarding X.

In Figure 3.1 the white points represent Pareto optimal solutions and are tradeoffs
between the conflicting objectives. Improvement in any one of the objectives may
impair the others, and vice versa. None of these solutions can be recognized as better
than the others unless preference information is included (e.g. a ranking of the
objectives).The entirety of all Pareto optimal solutions is called the Pareto optimal set.
The corresponding objective vectors form the Pareto optimal front or surface.

Definition 3.6 (Non-dominated sets and fronts): Let 4 < X. The non-dominated
set regarding A, represented by 4, is defined as

A,={a € A| a is non-dominated regarding 4 }.

The corresponding set of objective vectors is defined as the non-dominated front
regarding 4, given by

Fdp)={fla)| a e 4p}.

Furthermore, the non-dominated set regarding X, represented by X, is called the
Pareto optimal set, and Y, = F(X)) is the Pareto optimal front.

The Pareto optimal set comprises the global optimal solutions. However, as with
SOPs there may also exist local optima which constitute a non-dominated set within a
certain neighborhood. Moreover, MOPs may have uncountable Pareto optimal
solutions. It is impossible, and also unnecessary, to find all of them. What is
interesting is an optimization method that can find a Pareto optimal set representing
alternative tradeoffs between the objectives, such that a suitable compromise solution
can be chosen.
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3.5.2 Methods for solving multi-objective problems

From the above discussions, we observe that there are primarily three goals that a
multi-objective optimization algorithm must achieve:

e The resulting non-dominated front should approximate the global Pareto optimal
front, although it may not be exactly a global optimum.

e The obtained solutions should be distributed uniformly so as to represent the
entire Pareto optimal set.

e The spread of the resulting non-dominated front should be maximized, such that
for each objective as many as possible values could be covered by the obtained
solutions.

Traditional approaches to MOPs usually transform the initial multi-objective
problem into a mathematically manageable format, such that well-studied algorithms
for SOPs can be used. Among the traditional approaches, the weighting method and
constraint method are most popular. They will be briefly reviewed in the following.

A Weighting method

The weighting method converts the original MOP into an SOP by forming a linear
combination of the objectives:

maximize y=f(X)=w;- f1(X)+wy - L (X)+..+w,, - (%),

where w;, i € [1, m], is the weight for the i-th objective f;. Usually, 0 <w; <1, and

m
ZWZ' =1.
i=l

The weight w; indicates the relative importance of the objective f; and it must be
specified for each of the m objectives beforehand. Solving the above SOP for a certain
number of different weight combinations yields a set of solutions which approximates
the Pareto optimal set.

[Deb(1999)] and [Zitzler(1999a)] mentioned the disadvantages of the weighting
method. The main disadvantage is that it can not find Pareto optimal solutions in
MOPs with a non-convex Pareto optimal front. This is illustrated in Figure 3.3 with a
2D objective space. For fixed weights w;, w,, a solution X is sought to maximize y =
wi- fi(X) + wa- fo(X). This equation can be reformulated as

fo(®) =——L f1(®) + -,
%) W)
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which defines a line with slope -w;/w; and intercept y/w; in objective space (solid line
in Figure 3.3). Graphically, the optimization process corresponds to moving this line
upwards until it is tangent with the feasible region. The tangent points (here 4 and D)
are found to be optimal solutions. One can now imagine finding other solutions such
as the point £ by changing the slope of the line, namely choosing different values of
wi and w,. However, the points on the non-convex surface e.g. B and C, will never be
found.

slope = -wi/w,

Viw,

. . \
Feasible region \
AY

Figure 3.3  Graphical interpretation of the weighting method for solving multi-
objective problems.

B Constraint method

Another technique of handling MOP is to optimize one objective (possibly the most
important one) and to treat the remaining m — 1 objectives as constraints. Thus the
MOP is converted into and subsequently solved as an SOP:

maximize y=fX)=f(X)
subject to
fi(x)=26, i=1,....,mandi=#].

The lower bounds, &, should be chosen by the optimizer for each of the m — 1
objectives. The Pareto optimal set can be found by solving the above constraint SOP
with different values of 6.

Figure 3.4 shows that the constraint method is able to find optimal solutions
associated with non-convex parts of the Pareto optimal front. Setting j = 1 and & =/
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(solid line) makes the solution represented by D infeasible regarding the given
constraint, while the solution related to C maximizes the objective f;. The non-convex
Pareto optimal solution is obtained. However, there also exists a difficulty with this
method. As depicted in Figure 3.4, if the lower bounds are not chosen appropriately
(e.g. 6 =1, no feasible solution can be obtained for the corresponding SOP. In order
to avoid this situation, a suitable range of values for the 6, has to be known a priori.

e
7 ——
A
\\
B Q\ Feasible
/ R —
C S .
D . Infeasible
\\
E Q\
Ay
\
\
S

Figure 3.4  The constraint method for solving multi-objective problems.

C  Need for better algorithms

Although there exist a few other methods such as goal programming [Steuer(1986)],
min-max approach [Koski(1984)], and others, all these methods have some
difficulties with MOPs. Based on the above discussions on the weighting method and
constraint method, it can be shown that

e Some kind of knowledge about the application problem is required, which may
not be available.

e Some techniques, e.g., the weighting method, are sensitive to the shape of the
Pareto optimal front.

In spite of these difficulties, classical methods are still widely used. What makes them
popular may be attributed to the fact that well-studied algorithms for SOPs can be
used, such as random search algorithms, simulated annealing, tabu search, and Monte
Carlo methods. However, in order to find multiple Pareto optimal solutions, a single
objective algorithm has to be executed several times. As stated in [Deb(1999)],
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“The most profound difficulty with all these (classical) methods is that all
need to be applied many times, hopefully finding one different Pareto
optimal solution each time.”

The above difficulties can be handled by using an evolutionary search algorithm.
Evolutionary algorithm (EA) is a generic term for several stochastic search methods
which computationally simulate the natural evolutionary process. EA embodies the
techniques of genetic algorithms (GAs), evolution strategies (ESs), and evolutionary
programming (EP). These techniques are loosely based on natural evolution and the
Darwinian concept of “survival of the fittest”.

The potential of GAs to become a powerful method for multi-objective
optimization has long been recognized [Schaffer(1985)]. GAs seem particularly
suitable to solve MOPs because they deal simultaneously with a set of possible
solutions, namely, population. This inherent characteristic allows them to find a set of
Pareto optimal solutions in a single optimization run, instead of having to perform a
series of separate runs as in the case of the classical methods. In addition, GAs are
less susceptible to the shape or continuity of the Pareto optimal front. Therefore, GA-
based approaches have recently become established as an alternative to classical
methods.

The next chapter is devoted to GAs, where the principles of GAs, as well as the
multi-objective GAs, will be discussed in detail.

3.6 SUMMARY

In this chapter, we have analyzed the cell planning problem from the viewpoint of
system performance optimization. First, a general description of the problem has been
given. Four kinds of problems i.e. cell selection, cell dimensioning, automatic base
station placement and dimensioning, and growth planning, arise from the cellular
system design practice. Although these problems are different in the given conditions,
their tasks are the same i.e. to design an optimal cellular system which can guarantee
the required performance goals while minimizing the system costs.

The system performance criteria are addressed by the local conditions and global
conditions. The local conditions, including the traffic load and interference
probability, are defined on each single cell, while the global conditions are defined on
the whole system (a set of cells), including the coverage rate, spectral cost, and
financial cost. The global conditions are used as optimization objectives.

Cell planning is a typical multi-objective optimization problem as several
objectives need to be considered simultaneously. The principles of multi-objective
optimization have been outlined in Section 3.5. This section has also reviewed the
classical methods for solving multi-objective problems. The insufficiency of classical
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methods gives rise to the research on genetic algorithms for multi-objective
optimization.



Chapter 4

Genetic algorithms

This chapter seeks to draw attention to genetic algorithms (GAs) for solving cell
planning problems. It begins with a brief introduction to GAs, after which a basic
structure of GAs is described. In order to tailor a GA for a particular problem, the
following issues need to be considered:

e Representing solutions.

e Defining the fitness of individuals (solutions).

e Selecting individuals for producing new solutions.
e Designing genetic operators.

e Reinserting new solutions into the population.

These design aspects will be discussed in Section 4.2. Usually, GAs do not directly
deal with decision variables. Each solution is encoded as a chromosome-like bit-
string. However, some researchers argue that such binary GAs have some drawbacks
when the decision variables are naturally continuous [Michalewicz(1996), Haupt
(1998)]. The direct manipulation of real-valued chromosomes will be considered in
Section 4.3.

As mentioned in Chapter 3, GAs were recognized to be well qualified to tackle
multi-objective optimization problems. Currently, there is rapidly growing interest in
the area of multi-objective genetic algorithms (MOGAs). Section 4.4 will be
concentrated on MOGAs. First, the key elements of GAs for multi-objective search
will be discussed. Then, an algorithm based on non-dominated sorting and elitism
techniques will be introduced. Finally, two tasks (search and decision making) of
multi-objective optimization will also be discussed.

4.1 A BASIC GENETIC ALGORITHM

GAs are stochastic search algorithms inspired by the genetic mechanisms of natural
species evolution [Holland(1975)]. During the course of evolution, natural population
evolves according to the principle of natural selection. Individuals that are adapted to
the environment have a better chance of reproducing, while those that are less fit are
eliminated. This means that the “genes” from the highly fit individuals will spread to
an increasing number of individuals in successive generations. The combination of
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good characteristics from highly fit ancestors may produce the offspring with better
adaptability. Consequently, species evolve to become more and more adaptable to the
environment.

Population

- —

(:\ Q\D_g_ﬂ_p’/ﬂ :) H{ Selection ]
— 11

[ Replacement ] Recombination]

Parent

Children

— [
Dl —f ]

- —_
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Figure 4.1 Main procedures of a genetic algorithm.

In GAs, four main procedures can be identified (see Figure 4.1). Usually,
individuals are encoded as chromosome-like bit-strings. GAs simulate the
evolutionary process by generating an initial population of individuals and iteratively
applying genetic operators i.e. selection, recombination, and mutation, in each
reproductive cycle. First, selection is executed to select a couple of individuals based
on their fitness values. This may be perceived as an allocation of reproductive
opportunities: the higher the fitness value of an individual, the more likely it is to be
selected. On each pair of selected individuals (parents), recombination is applied with
probability p,. In this procedure, the parents exchange their genetic information to
generate two new individuals (children). The selection and recombination operators
compose the cooperation step of the GA. Afterwards, a mutation operator is applied
with a probability of p,, on each child by randomly altering some genes in the child’s
chromosome. This procedure is the self-adaptation step of the GA, and prevents
premature convergence of the population. The new generated children are put into an
intermediate population, called offspring. The reproduction process is repeated until
the offspring is full i.e. a predefined number of children have been produced. The
offspring can either replace all, or a part of the individuals in the initial population.
The so-called incremental replacement is commonly used, in which the less fit
individuals are replaced. The execution terminates when the population is convergent
or a given number of generations have been run through. More detailed discussion of
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the various aspects of GAs can be found in [Goldberg(1989), Fogel(1995), and
Michalewicz(1996)].

In the following, the basic structure of GAs is summarized. This basic GA is a
necessary foundation for building more advanced GAs, and consists of six procedures
as described in Algorithm 4.1, where the population and offspring are represented by

P and P’, respectively.

Algorithm 4.1 (Basic genetic algorithm)

Input: T —The given number of generations
K —Population size
K' — Offspring size
pr —Recombination probability
pm — Mutation probability

Output:  The best solution in P

Step 1 (Initialization):
Sett=0and P = ;
Fori=1, .., Kdo
1) Create an individual a; randomly or heuristically;
2) P=Puia;}.

Step 2 (Evaluation):
For each individual a; € P do
1) Calculate the objective function f( a; );
2) Assign a fitness value z; to a;.

Step 3 (Reproduction):
Set P'=;
Fori=1, .., K'do
1) Select two individuals @, b € P according to a given scheme
and based on the fitness values;
2) Recombine @ and b with the probability p,, resulting a child

Ci,
3) Mutate c; with the probability p,,;
4) P'=P'u{c}.
Step 4 (Replacement):
Replace the less fit individuals in population P with the children in

offspring P'.

Step 5 (Termination):
(=t+1;
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If £ > T or another stopping criterion is satisfied then terminate,
else go to Step 2.

It must be emphasized that this algorithm does not reflect a GA in its most
general form as, for example, the population size need not be restricted and
recombination can also involve more than two parents. Moreover, a large number of
selection, crossover, and mutation operators have been proposed for different
representations, applications, and so forth. These aspects will be discussed in the next
section.

4.2 DESIGN ASPECTS OF GENETIC ALGORITHMS

The mechanism of GAs is neither governed by the use of differential equations nor
does it behave like a continuous function. It possesses the unique ability to search and
optimize a solution of a complex system, where other mathematical oriented
techniques may have failed to compile the necessary design specifications. This
property makes GAs be able to solve a number of engineering problems.

In order to design a GA for solving an application problem, the following
questions are inevitable:

e How to represent solutions?

e How to evaluate the solutions?

e How to select individuals for mating?

e How to produce offspring?

e How to insert the offspring into the population?

These aspects will be discussed next.

4.2.1 Representation

GAs do not directly deal with the decision variables of the optimization problem.
They work with chromosome-like codes which represent the solutions. Thus, the first
issue in a GA application is how to represent solutions of the problem under study i.e.
how to use a data structure that is appropriate for the problem. The method of
representation has a major impact on the performance of the GA. Different
representation schemes might cause different performance in terms of accuracy and
computation time.

The number of possible representation schemes is endless. In the GAlib
[Wall(1999)] several kinds of genomes are implemented, such as bit-string, vector,
matrix, and tree. Among them, two representations are commonly used in GAs. The
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preferred one is the bit-string representation. The reason for this method being
popular is that the binary alphabet offers the maximum number of schemata per bit
compared to other coding techniques [Michalewicz(1996)]. The second representation
method is to use a vector of integers or real numbers, with each integer or real number
representing a single parameter of the decision vector.

[Zitzler(1999a)] distinguished the decision vectors and their representation by
specifying two state spaces: an individual space P and a decision space X, as shown in
Figure 4.2. Given a decision vector X; € X, the mapping function g encodes it based
on an appropriate representation scheme to get the corresponding individual ; € P. In
brief, a; = g(X;). The individual &; is then manipulated by the GA.

Individual space P Decision space X Objective space Y

Figure 4.2  Relations between individual space, decision space, and objective space.

4.2.2 Evaluation and fitness assignment

GAs are more attractive than gradient search methods because they do not require
complicated differential equations or a smooth search space. The GA needs only a
single measure of how good a solution is compared to the other solutions. The
objective function (also called cost function for a minimization problem) provides
such a measure: given a solution, how good is it relative to others?

Since the objective function is defined on the decision vector, each individual
must be decoded before its objective function can be calculated. This situation is
illustrated in Figure 4.2. First, the inverse mapping function g derives the decision
vector X; from the individual a; i.e. X;= g'l(ai). Then, the objective function f'is
applied to X; such that y; = f(X;). As a result, the objective vector of the
corresponding solution is obtained.
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The quality of an individual is evaluated by a scalar value, the so-called fitness.
The fitness can be viewed as the number of offspring an individual is expected to
produce through selection. It is fundamentally different from the objective vector
(even in single objective optimization), which is intrinsic to the problem and reflects
the GA’s optimality condition. On the other hand, the fitness assignment relates to the
selection process, being a customizable part of the optimization strategy. There are
essentially two types of fitness assignment approaches: scaling and ranking
[Goldberg(1989), Fonseca(1995a)].

A Scaling

Scaling is the more traditional approach, only applicable to a single objective. The
fitness is computed as a monotonic, possibly non-linear, function of the objective
score. Caution must be taken to ensure non-negative fitness for all individuals, while
giving the best individual in the population a dominated advantage over the others.

Three scaling methods are suggested in [Goldberg(1989)]: linear scaling, power
law scaling, and sigma scaling. As the name implies, linear scaling simply maps an
objective score to a scaled fitness using a linear function. In power law scaling, the
scaled fitness is taken as some specified power of the objective score. Sigma scaling
is named from the population standard deviation (o), and uses population variance
information to preprocess the objective scores prior to scaling.

B Ranking

With scaling, an individual much stronger than all the others may be assigned a very
large relative fitness and, through selection, rapidly dominate the population.
However, the advantage of the best individual over the rest of the population will
become trifling if most individuals perform more or less equally well, and the search
will degenerate into an aimless walk. To circumvent this scaling problem, a ranking
method could be used [Fonseca(1995a)].

Ranking is performed by sorting the population based on the objective scores,
and subsequently assigning fitness to each individual according to its position (or
rank) in the population. Note that here the fitness is related to the whole population,
whereas with scaling and some other techniques, an individual’s fitness value is
calculated independently of other individuals. Hence, the best individual is always
assigned the same relative fitness. The would-be “super” individuals can never
reproduce excessively. On the other hand, when all individuals perform almost
equally well, the best individual is still unequivocally preferred to the rest.

Rank-based fitness assignment is characterized by the rank-to-fitness mapping,
which is usually chosen to be linear or exponential. Assume that the population size is
K, and the best individual is ranked 0 and the worst is K — 1. Linear mapping can be
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written as follows:

z,-=Z-(1— ' j (1)

K-1

where z; is the fitness and r; is the rank. Z is the relative fitness desired for the best
individual and Z > 0 such that z; € [0, Z]. Exponential mapping derives the fitness
value from the individual’s rank using a function of the form:

z;=7-p", 0<p<l. (4.2)

Again, Z is the desired fitness of the best individual in the population.

The ranking method can also be applied to multi-objective optimization. Fitness
assignment regarding multiple objectives will be discussed in Section 4.4. The
relative fitness z;, not the objective vector y;, is used in the selection process.

4.2.3 Selection methods

To generate good offspring, a good parent selection method is necessary. Selection is
a process used for choosing individuals to participate in reproduction. The chance of
selecting an individual for mating should be directly proportional to its fitness so that
more children are produced by highly fit individuals. The selection procedure
determines which individuals actually influence the production of the next generation
and, consequently, is an essential part of the search strategy. It has a significant
influence on driving the search towards a promising area and finding good solutions
in a short time. On the other hand, the diversity of the population must be maintained
to avoid premature convergence and to reach the global optimum.

In GAs, selection is usually performed stochastically. The best known method is
roulette wheel selection [Goldberg(1989)]. This method consists of a sequence of
independent selection trials where the probability of each individual being selected is
proportional to its fitness. The so-called reproductive probability is defined as

(4.3)

where z; is the fitness of individual @;, and K is the population size.

There is another well-known selection method, called tournament selection
[Hancock(1994)]. In this selection k individuals are randomly picked from the
population at a time (k-tournament), and the individuals are compared to each other.
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The one with the best fitness is declared the winner of that tournament and selected.
Tournament selection is particularly convenient when it is easier to compare
individuals than to compute their absolute performance, as is often the case in genetic
programming.

However, tournament selections are criticized for their strong tendency to select
individuals with better fitness. The worse ones have no chance to be selected. This
may result in premature convergence. Thus, we use a probabilistic binary tournament
selection. Each time two individuals @; and a, are randomly chosen to join a
tournament. The probability for a; winning the tournament is p = z/(z;+ z,), and the
probability for a, is 1 — p. In this method, both individuals have a chance to be
selected, depending on their fitness.

4.2.4 Genetic operators

Repeated selection from the same population would produce nothing better than
multiple copies of the best individual originally in it. For improvement to be able to
occur, some novelty must be introduced into the population between selection steps.
Genetic operators modify the selected individuals by manipulating their
chromosomes. The genetic operators can be classified into two main categories -
recombination and mutation.

The implementation of recombination and mutation necessarily depends on the
underlying genotypic representation. Further, the performance of the same operator
generally depends on the problem under consideration. A great deal of research has
been put into identifying the best genetic operators for various classes of problems.
The development of the edge recombination operator for the travelling salesman
problem (TSP) is a good example [Davis(1991)].

A Recombination

This operation causes individuals to exchange genetic information with one another,
in pairs or larger groups. The main idea is to generate new individuals by integrating
good characteristics of highly fit individuals. An effectively designed recombination
can significantly accelerate the search process, especially in the case where decision
variables are loosely coupled.

A typical recombination operator for binary and other string-like chromosomes is
one-point crossover, whereby two individuals exchange a portion (right or left) of
their chromosomes to produce offspring, as illustrated in Figure 4.3. The crossing
point is selected at random. Other recombination operators commonly used with
string-like chromosomes are: two-point crossover where two crossing points are
selected instead of one, and uniform crossover where each gene is exchanged
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independently, based on a randomly generated crossover mask.

Lofrfrfofriefofr]  crosoer  [offt ot o]0 1]

[tftfofofrjofo]t] L1 fofofr ol

i
Crossing point

Figure 4.3  One-point crossover for bit-string chromosomes.

A so-called fusion crossover is suggested in [Hifi(1997)], which takes account of
both the structure and relative fitness of the parents. Assume that the parents are
represented by two vectors a; and @y, their fitness values are z; and z,, respectively.
The child is represented by ¢ . For each gene c; of the child, the fusion crossover does

1. Ifa;;=a,; thensetc;,=a;;

2. Ifay; # ay; then set ¢; = a;; with a probability p = z)/(z1+ z2), or ¢; = ap; with
probability 1 — p.

The advantage of this crossover is that it is able to create more different children
when the parent individuals are very close in structure than the frequently used one-
point or two-point crossover operators, so as to maintain the necessary diversity of the
population.

B Mutation

The mutation operator is applied for each new generated child after crossover. It
works by randomly altering some genes in the child’s chromosome. Usually, only a
small part of the chromosome is changed by mutation, causing offspring to inherit
most of the features of the parents. Mutation is recognized to be an important, active
search operator. It forces the algorithm to search new areas. Eventually, it helps GAs
avoid premature convergence and find the global optimum.

Mutation means different things for different chromosome types. For instance, a
typical mutation for binary chromosomes (bit-strings) flips each bit independently
with a given probability (i.e., mutation probability), while a mutation for real number
chromosomes would alter the values of some genes. Mutation operators for real-
valued genetic algorithms will be discussed later in Section 4.3.

Selecting the various GA parameters, such as the recombination rate and
mutation rate, is still more of an art than a science. A typical value between 0.6 and
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1.0 is used as the probability of recombination (p,), while mutation rates (p,,) are
normally below 0.1. For string-like chromosomes, p,, is usually set to about the
inverse of the chromosome length. This has been shown theoretically to be optimal
(under restrictions) [Béack(1993)], and observed experimentally to perform well on a
wide range of problems.

4.2.5 Replacement scheme

After a predefined number of children have been produced through the genetic
operators, a replacement operation is required in order to modify the old population
with the new generation. Replacement can be implemented in a variety of ways. In the
simplest GA, for example, the parental population is completely replaced with the
offspring. This is known as generational replacement.

There is also interest in GAs where children have the chance to compete with
some of the parent individuals. In the case known as incremental replacement, a small
number of offspring (smaller than the population size) is generated. These offspring
are then evaluated, and possibly inserted into the population by replacing

e their own parents,

e the worst individuals in the parental population,
e the oldest individuals in the parental population,
e random individuals in the parental population.

Actual replacement may occur

e unconditionally,

e only if the offspring are better than the individuals they are to replace,

e probabilistically, depending on how good the offspring are compared to the
individuals they are to replace.

Besides, when replacing an individual, care must be taken to prevent a duplicate
individual from entering the population. A duplicate individual is identical to some
member of the population. It is undesirable because the population with duplicate
individuals could come to consist of all identical individuals, thus severely limiting
the GA’s ability to search new areas to find the global optimum.

43 REAL-VALUED GENETIC ALGORITHMS

Originally, the concept of GAs was based on binary chromosomes. Regardless of the
problem, the candidate solutions would be mapped into bit-strings and then
appropriate genetic operators are applied. Such binary GAs have some drawbacks
when applied to parameter optimization problems with variables over continuous
domains e.g. the cell dimensioning problem. In such a problem, each parameter
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requires many bits to fully represent it. If the number of parameters is large, the
chromosome length grows quite quickly, making the GA perform poorly. Thus, it is
more logical to represent the continuous parameter with real numbers.

When the parameters are naturally discrete, the binary representation fits nicely.
However, when the parameters are continuous, a vector of real numbers should be
used instead of bit-strings. For continuous parameter optimization problems, real-
valued GAs have the following advantages compared to binary GAs, as observed in
[Haupt(1998)]:

e The real-valued GA has a more accurate representation of the continuous
parameter, since the binary GA has its precision limited by the chromosome
length.

e The real-valued GA evaluates the solutions more accurately as the objective
function is calculated with real parameters.

e The real-valued GA requires less storage than the binary GA because a single
floating-point variable is used instead of a large number of bits.

e The real-valued GA simplifies the problem of coding and decoding of individuals
and decision vectors.

4.3.1 Genetic operators for real-valued chromosomes

Real-valued GAs have the same workflow as binary GAs, as described in Algorithm
4.1. What makes them different is the representation method where parameters are no
longer represented by bits of Os and 1s, but instead by real numbers over whatever
range is deemed appropriate. This difference makes the genetic operators
(recombination and mutation) designed for bit-strings unable to be used directly for
real number vectors. In this section, we will present some genetic operators that are
particularly designed for real-valued chromosomes. More discussions about real-
valued genetic operators can be found in [Michalewicz(1996), Haupt(1998), and
Cvetkovi¢(2000)].

A Recombination

Assume that the parents are represented by two vectors a; and a,. There are several
recombination operators for producing the child, which is represented by a vector ¢ .

Discrete recombination: In this case, the child’s gene ¢; € {ai; a;}. This
corresponds to the uniform crossover in the binary case. The probability of
choosing a;; or a,,; could also be specified, as in the fusion crossover described
in Subsection 4.2.4.

The problem with this recombination is that no new information can be
introduced. The parameter values of the initial population are propagated to the
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next generation, only in different combinations.

Linear recombination: The linear recombination remedies the above problem by

blending the values of the parent’s elements. The child is generated by applying
a linear function in the form

¢i=p-a;+(1=-p)ay;, 0<p<I, 4.4)

where £ is a random number. It could be fixed for all the elements or vary with
different elements. Choosing which elements to blend is the next issue.
Sometimes, this linear combination is done for all elements to the left, or right,
of some crossover point.

The linear recombination is also called intermediate recombination as the values
of new parameters are chosen between the values bracketed by the parents. It
does not allow introduction of values beyond the extremes already represented
in the population. To do this requires an extrapolating method, making —d < S <
1 + d. However, the parameter d must be carefully chosen to avoid any value
outside the range [L;, U;], where L,, U; represent the lower bound and upper
bound for the element ¢;, respectively.

Simulated binary crossover (SBX): SBX produces two children, represented by c;

and c,, from the parents a; and a,, where the distance between the children is
proportional to that of the parents. For each element, a probability distribution
function is specified for the proportion r = |(c1,; — ¢2.1) / (a1.; — a2.)|:

05-(1+n)-r1, if r<1
pery={0> rmer, it 4.5)
0.5-A+n)/r=", ifr>1

where 7 is a non-negative real number. The procedure of computing c;; and ¢, ;
is described as follows [Deb(1995)].

1. Generate a random number u € (0, 1);

2. The parameter S is determined in such a way that the area under the
probability curve from 0 to £ just equals to the chosen random number u,
1.e.,

u= Lﬁ P(r)dr. (4.6)

So we have



4.3. REAL-VALUED GENETIC ALGORITHMS 77

1
Qu)'*7, if <0.5
B = 1 4.7)
( ! ]”’7, if u>0.5.
2(1—u)
3. Finally,
e =0.5-((1+ By -ay; + (=) -ay;), (4.8)
¢ =0.5-((1=B)-ay; + 1+ f)-az;). (4.9)

SBX has two important properties:

e The extent of the offspring is proportional to that of the parent individuals.
e  Values near the parent individuals are more likely to be chosen than those
far away from them.

B Mutation

The common mutation operator for the binary case where only one or two bits are
flipped can not be used for real-valued chromosomes because the concept of
complementary value is not defined. For a real number vector a, the following
mutation operators can be used:

Uniform mutation: For each element ¢; that is going to be mutated, choose a random
value (uniform probability distribution) from the range [L;, U;] and assign this
value to the element. Here, L; and U, are the lower bound and upper bound of a;,
respectively.

Gauss mutation: This mutation is similar to the previous one. The only difference is
that the random value is chosen according to Gaussian distribution - smaller
jumps are much more probable than large jumps. This is a standard evolutionary
strategic mutation.

Exponential mutation: This mutation comes from the idea that the role of mutation
at the beginning is to make large jumps whereas later on, as the search
progresses, it should be used more for fine-tuning so small jumps are more
desirable.

[Michalewicz(1996)] presented such a mutation. If an element q; is selected to
be mutated, its value is changed by

a; —o(t,a; — L;), if arandom binary digitis 0
<={’ (.0~ L) e (4.10)

a; +8(t,U; —a;), if arandom binary digit is 1
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where 7 is the generation number. Again, L; and U, are the lower bound and
upper bound of a;, respectively. &, x) is an exponential function, which returns
a value in the range [0, x] such that the probability of Xz, x) being close to 0
increases as ¢ increases. This property causes the mutation operator to search the
space uniformly at the beginning (when 7 is small), and very locally at later
stages. An example of the exponential function can be defined as follows:

n
5(t,x)=x-u-[1—%) . 0<us<l, @.11)

where u is a random number, 7' is the maximum number of generations, and 7 is
an exponent that determines the probability distribution.

44 MULTI-OBJECTIVE GENETIC ALGORITHMS

The application of GAs to multi-objective optimization seems a logical next step.
Early in their development, it was recognized that GAs could be possibly well-suited
to multi-objective optimization because of their ability to capture multiple Pareto
optimal solutions in a single run and to exploit similarities of solutions by
recombination. Some researchers suggest that multi-objective optimization and
decision making might be an application area where GAs do better than other
optimization algorithms [Zitzler(1999a)].

The first practical GA-based algorithm for multi-objective optimization was
presented by [Schaffer(1985)]. Thereafter, a few different implementations of
MOGASs were proposed such as [Fonseca(1993)], [Horn(1994)], [Srinivas(1994)], and
[Zitzler(1999b)]. These approaches were successfully applied to various MOPs and to
real-world engineering design problems. With the development of many new
algorithms and numerous applications, some researchers have attempted to summarize
the studies in the area of multi-objective optimization from different perspectives
[Fonseca(1995b), Horn(1997), Deb(1999), Coello(1999), and Zitzler(1999a)].

4.4.1 Multi-objective search techniques

What makes MOGAs attractive can be attributed to several desirable characteristics.
The most important is the population-based search mechanism. Multiple individuals
can search for multiple solutions in parallel. Additionally, the ability to handle
complex problems, involving features such as discontinuities, multi-modality, disjoint
feasible spaces and noisy function evaluations, reinforces the potential effectiveness
of GAs in multi-objective search and optimization.

However, according to the goals of multi-objective optimization, as mentioned in
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Subsection 3.5.2, two major issues must be considered when applying a GA for multi-
objective optimization [Zitzler(1999a)]:

e How to accomplish fitness assignment and selection, respectively, in order to
guide the search towards the global Pareto optimal set.

e How to maintain population diversity in order to prevent premature convergence
and achieve a well distributed and well spread non-dominated set.

In order to handle the above problems, many different multi-objective search
techniques have been proposed. This results in different implementations of MOGAs.
In the following we will discuss the most popular methods for fitness assignment
(also selection) and techniques for maintaining the population diversity.

A Pareto-based fitness assignment and selection

As mentioned in Subsection 4.2.2, fitness is understood as reproduction probability
i.e. the number of offspring an individual is expected to produce through selection.
Also in Subsection 4.2.2, fitness assignment for single objective optimization is
considered and two types of fitness assignment approaches, scaling and ranking, are
presented. However, since the population can not be totally ordered in the case of
multi-objective optimization, fitness assignment and selection must allow for several
alternative tradeoffs of the objectives. This is the most difficult task for designing an
MOGA.

The idea of calculating an individual’s fitness on the basis of Pareto dominance
was first suggested by David Goldberg in his book [Goldberg(1989)]. He presented an
iterative Pareto ranking procedure. First, the currently non-dominated individuals are
assigned rank 1 and removed from the population. Next, a new set of non-dominated
individuals is identified and assigned rank 2, and also removed. This process
continues until all members of the population are ranked. Finally, the fitness of an
individual is assigned according to its rank.

This idea has been taken up by many researchers, resulting in several Pareto-
based approaches for fitness assignment and selection. Srinivas and Deb implemented
Goldberg’s idea most directly [Srinivas(1994)]. In their non-dominated sorting
genetic algorithm (NSGA), the above Pareto ranking procedure is used to sort the
population according to the individual’s rank. The individuals with the same rank
constitute a tradeoff front. For each front, fitness sharing is performed separately in
order to maintain population diversity. Fitness sharing techniques will be discussed
later in this section.

Fonseca and Fleming implemented Goldberg’s suggestion in a slightly different
way [Fonseca(1993)], whereby the population is ranked according the “degree of
domination”. An individual’s rank depends on how many individuals dominate it. All
non-dominated individuals are therefore assigned rank 1, while dominated ones are
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penalized - the more members of the current population that dominate a particular
individual, the lower is its rank. This ranking scheme is more fine-grained than
Goldberg’s because it can distinguish more ranks.

Horn, Nafpliotis, and Goldberg implemented a selection method, rather than
fitness assignment, using a Pareto domination tournament [Horn(1994)]. Two
randomly selected competitors are compared with a sample of the current population.
If one of the competitors is dominated by a member of the sample, and the other
competitor is not dominated, then the non-dominated individual wins the tournament.
If both or neither are dominated, then fitness sharing is used to determine the winner.
The Pareto domination tournament can be seen as a locally calculated, stochastic
approximation to Fonseca and Fleming’s globally calculated degree-of-domination
ranking.

B Fitness sharing

Maintaining a diverse population is crucial for the efficiency of an MOGA. Fitness
sharing is the most frequently used technique, aims at promoting and maintaining
multiple sub-populations (called niches in the literature) along the Pareto optimal
front. It is based on the idea that individuals in a particular niche have to share the
available resources. The more individuals are located in the neighborhood of a certain
individual, the more its fitness value is degraded.

The neighborhood is defined in terms of the distance dj; between individuals and
specified by the so-called niche radius ... Mathematically, the shared fitness z; of
an individual a; € P is equal to its old fitness z'; divided by its niche count:

Z = (4.12)

where Sh(d;) represents a sharing function. An individual’s niche count is calculated
as the sum of sharing values between itself and the other individuals in the population.
A commonly used sharing function is

d;

o
_J1- , ifd; <o
Sh(d,-j) = [ C chare } i share (4.13)
0, otherwise
with an exponent > 1. In Srinivas and Deb’s NSGA, for instance, o= 2 is used.

Obviously, the niche radius o4 1S an important parameter for fitness sharing.
[Deb(1989)] suggested that
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1
O share X ——— (4.14)
2-%q

where ¢ is the desired number of distinct Pareto optimal solutions and 7 is the number
of decision variables i.e. the length of the decision vector. It has been shown that the
use of above equation with ¢ = 10 works well in many test problems [Deb(1999)].

Furthermore, depending on how the distance dj; is measured, three types of fitness
sharing can be distinguished:

e  Fitness sharing in individual space (dj = ||a;— a |]).
e Fitness sharing in decision space (d;; = || X;— X))

 Fitness sharing in objective space (d; = || y; — ¥,

where || - || denotes an appropriate distance metric.

C  Pareto strength and elitism

Zitzler and Thiele have recently suggested a multi-objective optimization algorithm
[Zitzler(1999b)], called strength Pareto evolutionary algorithm (SPEA). The fitness
assignment of SPEA is also based on the concept of Pareto dominance, but, rather
than ranking, it assigns fitness according to the so-called Pareto strength of non-
dominated individuals. The Pareto strength of an individual is proportional to the
number of individuals it dominates.

Let P; denote the non-dominated set regarding the population P, and P, denote
the dominated set. For each individual @; € Py, its strength s; is calculated as

| Py | +1

(4.15)

S

The fitness of a; is equal to its strength i.e. z; = s;. Obviously, 0 < z; < 1 for all
a; e P;. Here, the minimization of fitness is desired - smaller fitness value, higher
reproduction probability. The fitness of an individual a; € Py is calculated by
summing the strengths of all the individuals a; € P;, by which &, is dominated. One
is added to the sum such that z; > 1, guaranteeing that members of P; have better
fitness than members of P,.

=l 2 s (4.16)

aePy;na;-a;

This fitness assignment ensures that the search is directed towards the non-dominated
solutions and simultaneously diversity among dominated and non-dominated
solutions are maintained.
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Zitzler and Thiele also suggested maintaining an external population at every
generation, storing all non-dominated solutions discovered so far. This external
population is called elite. The strategy of preserving the currently best solutions is
called elitism. It has been shown that elitism helps in achieving better convergence for
MOGA:S.

Besides maintaining an external elite population, there are other implementations
of elitism. The method originally suggested by [De Jong(1975)] is achieved by simply
copying a certain percent of the best individuals to the next generation. Another often
used method is to combine the parent population and the offspring together. The best
50% of the combined population is preserved. In this way, previously generated good
solutions are given a chance to carry over to subsequent generations. This method is
implemented in the following MOGA.

4.4.2 Elitist non-dominated sorting genetic algorithm

The original non-dominated sorting genetic algorithm (NSGA) was proposed by
Srinivas and Deb in [Srinivas(1994)]. This algorithm comprises two main procedures.
A Pareto ranking procedure is used to emphasize the non-dominated individuals and a
fitness sharing procedure is used to maintain diversity in the population. Later on,
motivated by improving the original NSGA, [Deb(2000a)] proposed a new version of
NSGA, called NSGA-II, which differs from the old version in three aspects. First, the
new non-dominated sorting procedure is much faster. Second, NSGA-II uses a
crowded comparison operator instead of fitness sharing such that it does not require
the sharing parameter oy, Finally, an elitism policy is introduced to prevent the loss
of good solutions. This algorithm is presented next.

A Non-dominated sorting approach

It is demonstrated that the computational complexity of sorting a population of size K
according to the level of non-domination is O(mK3), where m is the number of
objectives [Deb(2000a)]. In case of large population sizes, it is very time-consuming.
Algorithm 4.2 gives a fast non-dominated sorting approach which requires at most
0(mK2) computations.

Two entities are used to measure the dominance status for each solution ag; : (1) n;,
the number of solutions which dominate a;, and (ii) D;, a set of solutions which are
dominated by a;. The calculation of these two entities requires O(mK?) comparisons.
All solutions with n; = 0 are put in a list F7, called the current front. For each solution
a; in the current front, each member a; of D, i.e. the dominated solution of a;, is
modified by reducing its 7; count by one. If », = 0 for any member &, it will be put in
a separate list H. When all members of the current front have been checked, F; is
declared as the first non-dominated front, and the process continues using the newly
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found H as the current front. Each such iteration requires O(K) computations. The
above procedure is repeated until all fronts are identified. Since at most there can be K
fronts, the worst case complexity of this loop is O(K?). The overall complexity of the
algorithm is therefore O(mK>) + O(K?) or O(mK>).

Algorithm 4.2 (Non-dominated sorting)
Input: P —Population
Output: The non-dominated fronts F,, ¥ =1, 2, ...

Step 1:

Set 'y =,

For each a; € P do

1) Setn;=0and D;=;

2) Foreach a; € Pdo
If a; dominates a; then D;=D,; U {a; },
else if a; dominates a; then n; = n; + 1;

3) Ifn;=0then Fi=F; U {a;}.

Step 2:
Setr=1;
While F, # & do
1) SetH=;

2) Foreach ag; € F, do

For each a; € D; do

a) m=n-—1;

b) Ifn,=0then H=HuU {a,}.
3) Letr=r+1andF,=H.

B Crowded comparison operator

Traditional approaches of maintaining diversity in a population are based on the
concept of fitness sharing, which requires a pre-specified parameter oyuu.. The
performance of some MOGAs is very sensitive to this parameter. In order to avoid
this difficulty, [Deb(2000a)] proposed a crowded comparison method, where the local
density of a particular solution is measured by the distance between its neighboring
solutions along each of the objectives. This distance is defined as crowding distance.
As shown in Figure 4.4, the crowding distance of the i-th solution (represented by
point i) in its front (marked with a dashed curve) is the side-length of the cuboid
enclosing it.
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Non-dominated front

S

Figure 4.4 Crowding distance of an individual in the non-dominated front.

The crowded comparison operator uses two criteria to compare different
solutions: the non-domination rank (7;) and crowding distance (d;). Solution a; is
considered better than a,, if r; <r;, or in case r; = r;, d; > d;. This method emphasizes
the solution having lower rank i.e. the solution close to the Pareto optimal front. For
two solutions in the same front, the one with larger crowded distance is preferred. By
this way, solutions from less dense regions in the search space are given more chance
in the selection process. This method makes sure that the search is guided towards a
uniformly outspread Pareto optimal front.

C Elitism

It is well established through a number of studies that elitism can improve the
performance of GAs. However, the implementation of elitism in MOGAs is
substantially more complex. In the context of multi-objective optimization, there is an
elite set instead of one best individual in single objective optimization. All solutions
that belong to the current non-dominated front are best solutions in the population
because none of them can be said to be better than the other if no preference
information is given. Thus, all these solutions are elite solutions. The elite set size can
be considerable compared to the population. On many occasions, the population may
be mostly composed of current non-dominated solutions. This could cause premature
convergence.

In [Deb(2000b)], a controlled elitism mechanism was introduced for NSGA-IL. In
each front, a predefined number of individuals are maintained. Here, a geometric
distribution of the front size is used:

ny =p Ny (4.17)
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where 7, is the maximum number of allowed individuals in the r-th front and p is the
reduction rate, 0 < p < 1. Assume that the elitist population size is K and the
combined population is ranked according to Pareto dominance, resulting R non-
dominated fronts. The controlled size of the r-th front is

I LI (4.18)
l-p

Since p < 1, each front is restricted to have an exponentially reducing number of
solutions. The first front, which comprises the current non-dominated solutions, is
largest.

This controlled elitism approach allows solutions from many different fronts to
co-exist in the population, making the recombination operator able to create diverse
solutions. This is an important feature for preventing premature convergence.

The elitist non-dominated sorting genetic algorithm is described in Algorithm 4.3.
This algorithm is based on the structure of Algorithm 4.1. Some steps, e.g.
initialization and reproduction, are identical. Moreover, the above discussed multi-
objective search techniques, such as non-dominated sorting, crowded comparison, and
controlled elitism, are implemented.

Algorithm 4.3 (Elitist non-dominated sorting genetic algorithm)

Input: T —The given number of generations
K —Population size
pr» — Recombination probability
pm — Mutation probability
o —Reduction rate of the controlled elitism

Output:  Non-dominated solutions in P

Step 1 (Initialization):
Setr=0and P'=
Generate an initial population P according to Step 1 in Algorithm
4.1
Calculate the objective functions for each individual.

Step 2 (Non-dominated sorting):
P=PuUP,
Do non-dominated sorting according to Algorithm 4.2, resulting the

non-dominated fronts (F, F», ..., Fg).

Step 3 (Controlled elitism):
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Setr=1and P=O;

While | P | <K do

1) Calculate n, according to (4.18);

2) Sort F, in descending order using the crowded comparison;
3) Put the first n, members of £, in P,i.e., P=P U F,[1 : n];
4) r=r+1.

Step 4 (Fitness assignment):
Assign fitness to each individual according to its position in P.

Step 5 (Reproduction):
Generate an offspring P’ from P according to Step 3 in Algorithm
4.1 (with offspring size of K);
Calculate the objective functions for each individual in P".

Step 6 (Termination):
(=t+1;
If £ > T or another stopping criterion is satisfied then terminate,
else go to Step 2.

4.4.3 Integrated search and decision making

Having an algorithm to find the Pareto optimal front is not the final step for solving a
multi-objective problem. A decision must be made among multiple tradeoffs. The
choice of a suitable solution depends not only on the problem itself, but also the
subjective preference of the human decision maker. Thus, the final solution to the
problem is the result of a search process and a decision making process.

Generally, there are three different ways to handle these two processes involved
in multi-objective optimization [Fonseca(1995a), Zitzler(1999a)]:

Decision making before search: The multiple objectives are aggregated into a single
objective which implicitly includes preference information given by the
decision maker.

Search before decision making: The search process is first performed without any
preference information to find a set of candidate solutions. The final choice is
then made by the decision maker.

Integrated search and decision making: Search and decision making work in an
interactive manner. A preliminary search is performed to give the decision
maker some idea of the range of possible tradeoffs. The decision maker then
gives some preference information to guide the search, which, in turn, presents
further solutions to the decision maker. The interactive process between the
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decision maker and optimization algorithm continues until a satisfactory
solution is found.

The classical multi-objective optimization methods belong to decision making
before search. As discussed in Subsection 3.5.2, these methods may have to run the
optimization algorithm several times if the preferences of the decision maker change,
or the found solution is unsatisfactory. They have also the disadvantage of requiring a
priori knowledge about the application problem and being sensitive to the shape of the
Pareto optimal front.

MOGAS can be classified as search before decision making. They have the ability
to find multiple Pareto optimal solutions in a single optimization run. Since no
preference is assumed, the whole tradeoff surface must be carefully sampled. In case
an intractably large and complex search space is involved, it would be very expensive,
or even impossible, to produce a necessary number of tradeoff solutions.

The integration of search and decision making overcomes the weakness of the
other two approaches and combines the strength of both. Interactively refining
preferences has the potential advantage of reducing computational effort by
concentrating the search in the interesting area from which promising solutions are
more likely to emerge, while simultaneously providing the decision maker with
updated tradeoff solutions, thereby refined decision can be made.

A relatively small amount of research has been done on integrated search and
decision making. Fonseca and Fleming proposed a goal attainment method for their
MOGA [Fonseca(1993)]. First, the MOGA is performed for a few generations. Based
on the non-dominated solutions found by MOGA, the decision maker chooses a target
point to focus subsequent search. The MOGA is then run for a few more generations
using a modified multi-objective ranking scheme that takes account of the
individual’s distance to the target.

In this work, we use an approach based on the principle of goal attainment.
Rather than a target point, a target region is defined by specifying the lower bound
and upper bound for each of the objective functions. The target region is usually a
small portion of the whole search space, and can be adaptively altered according to
the actual tradeoff information. Solutions inside the target region are assigned better
fitness. Thus, the search is guided towards the desired part of the Pareto optimal front,
such that the decision maker can zoom in and get a more accurate description of the
global Pareto optimal front.

45 SUMMARY

This chapter began with a general introduction to GAs. This was followed by a more
detailed analysis of GAs, aiming at designing a particular algorithm for solving an
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application problem. GAs are able to tackle complex problems with features such as
mixed variables and ill-defined objective function, which are difficult to handle by
other optimization techniques.

It is argued that real-valued GAs are superior to the conventional binary GAs for
continuous parameter optimization problems. In real-valued GAs, parameters are
represented by real numbers instead of bit-strings. This makes the bit-string based
genetic operators (recombination and mutation) not applicable to real-valued GAs.
Several genetic operators exclusively designed for real-valued chromosomes have
been introduced.

GAs are particularly well-suited to multi-objective optimization because of their
ability to find multiple Pareto optimal solutions in a single run. A multi-objective GA
has been presented, making use of the non-dominated sorting, crowded comparison,
and controlled elitism techniques. Moreover, an approach has been proposed for
solving multi-objective problems by integrating the search and decision making
processes. This approach, together with the multi-objective GA, will be applied to the
cell planning problems in the following chapters.



Chapter 5
Disk graph models and

the application of genetic algorithms

The purpose of this chapter is to provide a model for studying cell planning problems
and to investigate genetic algorithms, especially, the non-dominated sorting genetic
algorithm (NSGA). The so-called disk graph model (DGM) is used for this purpose.
First, a short introduction to DGM is given, then the local and global conditions are
formulated for DGMs. Afterwards, the DGM is used to study the cell selection
problem in Section 5.2, where NSGA is also investigated. Section 5.3 gives a model
for cell dimensioning. Simulations are made using NSGA with two different
representation schemes: bit-strings and integer vectors. Finally, the BS placement
problem is considered in Section 5.4. The computational complexity makes this
problem intractable, therefore a hierarchical approach is proposed to solve it.

5.1 AN INTRODUCTION TO DISK GRAPH MODELS

5.1.1 Disk graph model and cellular system

Unit disk graph theory has been studied in [Clark(1990) and Marathe(1995)]. A unit
disk graph is defined as an intersection graph of equal-sized circles in a plane. The
intersection graph of # circles is an n-vertex graph with each vertex corresponding to
a circle. Two vertices are connected by an edge if the corresponding circles intersect
(tangent circles are assumed to intersect), as shown in Figure 5.1. Such an intersection
graph is called a unit disk graph. The set of circles is called an intersection model of
the disk graph. There are several other models, such as the containment model and the
proximity model, but they can be easily transformed to an intersection model
[Clark(1990)]. Therefore, we consider only the intersection model of disk graphs what
follows.

Unit disk graphs are a narrow class of graphs. They have some special
characteristics due to the equivalent circle size. A disk graph is a generalization of
unit disk graph, in which the circles are not necessary equal-sized. Potential
applications of disk graphs to cellular system design was first recognized by
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[Hale(1980)], where disk graphs were used to represent frequency assignment
problems (FAPs). In this work, we use DGMs to study cell planning problems.

oy A<D

Figure 5.1 An intersection model of equal-sized circles and the corresponding unit
disk graph. Tangent circles intersect each other, e.g., circle 2 and 6.

(@)}
~

As described in Section 2.3, the coverage of a cell is the geographical area in
which the received power P, is higher than the sensitivity 6, of mobile receivers i.e. P,
> 6. In free space, the received power at a distance d from the transmitter is given by

2
» _DBGG,A

= : 5.1
(47)? d? G-

where P, is the transmitted power. G, and G, are the transmitter and receiver antenna
gains, respectively, and A is the wavelength. The shape of a cell can now be viewed as
a circle, the radius of which is

_ A |BGG,
4\ 6,

d (5.2)

Thus, the cellular system can be described using a DGM. Furthermore, if all the
transmitters have equal transmitted power and the antenna gains are the same, the
cells become equal-sized as their radii are identical. The cellular system is then
simplified as a unit disk graph model (UDGM).

Actually, the DGM represents an ideal cellular system, where flat terrain and
uniform traffic distribution are assumed. Thus, no computation of the field strength
and traffic coverage is needed. The computational time can be significantly reduced.
Here DGMs are used to study cell planning problems, including cell selection, cell
dimensioning, and BS placement. Growth planning is not considered because no
traffic data is used. Although the design scenario is somewhat simplified, the
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complexity of the problems is still the same. Therefore, the algorithms designed for
DGMs are also applicable to real planning problems.

5.1.2 Formulation

The cell planning problem has already been considered in Chapter 3. In order to
formulate these problems using DGMs, some definitions should be reconsidered.

A Coverage

A DGM is a set of cells, C = {cy, ca, ..., cy}, where a cell is represented by a circle ¢;=
(xis yi» ;) with the center (x;, y;) and the radius r,. Suppose that the area under
consideration is digitized as mxn pixels and the pixel size is 1. In DGMs, the coverage
probability P..(x, y, ¢;) i.e. the probability of a point (x, y) being covered by a cell ¢;,
degenerates to a two-valued function

Lot -xp)?+(r-y)? <’

0, otherwise.

Pcov(xayaci)z{ (5.3)

A point (x, y) is said to be covered by a cell ¢; if its distance to the center of the circle
is not larger than the radius. Furthermore, we assume that the assignment probability
is always 1 i.e. Py(x, y, ¢;) = 1. Here, the probabilistic model is not used. Thus the
coverage of ¢; is just the circle area size

Agreg(ci) =112 (5.4)

B Local conditions

Now we redefine the local conditions for DGMs. Two local conditions of a cellular
system were given in Section 3.3: traffic load and interference probability. The traffic
load within a cell must be less than some maximum value corresponding to the
allowed blocking probability. Since uniform traffic distribution is assumed for the
DGM, the traffic load is directly proportional to the cell size. Therefore, this condition
can be addressed by specifying a lower bound and an upper bound for cell radius, i.e.,

rmil’lsrisrmax-, l=1,,N

As we know, mutual interference is caused by the overlapping of cells. In DGMs,
two cells are said to be interfering with each other if the corresponding circles
intersect. Thus the interference probability of a cell ¢; at a point (x, ) is given by
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L, if Pepy(x,y.¢;) =1and Py (x,y.c;) =1 je[LN] j#i
Fim (5. -€1) = 0, otherwise

(5.5)

Furthermore, the average interference probability of ¢; is defined as the proportion of
the overlapping area to the coverage area, i.e.

m n
Z ZPint(x>y>ci)

x=ly=1

area (€i)

Py (¢i) = (3.6)

It is clear that the interference probability must be lower than 1. If P;(c;) = 1, ¢; is
completely covered by other cells. Such a cell can be removed without any loss in the
system coverage.

C Global conditions

Corresponding to the global conditions of a cellular system, three conditions are also
defined on the DGM: coverage rate, spectral cost, and financial cost. Here we
consider only area coverage as uniform traffic distribution is assumed. The area
coverage rate is the same as that given in (3.13), i.e.

m n
z ZPcov(x:yaC)
x=ly=1

Rypea(C) = . 5 (5.7)

where P..(x, y, C) is the coverage probability of the cell set C, as already defined in
(3.11),

N
Pregy (x,3.C) = 1=T J(1 = Pegy (x,3.})). (5.8)
i=1
However, due to P..(x, ¥, ¢;) € {0, 1}, Po(x, v, C) is also two-valued. This is to say
that a point (x, y) is considered to be covered, if and only if there is a cell ¢; € C
covering it.

In Subsection 3.4.2, we discussed the spectral cost in detail. In DGMs, the
spectral cost of a cell set C is calculated by finding the maximum clique in the
corresponding disk graph. It is given by

M,y (C) = max [ Oy |, (5.9)
k=LK
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where K is the number of cliques found, and |Qy| represents the size of the clique Q.
All the available maximum clique algorithms are applicable to disk graphs. For unit

disk graphs, even a polynomial time algorithm can be used to find cliques
[Clark(1990)].

Finally, the financial cost of a DGM is simply calculated as the number of cells
used i.e. E£j;,(C) = |C|, because all the cells are assumed to be the same cost.

5.2 UNIT DISK GRAPH MODEL FOR CELL SELECTION

As discussed in Subsection 3.2.1, the task of cell selection is to find an optimal cell
set from a large number of potential cells. Since the cell sizes are fixed, without loss
of generality, they can be assumed to be equal-sized. Thus UDGMSs can be used.
Formally, the cell selection problem is described as follows:

Definition 5.1 (Cell selection): Given a set of N potential cells C = {ci, ca, ..., cn},
find a subset C' c C, such that the coverage rate R,.,(C") is maximized, the spectral
cost M,.,(C") is minimized, and the financial cost |C'| (i.e. the number of cells in C”) is
also minimized.

5.2.1 Test problems

In order to study algorithms for solving the cell selection problem, the following three
different test problems were investigated, where the area size is 100 x 100 and all the
cells are equal-sized with the radius being 10.

Figure 5.2 Hexagonal distribution of equal-sized cells. This is generally
acknowledged to be the optimum.
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Test problem 1: There are 100 potential cells. Among them, 45 cells are
distributed in a hexagonal structure to cover the whole area, as shown in Figure 5.2.
The other 55 cells are randomly placed in the area.

Test problem 2: There are 200 potential cells randomly generated.

Test problem 3: Cells are placed on a grid with a resolution of 4, such that the
first cell is at the position (4, 4) and the last one is at (96, 96). There are 576 cells in
total.

5.2.2 Simulation results

Numerical simulations of test problem 1 were made using the elitist NSGA, see
Algorithm 4.3. A solution is represented by a bit-string a = (a1, a, ..., ay) in the
following way:

I, if ¢; isselected
;= (5.10)

0, otherwise.
For the purpose of illustration, we first consider only two objectives: the coverage rate

(f1) and the financial cost (£;) i.e. the number of cells selected. GA parameters used in
this simulation are listed in Table 5.1:

Table 5.1 GA parameters used in the cell selection simulation of test problem 1

Parameter Value
Population size K 100
Recombination rate p, 0.9
Mutation rate p,, 0.01
Elitist reduction rate p 0.5

Pareto optimal solutions after running a number of generations are shown in
Figure 5.3. The initial population is randomly generated. At the beginning there are
only a few non-dominated solutions, which constitute a non-dominated front (the
short curve in Figure 5.3). One of the initial non-dominated solutions is shown in
Figure 5.4(a), where 62 cells are used and the coverage rate is 0.9087. After 10
generations, many more non-dominated solutions are found and the non-dominated
front becomes fully outspread. In subsequent generations, better solutions are
obtained. For instance, compare the solutions in generation 10 and those in generation
50. The latter uses less cells for the same coverage rate (as shown in Figure 5.4(b) and
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(¢)), or from another perspective, gets higher coverage rate using the same number of
cells. Observe the history from the beginning to generation 100, we can clearly see
that the search is directed towards the global Pareto optimal set. As shown in Figure
5.4(d), the solution obtained after 100 generations is very close to the hexagonal
geometry that is generally acknowledged to be the optimal cell distribution, see
Figure 5.2. Finally, it requires only 37 cells to achieve a coverage rate of 0.909.

100 | ‘ ‘
—o— Generation 0 | :
80 —— Generation 10
—— Generation 50 |
2 —&— Generation 100 :
8 60 :
| :
$ :
o] |
E 40
z
20
0 -8 B }

0 0.2 0.4 0.6 0.8 1

Coverage rate

Figure 5.3  Simulation results of test problem 1 using elitist NSGA.

(a) One of the initial non-dominated (b) A non-dominated solution obtained
solutions. There are 62 cells and the after 10 generations. There are 50
coverage rate is 0.9087. cells and the coverage rate is 0.9013.
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(c) A non-dominated solution obtained (d) A non-dominated solution obtained
after 50 generations. There are 41 after 100 generations. There are 37
cells and the coverage rate is 0.9126. cells and the coverage rate is 0.909.

Figure 5.4  Illustration of non-dominated solutions obtained in the simulation of test
problem 1.

Also notice how the non-dominated solutions get uniformly distributed over the
Pareto optimal front. Based on the obtained tradeoff information, the decision maker
can find a compromise solution between the conflicting objectives.

A MOGA vs. single objective GA

Furthermore, the NSGA is investigated in comparison with a single objective GA.
Here, Algorithm 4.1 is used. Simulations of test problem 3 were made for this
purpose. Since the problem size is large, we set the population size as 200. The other
parameters are the same as those used in the above simulations. Results after running
100 generations are shown in Figure 5.5. For clarity only solutions with a coverage
rate higher than 0.9 are shown.

Results of the single objective GA are obtained using the constraint method, as
described in Subsection 3.5.2. Each time a coverage rate constraint is specified (from
0.9 to 1). The optimization objective is then to minimize the number of cells selected.
We use the same GA parameters for both algorithms. For each different constraint,
the single GA runs 100 generations and the best solution with minimum number of
cells is shown in the figure.

The constraint method is very time-consuming because the optimization
algorithm has to run many times in order to get different solutions. In contrast, NSGA
can find various tradeoff solutions in a single run. Moreover, the solutions obtained
by NSGA are even better than those of the constraint method.
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In the following, we use the DGM to study the NSGA from various design
aspects. The purpose of this study is to improve algorithm effectiveness for future
application to cell planning problems.

90 ‘ ‘ ;
_a— Single objective GA

80 | -- (10 runs) R e |
—5—NSGA (1 run)

70 |

Number of cells
(@)
o

(o))
o

i
o

0.9 0.92 0.94 0.96 0.98 1

Cowerage rate

Figure 5.5 Multi-objective GA vs. single objective GA.

B Selection method

Two different selection methods are investigated: a roulette wheel selection and a
binary tournament selection, as described in Subsection 4.2.3. Simulations have been
performed for all three test problems with both selection methods. The population
sizes are 100 for problem 1, and 200 for problem 2 and 3, respectively. The number of
generations is 100 for all the simulations. The other parameters are the same as
before. Simulation results are shown in Figure 5.6. We can see that the binary
tournament selection has better performance than the roulette wheel selection for all
the test problems. The reason is that tournament selection does not rely on scale
information. So it is well-suited to ranking based fitness assignment such as the non-
dominated sorting.
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Figure 5.6  Binary tournament (BT) selection vs. roulette wheel (RW) selection.

C Mutation and recombination

Now we consider the influence of genetic operators, including mutation and
recombination. In order to find the optimal mutation rate p,, and recombination rate p,
for NSGA, numerous simulations were made with p,, ranging from 0 to 0.1 and p,
from 0.6 to 1. The mutation rate is recognized to have a great influence on the
convergence characteristics of GAs. This has also been observed in our simulations,
which used test problem 2 with the population size of 200. Simulation results after
running 100 generations are shown in Figure 5.7. Both p,, = 0.01 and 0.005 achieve
very good convergence. The performance becomes worse if the mutation rate is high
(pm = 0.1) or no mutation is used at all (p,, = 0). This observation corroborates Bick’s
statement that the optimal value of mutation rate is about the inverse of the
chromosome length [Bick(1993)]. For test problem 2, the chromosome length is 200
as there are 200 potential cells. Thus p,, = 0.005 is the optimum.

Concerning the recombination rate, we find that it does not have a significant
influence, but p, = 0.9 or 1 performs slightly better. Furthermore, three recombination
operators presented in Subsection 4.2.4 are investigated. They are one-point
crossover, two-point crossover, and fusion crossover. Simulations of test problem 2
were made using the above recombination methods. The population size is still 200.
In order to investigate the effect of different crossovers, we set mutation rate p,, = 0



5.2, UNIT DISK GRAPH MODEL FOR CELL SELECTION 99

and recombination rate p, = 1. For each of the three crossovers, 100 generations was
used. Figure 5.8 shows the simulation results. It is clearly shown that the fusion
crossover works much better than the other two crossovers, and the two-point
crossover is slightly better than one-point crossover.
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Figure 5.7  Simulation results of test problem 2 with different mutation rates.
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Figure 5.8 Comparisons between one-point crossover, two-point crossover, and fusion

Crossover.
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D Influence of elitism

As observed in [Deb(2000b)], elitism helps in achieving better convergence in
MOGA:s. In the following, we investigate the influence of elitism using test problem
2. As usual, the population size is 200 and the number of generations is 100. Fusion
crossover is used with p, = 0.9 and p,, = 0.005. Simulation results are shown in Figure
5.9. The advantage of elitism is obvious - it keeps all previously found good solutions.
Therefore, it gives many more non-dominated solutions than the non-elitist method.

In order to investigate the effect of the controlled elitism with different reduction
rates, 20 simulations were made using p € [0, 0.95] with an interval of 0.05. We find
that none of them is obviously better than the others. The results of four simulations
(p=0,0.25, 0.5, and 0.75) are shown in Figure 5.9. Although p= 0.5 looks somewhat
better, it is not guaranteed that it excels everywhere. Investigation of different elitist
strategies is an interesting subject of future research in the area of MOGAs.
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Figure 5.9  Simulation results of non-elitism and the controlled elitism with different

reduction rates.

E  Simulations with three objective functions

Based on the above studies, we find that the following GA parameters are suitable for
the application of NSGA to cell planning problems:



5.2, UNIT DISK GRAPH MODEL FOR CELL SELECTION 101

e Binary tournament selection,

e Fusion crossover with p, = 0.9,

e  Mutation rate p,, = 1/N, where N is the chromosome length,
e Reduction rate of the controlled elitism p=0.5.

Finally, simulations were made using NSGA with the above given parameters for
a three objective optimization: coverage rate (f;), spectral cost (£2), and financial cost
(f3). Simulations using all three test problems have been made. The results of test
problem 3 are shown in Figure 5.10, where each point corresponds to a Pareto optimal
solution. These solutions are tradeoffs of the three objectives. For a given number of
channels, the higher the coverage rate, the more cells are needed. On the other hand, if
the number of cells is fixed, more channels are required for a higher coverage rate.
We can also see the relation between the spectral cost and financial cost. Generally,
more channels are required if more cells are in use.
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Figure 5.10 Simulation results of test problem 3 considering all the three objectives:
coverage rate, spectral cost, and financial cost. The points indicate the Pareto optimal
solutions.
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5.3 CELL DIMENSIONING MODEL

In contrast to the cell selection problem, in cell dimensioning the number of cells and
their positions are given. The task is then to adjust the cell sizes in order to minimize
the spectral cost, while achieving maximum coverage rate. This problem can be
formally defined as follows:

Definition 5.2 (Cell dimensioning): Given a set of N cells, C = {ci, ca, ..., cy}, and
the lower bound and upper bound for cell radius, 7y, < 7; < Fpax, i = 1, ..., N, change
the cell radius such that the coverage rate R,.,(C) is maximized and the spectral cost
M,e¢(C) is minimized.

5.3.1 Test problems

The following two different sized problems were investigated for cell dimensioning:

Test problem 4: The area size is 100 x 100. The lower bound and upper bound for
cell radius are given such that ; € [0, 15]*. There are 45 cells regularly distributed in
a hexagonal grid (see Figure 5.2), but their radii are randomly initialized.

Test problem 5: Here the area size is 1000 x 1000, and r; € [0, 255]. 100 cells are
randomly placed in the area. Their radii are also randomly initialized.

Both binary GA and real-valued GA, as discussed in Section 4.3, were applied to
these test problems.

5.3.2 Binary GA vs. real-valued GA

We first use a bit-string chromosome to represent the solution. The number of bits
required to encode a solution is calculated as

B =[1023 (Fmax =~ Tmin + D |- (5.11)

where 7in, Fmax are the lower bound and upper bound for cell radius 7;, respectively.
[x1is the ceiling function that makes a real value x to be rounded up to the closest
larger integer value. Thus, B = 4 bits are required for test problem 4 as there are 16
possible values of cell radius, and B = 8 for test problem 5. Accordingly, the string
length is B-N, where N is the number of cells. A bit-string a = (a1, aa, ..., agy) is
mapped to the cell radius in the following way:

*If the radius of a cell is 0, this means that this cell is not in use so it can be discarded.
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B
=2 a ypep.  i=LLN (5.12)
b=1

In case floating-point parameters are to be optimized, the coding procedure is more
complicated and much longer bit-strings are needed.

As an alternative, an integer vector is used to represent the solution i.e. a = (ai,
a, ..., ay) with a; = r;, for i = 1, ..., N. These two representation methods were
investigated using NSGA with the same GA parameters given in Table 5.1. As to
genetic operators, we use fusion crossover and flip mutation for the binary GA, and
simulated binary crossover and Gauss mutation for the real-valued GA.

We first made simulations of test problem 4. Results after running 100
generations are shown in Table 5.2. We see that both the binary method and real-
valued method find that at least 4 different channels are required for 100% coverage
rate. However, in other cases with 1, 2, or 3 channels, the binary GA achieves better
performance.

Table 5.2 Simulation results of test problem 4 using binary GA and real-valued GA

Binary GA Real-valued GA
Channels Coverage rate Channels Coverage rate
4 1 4 1
3 0.9979 3 0.9944
2 0.8080 2 0.5985
1 0.4613 1 0.2821

Table 5.3 Simulation results of test problem 5 using binary GA and real-valued GA

Binary GA Real-valued GA
Channels Coverage rate Channels Coverage rate

6 0.999751 6 1

5 0.991796 5 0.999751
4 0.947964 4 0.989415
3 0.840031 3 0.857232
2 0.663907 2 0.690286
1 0.229016 1 0.036745
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Furthermore, we also made simulations of test problem 5 using NSGA with the
same GA parameters. The main difference between test problem 4 and 5 is that the
latter uses a longer bit-string (800 bits, instead of 180 bits for test problem 4). Pareto
optimal solutions after 100 generations are listed in Table 5.3. The solutions obtained
by the real-valued GA are better in most cases, except the one with 1 channel. These
results show that real-valued GAs are superior to binary GAs for continuous
parameter optimization such as the cell dimensioning problem, especially when a long
bit-string is required for encoding the solution.

5.4 BASE STATION PLACEMENT MODEL

BS placement is an automatic process, where no potential cells need to be given
beforehand. The algorithm explores all the possible places in the given area in order
to find optimal cell sites. In the first stage, for the purpose of studying algorithms, all
the cells are assumed to be equal-sized such that the problem is not intractable.
Generally the BS placement problem can be described as follows:

Definition 5.3 (Base station placement): Place cells, represented by C = {c|, ¢,
..., CN}, In a given area such that the coverage rate R,.,(C) is maximized and the
spectral cost M,.,(C) is minimized, using the minimum number of cells |C].

It is clear that BS placement problem is more difficult than cell selection because
it has to search for potential cells itself, whereas in cell selection, the potential cells
are given. Since BSs can be located at any place in the area, the computational
complexity of BS placement problem increases exponentially with the area size. For
instance, there are 10,000 potential sites in an area of 100 x 100 pixels, whereas in
case of 1000 x 1000 pixels, the number rapidly rises to 1,000,000. No algorithm is
able to directly tackle such a large problem. Unfortunately, this is a very common
case in mobile network design practice.

5.4.1 Hierarchical approach

In order to reduce the computational complexity, a hierarchical approach is proposed
for the first time [Huang(2000c)]. It starts from a course resolution grid, of which
each pixel is taken as a potential cell site. An optimization algorithm is then
performed to find an optimal cell set from the potential cells. The obtained cells are
further used to search potential cells on the next grid with a higher resolution. Here,
the coverage-oriented cell splitting technique is applied (see Subsection 2.1.1). This
search and optimization process continues until the finest grid is reached, so that
accurate BS positions can be found.

The hierarchical approach can be illustrated by a pyramid structure shown in
Figure 5.11. On the first level all pixels are taken as potential cell sites, some of them
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are selected after the optimization e.g. the shadowed pixels on Level 1. On the next
level, each pixel is divided into a number of subpixels (usually the number is four, as
shown in Figure 5.11). Only subpixels corresponding to the selected one are taken as
potential sites on the finer grid. Thus we have only 16 potential cells on the second
level. By this way, the hierarchical approach can effectively reduce the computational
complexity because it continuously eliminates unfit cells. Cell sites are searched for
only in promising areas such that the search space will not expand exponentially.
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Figure 5.11 Structure of the hierarchical approach.

5.4.2 Simulation results

In order to investigate the hierarchical approach, simulations were made for
automatically placing cells in a given area. The area size is 100 x 100. The cell radius
is assumed to be fixed, say 10. We start the hierarchical approach with a resolution of
8. Initially, 256 cells are evenly distributed and the whole area is covered. NSGA is
then applied to find Pareto optimal solutions. The following GA parameters are used:
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Table 5.4 GA parameters used in BS placement simulations

Parameter Value
Number of generations 7' 100
Population size K 200
Recombination rate p, 0.9

Mutation rate p,, 1/256
Elitist reduction rate p 0.5

U\/\/\/\)

(a) On the first level (with a resolution of 8) (b) Also, on the second level (with a resolution
a solution of 64 cells is chosen, which of 4) a solution of 64 cells is chosen, which
has a coverage rate of 0.9906 and has a coverage rate of 0.9984 and spectral
spectral cost of 6. cost of 6.

(c) One of the non-dominated solutions obtained on the
last level (with a resolution of 2) has 38 cells. The
coverage rate is 0.9042 and the spectral cost is 4.

Figure 5.12 TIllustration of the solutions obtained by the hierarchical approach
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One of the tradeoff solutions should be chosen by the decision maker (here, man-
machine interaction is required). In our simulation, we chose solution C; that has 64
cells and a coverage rate Ry.,(C1) = 0.9906 and spectral cost M,.,(C1) = 6, as shown
in Figure 5.12(a). On the next level, the resolution is 4, and 256 potential cells are
generated according to the cells in C;. The optimization algorithm is executed again
and a solution C; is then chosen, see Figure 5.12(b). It has also 64 cells, but somewhat
better performance of Ru..(C2) = 0.9984 and M,.,(C,) = 6. The above process is
repeated on the next level (now the resolution is 2). The obtained Pareto optimal front
is shown in Figure 5.13.
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Figure 5.13 Simulation results using the hierarchical approach, compared with that of a
non-hierarchical simulation.

For the purpose of comparison, a non-hierarchical simulation was also made,
where cells are placed on a grid with the resolution of 2, one cell per pixel. Thus there
are 2500 potential cells. NSGA is applied and the same GA parameters are used.
Simulation results are also shown in Figure 5.13, where only values of two objectives
are displayed in order to make the comparison clear. Since there is no significant
difference between their spectral costs, we just consider the coverage rate and the
number of cells in this comparison.

This figure makes it clear that the hierarchical approach achieves better
performance. The reason is that the search space is too large to be managed if the
optimization algorithm is used directly. The larger the search space is, the more
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difficult it is for the algorithm to reach the global optimum. Moreover, the
computational time is unendurable if the hierarchical approach is not used. It takes
more than 15 hours for the above-mentioned non-hierarchical simulation. Using the
hierarchical approach, however, each level requires about 1.5 hours, namely 4.5 hours
in total. Suppose that we go one step further i.e. place BS on a grid with the resolution
of 1. It takes just another 1.5 hours for the hierarchical approach. However, since
there are 10,000 potential cells if the search is performed directly on the finest grid,
the computational time would soar to more than 10 days!

5.5 SUMMARY

In this chapter DGMs were presented to study the cell planning problem. We first
discussed the relation between DGMs and the corresponding cellular systems. The
local conditions and global conditions are reformulated for DGMs as the scenario is
simplified.

We then presented a cell selection model and applied the elitist NSGA to solve
the given test problems. It has been shown by the simulation results that NSGA is
well-suited to cell planning problems, and able to achieve very good performance
with good GA parameters. The following parameters are found to be suitable:

e Binary tournament selection,

e Fusion crossover with a crossover rate around 0.9,

e  Mutation rate around the inverse of the chromosome length,

e Reduction rate between 0.25 and 0.75 for the controlled elitism.

The population size and the number of generations depend on the problem size.

We also studied the cell dimensioning problem using DGMs. Both binary and
real-valued GAs are applied to test problems, and simulation results are compared. It
is demonstrated that, for continuous parameter optimization, real-valued GAs are
more convenient and may achieve better performance.

Moreover, a hierarchical approach is proposed to solve the automatic BS
placement problem that is intractable due to the computational complexity. The
hierarchical approach reduces the computational effort by guiding the search towards
promising areas. Although such a search is not ergodic, simulation results show that
the hierarchical approach is practical and achieves satisfactory performance.



Chapter 6
Cell planning experiment

results and analyses

The methodology and algorithms presented in previous chapters have been tested on
real design scenarios. Numerical experiments have been made on all the four cell
planning problems: cell selection, cell dimensioning, automatic BS placement and
dimensioning (ABSPAD), and growth planning. First, a description of the simulation
environment is given in Section 6.1. Subsequently, in Section 6.2, simulation results
are presented and analyzed for each of the experiments.

6.1 SIMULATION ENVIRONMENT

Numerical experiments were made for GSM network planning. This means that
system performance evaluations are based on GSM system specification. However,
the optimization strategies used in these experiments are also applicable to other
systems. The only requirement is to redefine the objective functions.

What makes the following simulations different to those presented in the previous
chapter is that realistic design scenarios are considered. Geographical data, that are
not used in DGMs, play an important role in real planning. Hence, a wave
propagation model is required for predicting the cell coverage. This section gives a
description of the simulation environment, including geographical data, wave
propagation model, and a database for organizing the input parameters and
optimization results.

6.1.1 Geographical data

In mobile network planning, three types of geographical data are used. Topographical
data depicts the terrain of a given area, and morphological data defines the land usage
type such as city, forest, water, and so on. Besides, traffic data describes the traffic
distribution in the service area. The data used in our simulations are shown in Figure
6.1, which are provided by LS telcom AG, Lichtenau, Germany. This is an area in
Switzerland. The area size is 60 km x 60 km and the resolution is 100 m x 100 m per
pixel. Thus, there are 600 x 600 pixels in total. Figure 6.1(a) displays the
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topographical data, and Figure 6.1(b) is the morphological data. 12 morpho classes
can be distinguished. The traffic data are shown in Figure 6.1(c), where a non-uniform
traffic distribution is illustrated. Totally there are 103.1516 Erlang traffic.

4000
4 41 . ‘i‘ 4 i
R 3
22 :&%ﬁ%’;‘
P\ e S G s
b AT o SRR G
. Elevation .
(a) Topographical data (meter) (b) Morphological data
- Water
500
- Airport
I:l Open area
- Recreation ground
- Forest
- Village
I:l Suburban
I:l Urban
I:l Open in urban
- Dense urban
0 . - Industrial area
Traffic density
(c) Traffic data (mErlang/kmz) - Buildings

Figure 6.1 Geographical data used in cell planning experiments. The size of the area
(part of Switzerland) is 60 km x 60 km and the resolution is 100 m x 100 m per pixel.
There are 12 morpho classes. Non-uniform traffic distribution is considered.

6.1.2 The wave propagation model

In realistic mobile radio environment, the shape of a cell is extremely irregular
because of the uneven terrain and the presence of trees, buildings, and other obstacles.
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In order to predict the cell coverage, field strength must be first calculated using a
suitable propagation model. Since macrocells are considered in the following
simulations, the COST 231 Okumura-Hata model can be employed, which has been
discussed in Subsection 2.2.1. Due to its simplicity and well-development, this model
is widely used in mobile network planning practice. The other advantages include that
this model is computationally efficient - it takes about 10 seconds for such an area
with 600 x 600 pixels using a common PC (Pentium-III CPU at 450 MHz and 256
MB RAM), and that it does not require very detailed geographical information. For
predicting coverage of microcells or picocells, more sophisticated models should be
used, but more accurate data are required to describe the propagation environment.

An advanced Okumura-Hata model is developed in LS telcom AG, which is used
in the following simulations. Considering that the terrain in Switzerland is quite hilly,
a multiple knife-edge diffraction model is implemented to calculate the diffraction
attenuation. The Epstein-Peterson model [Epstein(1953)] is used, which is combined
with the Okumura-Hata model. Here, only the topographical height is considered. The
morpho height is not used at the moment, i.e. it is set as 0 for all the morpho classes.

In this propagation model the morpho correction is taken into account. The
correction factor corresponding to each morpho class is listed in Table 6.1.

Table 6.1 Morpho correction factors used in Okumura-Hata model

Morpho class Correction (dB)
Water 28
Airport 28
Open area 23
Recreation ground 23
Forest 3
Village 10
Suburban 10
Urban 5
Open in urban 5
Dense urban 3
Industrial area 0
Buildings 0
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6.1.3 The database

A database has been built to manage the input data and optimization results. It
consists of 10 tables. Their relationships are shown in Figure 6.2.

. Decision Optimization
Statistics .
maker algorithms
| Network Cell ﬁ Transmitter
S}.]Stem. Propagation Site Antenna
specification models

Figure 6.2  Tables of the database used in cell planning experiments.

The statistics table takes care of statistical information of the optimization
process and keeps the optimization results. It gives the system information about the
service area size, traffic amount etc. as well as system performance, such as the
coverage rate, spectral cost, and financial cost. Also, it records how many BSs are
used and how long the optimization process has been run. In case the hierarchical
approach is applied, the grid resolution of each level is also recorded in addition to the
other statistical information.

The statistics table has a link to the decision maker table, by which the preference
of the human decision maker is accessible. The decision maker chooses which
algorithm to use and specifies constraints for each of the local conditions and global
conditions. There are several optimization algorithm tables as different optimization
algorithms could have their own parameters. For instance, the population size,
recombination rate, mutation rate etc. must be given for GAs. These parameters are
specified in the corresponding optimization algorithm table.

The cell table gives the description of each cell, such as the area coverage, traffic
load, interference probability, and frequency channels used by the cell. It also
specifies which propagation model is used to predict the cell coverage. The cell shape
is described by three raster data: field strength data, coverage probability data, and
assignment probability data. These data are stored in separate files, but they are
accessible to the cell table. There might be a number of different propagation model



6.1. SIMULATION ENVIRONMENT 113

tables. Each of them gives parameters for a specific model.

Each cell has a transmitter placed at a certain site. In the transmitter table,
parameters of each transmitter are given, including the transmitted power, frequency,
cable attenuation, loss in the transmitting path as well as in the receiving path, and so
on. The site table gives geographical information about the cell site, such as the
coordinate and the building height if it exists. Available antennas are listed in the
antenna table, which gives the antenna gain, polarization, azimuth, downtilt, and
antenna diagram. Besides, the costs of transmitters, sites, and antennas are retrievable
by respective tables.

Cells belonging to one system are linked to the same network record. The
geographical data, that are stored in separate files, are retrievable by the
corresponding network record. It also gives the description of the service area, such as
the area size and resolution. In case a non-rectangular area is involved, a vector is
required to describe the border. Also, the network table has a link to the system
specification table, where a number of technical parameters are specified. The
parameters used in our simulations are listed in Table 6.2. Their values are given
according to GSM system specification.

Table 6.2 Technical parameters used in cell planning experiments

Parameter Value
Received power threshold -92 dBm
Received power deviation 6 dB
Handoff margin 5dB
Blocking probability 0.02
C/I threshold 10 dB
Interference probability threshold 0.1

6.2 SIMULATION RESULTS AND ANALYSES

6.2.1 Cell selection

We start with an experiment on cell selection. There are 36 potential cells i.e. C = {cy,
c2, ..., C36}, distributed in the service area. BS sites of these cells are shown in Figure
6.4(a). Since the configurations of cells are unchangeable in cell selection, without
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loss of generality, it can be assumed that all the potential cells have the same
parameters. Their values are given in Table 6.3.

Table 6.3 Configurations of potential cells in the cell selection experiment

Parameter Value
Transmitted power* 50 dBm
Frequency 900 MHz

Antenna type Omni

Antenna gain 15 dBi
Polarization Vertical

* The transmitted power is represented by effective isotropic radiated power (EIRP).

The task is to find a subset C' < C, such that the following three objectives are
satisfied:

maximize  fi(C") = R,AC"),
minimize  f(C") = M, (C"),
minimize  f3(C") = Ez(C").

Here, the traffic coverage rate R,(C") given by (3.15) is used due to the non-uniform
traffic distribution. Since co-channel interference is considered in this experiment, the
spectral cost M,.,(C") given by (3.23) is used. Furthermore, we assume that all the
potential cells have equal site cost and equipment cost. Thus the financial cost can be
simplified as E4,(C") = |C' i.e. the number of cells in C".

NSGA is applied to solve the multi-objective optimization problem. Each
solution is encoded as a bit-string with each bit corresponding to a cell. The GA
parameters given in Table 5.1 are used, but now the mutation rate p,, = 1/36. Decision
making is done by a human decision maker during the multi-objective search. First,
the NSGA is performed for a few generations (10 generations in this experiment).
Based on the non-dominated solutions found, the decision maker specifies a target
region to adjust subsequent search. Here, 0.9 < f{(C") < 1 and 1 < f4(C") < 30 are set
for the coverage rate and spectral cost, respectively. The financial cost is taken as an
open condition. Afterwards, the NSGA runs for another 10 generations and the target
region is then modified according to the available tradeoff information as 0.95 < £,(C")
<land 1 <f(C") £20. The NSGA is continuously executed for 50 more generations.
A number of non-dominated (Pareto optimal) solutions are obtained, as shown in
Figure 6.3.

Finally, one of the Pareto optimal solutions is chosen. Objective scores of the
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final solution are as follows: R,(C") = 0.9706, M,.((C") = 15, and |C']| = 7. It is a
compromise of the three objectives. Although a higher coverage rate can be achieved,
it might require more BSs and frequency channels. On the other hand, if less BSs are
used, the coverage rate would drop substantially. Performance of the selected cells is

listed in Table 6.4. The corresponding coverage areas of these cells are shown in
Figure 6.4(b).

Table 6.4 Performance of the selected cells

Traffic load Number of Interference
Cell no. .
(Erlang) traffic channels probability
4 18.6238 27 0.04
10.7476 18 0.06
9 20.1194 28 0.04
10 5.0611 10 0.04
12 20.6474 29 0.07
20 13.9504 21 0.04
26 10.9648 18 0.05
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Figure 6.3  Pareto optimal solutions obtained in the cell selection experiment.
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Figure 6.4 Cell selection experiment. In (a) there are 36 potential cell sites displayed
on the topographical map, from which 7 cells are selected. Coverage areas of the selected
cells are shown in (b). Dark areas are uncovered.
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We can see from Figure 6.4 that potential cells situated at high positions are more
likely to be selected in the final solution. The reason is that these cells provide better
coverage than the others. It fulfils our optimization objectives: maximum coverage
rate with minimum cost. Due to the large coverage, however, the overlapping areas
become large too. This could cause higher interference probability in some areas e.g.
the center area in Figure 6.4(b). The interference problem can be solved by a good
channel assignment, but it could require more channels, and thus higher spectral cost.
Next, we will discuss how to optimize cell dimensions in order to reduce the spectral
cost.

6.2.2 Cell dimensioning

One reason for cell dimensioning is due to the traffic load condition. Assume that
each cell can use at most 4 frequency channels, corresponding to 29 traffic channels
(see Table 2.2). Since the blocking probability is also given, the maximum traffic load
can be derived according to the Erlang B formula. In the experiments, Ppjocx = 0.02,
thus 7, = 21.04 Erlang. As we see in Table 6.4, the traffic loads fluctuate from
5.0611 to 20.6474. Although the traffic load condition is satisfied for all the cells,
some of them (e.g. ¢12) require much more traffic channels than the others. This could
heavily influence the spectral efficiency. Cell dimensioning can be applied to solve
this problem.

In cellular mobile systems, the size of a cell depends on several parameters such
as the transmitted power, antenna height and orientation. In this work, an experiment
was made on cell dimensioning by adjusting the transmitted power. Although altering
the antenna height and orientation (for directional antenna) can also change the cell
size, these aspects are not considered at this moment.

The seven cells listed in Table 6.4 are tested in this experiment i.e. C' = {ca, cq,
o, C10, C12, €20, C26}. Initially, the transmitted power (represented by EIRP) is 50 dBm
for all the cells. The task is to change the transmitted power of each cell, and therefore
the cell size, such that the coverage rate is maximized and the spectral cost is
minimized. Here, two objective functions are considered simultaneously:

maximize  fi(C") = R AC"),
minimize  f(C") = Meo(C).

The traffic coverage rate R,(C") and spectral cost M, (C') are given by (3.15) and
(3.23), respectively.

The NSGA is applied again, but now an integer vector, instead of a bit-string, is
used to represent a solution. Each element of the vector corresponds to the transmitted
power of a cell. The range of the transmitted power is given as 0 < p; < 80. Simulated
binary crossover and Gauss mutation (see Subsection 4.3.1) are employed by the real-
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valued GA. The GA parameters are the same as those used in the above cell selection
experiment. The target region is set as 0.97 < f1(C") < 1 for the coverage rate and 1 <
f(C" £ 15 for the spectral cost in order to emphasize better solutions. One of the
Pareto optimal solutions is chosen, which has the following objective scores: R,AC") =
0.9732 and M,.,(C") = 12.

Comparing with the results of the cell selection experiment, it is clearly shown
that better scores are achieved after cell dimensioning. The transmitted power and
other performance of the selected cells are listed in Table 6.5. The traffic loads
slightly fluctuate from 12.5719 to 16.8373, and none of the cells is saturated. This
obviously improves the spectral efficiency. Besides, the interference condition is also
improved. The interference probability decreases for some cells, such as cg, c19, C12,

and cyp.
Table 6.5  Performance of the selected cells after cell dimensioning
Cell 1o, Transmitted Traffic load Number of Interference
power (dBm) (Erlang) traffic channels probability
4 37 14.7798 22 0.04
6 51 13.4831 21 0.05
9 33 14.1258 22 0.04
10 58 12.5719 20 0.03
12 32 15.7442 23 0.04
20 42 16.8373 25 0.03
26 54 12.8417 20 0.05

6.2.3 Automatic base station placement and dimensioning

Automatic base station placement and dimensioning (ABSPAD) is a very hard
problem due to the exponentially expanding search space. In [Huang(2000c)], a
hierarchical approach was proposed to solve this problem. It has been demonstrated
by the BS placement simulation in Section 5.4 that the hierarchical approach can
effectively reduce the computational time. However, things become more complicated
in realistic design scenarios. Thus the hierarchical approach is somewhat different
with that one used in DGMs. In the following, we will discuss the approach for
solving ABSPAD and present the experimental results obtained.
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A Hierarchical approach workflow

The hierarchical approach workflow is shown in Figure 6.5. It starts from a course
resolution and finds potential cells on an initial coarse grid. For each of the potential
cells, field strength is calculated using the propagation model. This is followed by the
multi-objective optimization process. Here, the integrated search and decision making
method is applied to guide the search towards the global Pareto optimal front and to
find a satisfactory tradeoff solution. Afterwards, cell dimensioning is performed to
optimize the parameters of the selected cells. Next, the grid resolution is increased
and the previous selected cells are used to search potential cells on a finer grid. As the
resolution increases from rough to fine, results become more and more accurate.

( Start )

Find potential BS sites and
initialize parameters

Calculate field strength Increase resolution

Multi-objective search and
decision making

Cell dimensioning

No
<m65t grid?

Yes

End

Figure 6.5 Workflow of the hierarchical approach for solving ABSPAD.

B Geographical cost

In ABSPAD, BSs are possibly located at any place in the service area. However, there
are some places unable to be used e.g. locations in water, or those without permission
e.g. the White House. In order to avoid such unsuitable situations, we introduce a
geographical cost function fy(x; y;) that evaluates how good a place is for building a
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BS. The geographical cost is determined based on the information about topography,
morphology, and existing infrastructure. The forbidden locations are set with very
high cost such that it is impossible to place a BS in water or on the roof of the White
House. On the other hand, network operators may have their own preference for some
available sites. Such preferred locations are set with low cost. The geographical cost
function can be defined by the network operator in the form of raster data.

The geographical cost is integrated into the financial cost, such that it can take
effect in the automatic process. The financial cost function given by (3.24) is then
modified as follows:

So(Xi,¥i)
(@)= Ey+ Y g;—y-Es,-,e<cl-)+Eeq<c,->+Em<c,-> 6.1)
c;eC g

where Ey, Ege, Ee4, and E,, are just the same as defined in (3.24). (x; y;) represents the
site of cell ¢;. &, is a threshold. A location is regarded as suitable for a BS if its
geographical cost is lower than 6.

C  Breadth-first search

The BS placement simulation in DGMs has demonstrated that the hierarchical
approach can effectively reduce the computational complexity because it continuously
eliminates unfit cells and searches potential cell sites only in promising areas. Since in
DGMs cells are placed in a plane, the hierarchical approach works very well for that
simulation. If real topography is used, however, this approach could cause the
automatic process to be trapped in a local optimum as the available area for cell sites
shrinks step by step. Especially, in case a mountainous area (e.g., Switzerland) is
considered, more and more BSs are needed in order to achieve satisfactory coverage
rate. What is even worse is that these BSs are situated in clusters. As a consequence,
there are very large overlapping areas between them and the resulting interference
makes this solution impracticable.

To overcome this problem, a backward search method was proposed in
[Huang(2000b)]. This method continuously predicts the performance of the next level
and measures the possibility of being trapped in a local optimum. If it seems to
happen, the algorithm goes backward to explore new promising areas for more cells
so as to prevent the automatic process from stopping at the local optima. Such a
method can be classified as a depth-first search method because the search resumes
from the previous level.

As an alternative, a breadth-first search method can also be used. If the search is
blocked (i.e. it may be trapped in a local optimum), more potential cells will be placed
on the next level. As shown in Figure 6.6, the pyramid structure is used to illustrate
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the breadth-first search. Now each cell of the parent level will have (2n)2 child cells,
where 7 is a natural number. Thus, for each parent cell, the number of child cells
could be 4, 16, 36, 64, and so forth. By adding more potential cells, new areas in the
search space will be explored so as to make the search jump out of the local optima.
In the following experiment, a hierarchical approach with the breadth-first search is
used, where the parameter » should be specified by the decision maker based on the
tradeoff information obtained.
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Figure 6.6  Breadth-first search method used in the hierarchical approach in order to
avoid local optima.

D Simulation results

A numerical experiment was made for ABSPAD. The geographical data shown in
Figure 6.1 is used. The grid resolution ranges from 6,400 m to 100 m, thus there are
seven levels in total. On each level, the multi-objective search and decision making is
applied and one of the tradeoff solutions is chosen by the decision maker. The
following three objectives are considered simultaneously:

maximize  fi(C) = RuAC),
minimize  f(C) = My(C),
minimize  f3(C) = Ez(C).
Objective scores of the chosen solutions according to the grid resolutions are shown

in Figure 6.7, where the number of BSs is used as the financial cost simply because
the BSs are assumed to be of equal cost.
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Figure 6.7 Objective scores of the solutions obtained by the hierarchical approach.

There are seven levels with the grid resolutions from 6,400 m to 100 m.
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On the first level, potential cells are placed on a grid with the resolution of 6,400
m, and hence, there are 100 potential cells in total. For the first 10 generations, the
target region is set as 0.90 < £1(C) < 1 and 1 < f5(C) < 30. Later on it is modified as
0.95 <fiI(C) <1 and 1 < A(C) < 20. After 100 generations, a solution with 25 cells is
chosen. The coverage rate and spectral cost are 0.9969 and 18, respectively.

On the next level, the grid resolution increases to 3,200 m. Each selected cell is
split into 4 subcells. The multi-objective search and decision making is applied again.
The same process is repeated in the following levels. On the level of 800 m, the
breadth-first search is performed with the parameter » = 2, such that each cell has 16
subcells. After this level the target region is set as 0.975 < fi(C) < 1 and 1 < f(C) <
15, in order to emphasize the desired solutions. On the finest grid with the resolution
of 100 m, a solution with 7 cells is chosen from the Pareto optimal solutions obtained.
The objective scores it achieves are as follows: R,AC) = 0.9823, M,.,(C) = 12.

Performance of the selected cells in the final solution is listed in Table 6.6. The
corresponding coverage areas of these cells are shown in Figure 6.8. Since the
optimization objectives are the same as those of the cell selection, ABSPAD also
places BSs at high positions because they provide better coverage. This is why the
solution obtained by ABSPAD looks similar to that one in the cell selection
experiment (see Figure 6.4), but ABSPAD achieves better performance because it
searches for the optimal cell set in the whole service area instead of only a number of
potential cells.

Besides, it is worth mentioning that, due to the geographical cost, no BS is placed
in water in the final solution. In this experiment, we set the threshold &, = 1, and the
geographical cost of water is 100. Therefore, if a solution involves any BSs located in
water, it will result in a very high cost. Thus it can not be included in the non-
dominated set.

Table 6.6  Performance of the cells in the final solution of the ABSPAD experiment

Cell 1o, Transmitted Traffic load Number of Interference
power (dBm) (Erlang) traffic channels probability

1 39 13.6984 21 0.04

2 34 14.8219 22 0.04

3 54 13.8551 21 0.03

4 31 14.8530 22 0.05

5 52 15.3801 23 0.05

6 32 14.7746 22 0.04

7 49 13.9465 21 0.03
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Figure 6.8 Coverage areas of the cells obtained by ABSPAD.

6.2.4 Growth planning

A Heuristic algorithm

Until now we consider only one cell per site and the cell size is as large as possible.
What happens if the traffic demand increases? What can we do if the existing cells
can not afford the scaled-up traffic? This is the so-called growth planning problem,
which has already been described in Subsection 3.2.4. In the following, an algorithm
will be presented for solving this problem, which is a heuristic algorithm based on the
principle of capacity-oriented cell splitting (see Subsection 2.1.1).

Nominal cell splitting is illustrated in Figure 6.9. Initially largest possible cell
sizes are used, one cell per site. In the next step, a cell is divided into a number of
sectors, three and six being the most common arrangements. Here the 3-sector case is
considered, but the method can also be used for the 6-sector case. Each of the sectors
is served by a different set of channels and illuminated by a directional antenna. The
sector can therefore be considered as a new cell. As a consequence, there are 3 cells
per site using the original BS sites. BSs are located at the corner of cells, as shown in
Figure 6.9(b). Now the number of BS sites is the same, but the number of cells is
three times larger than before. The following step is to do further cell splitting i.e.
reducing the size of existing cells and adding new cells. As we see in Figure 6.9(c),
the former sites are still used in the new cell plan, but additional sites are now
required for serving new cells.
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(a) Initial cell plan

(b) Phase 1: each cell is divided

(c) Phase 2: old cells are reduced, new cells
into 3 cells, using original sites.

are added, requiring additional sites.

Figure 6.9 Nominal cell splitting (adapted from [Back(1991)]).

Based on the cell splitting technique, an algorithm for automatic growth planning
is developed. The main steps of the algorithm are outlined as follows:

Algorithm 6.1 (Growth planning)

Input: C — Original cell set C = {cy, c2, ..., cn}
T — Maximum traffic load
Ot — Interference probability threshold

Output: New cell set C'= {c'}, ¢, ... ¢'v}, N >N
Step 1:

Calculate the local condition functions of each cell according to
(3.2) and (3.6);

Pick out all unfit cells ¢; if AyAc;) > Tax OF Pindci) > O
Step 2:

Choose the cell ¢; with the greatest traffic load, i.e., A,/c;) is greater
than the traffic load of other cells.
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Step 3:
If ¢; has no co-site cells, divide it into three sectors (cell splitting
phase 1);
Otherwise, reduce the cell size such that 4,4 c;) < Tua. and apply the
hierarchical approach to find optimal sites for new cells (cell
splitting phase 2).

Step 4:
Assign frequencies for new cells.

Step 5:
Go to Step 1 and repeat the above steps until no unfit cells exist.

Since the cells influence each other with respect to the coverage and interference,
values of the local condition functions must be recalculated after any cell has been
changed. In Step 3, cell splitting is executed. Only the vicinity of ¢; is taken into
account when searching for new cell sites so as to save CPU time. Besides, during the
cell splitting, neighboring cells of ¢; must be respected because they exert an influence
on the new cells.

B Simulation results

This algorithm is used in the following experiment. The service area is the same as
that in the above ABSPAD experiment, but having much higher traffic demand. Now
there are 411.0955 Erlang traffic, about three times more than before (103.1516
Erlang). The original cell set consists of the seven cells found in the ABSPAD
experiment. Due to the growth in traffic demand, the traffic loads of these cells
increase greatly. Each cell now covers more than 50 Erlang traffic. This results in
very high blocking probability (> 45%). Obviously, the existing cells are not able to
carry the new scaled-up traffic. Growth planning is inevitable.

Algorithm 6.1 is applied with 7}, = 21.04 Erlang and 6,,, = 0.1. In the first step,
each cell is divided into three sectors such that there are 21 cells, but some of them
still have very high traffic load. Therefore, the cell size must be reduced and new cells
are required to cover the gaps. Three new BS sites are found by using the hierarchical
approach. Their positions are shown in Figure 6.10(a), marked as C08 — C10.

In the final solution, 10 BS sites are used and each site serves three cells with
directional antennas. Hence there are 30 cells. Their coverage areas are shown in
Figure 6.10(b). All the cells meet the requirement of traffic load and interference
probability. The objective scores of the final solution are as follows: the coverage rate
is 0.9834, and the spectral cost is 27. Since there are three cells for each BS site, the
co-site channel separation has to be taken into account. As a result, more frequency
channels are required. Finally 10 BSs are used, but seven of them are already in use.
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Only three new BSs need to be built.
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0
Traffic density

(a) Scaled-up traffic map and 10 BS sites, where CO1— (mErlang/km’)

CO07 are original and C08 — C10 are new sites.

GRCREEE

(b) Coverage areas of 30 sectorized cells after growth
planning. Three cells share a BS site, using
directional antennas.

Figure 6.10 Experimental results of growth planning in an existing network. The seven
original cells are obtained from the ABSPAD experiment.
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6.3 SUMMARY

In this chapter, cell planning experiment results were presented and analyzed.
Realistic geographical data are used in these experiments, which include the
topographical data, morphological data, and traffic data. Field strength calculations
were done by employing the COST 231 Okumura-Hata model. A database was
developed to manage the input data and optimization results.

Cell selection was first considered, where an optimal cell set was selected from a
number of potential cells. Cell dimensioning was applied to optimize the cell
configurations such that the system performance could be improved. Another
experiment was made for ABSPAD, which is able to find the optimal BSs sites and
simultaneously determine the optimal parameters of each cell. Finally, the growth
planning problem has been considered. A heuristic algorithm based on the technique
of cell splitting was presented. It is demonstrated by the experimental results that the
methodology and algorithms presented in this work can effectively solve the cell
planning problems arising from mobile network design practice.
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Conclusions

The goal of this thesis is the development of an efficient optimization strategy to solve
the cell planning problems arising from mobile network design practice. These
problems are NP-hard and involve numerous constraints. In this work, several original
contributions have been produced to achieve the research goal. Major contributions
are summarized in Section 7.1. Based on the results of this research, Section 7.2
identifies promising research areas within which further work may be beneficial.

7.1 SUMMARY OF CONTRIBUTIONS

The main contributions of this thesis are:

Definition and classification of cell planning problems. For the first time, the cell
planning problem is defined and analyzed from the viewpoint of system
performance optimization. Four kinds of problems are distinguished: cell
selection, cell dimensioning, automatic base station placement and
dimensioning (ABSPAD), and growth planning. Experiments were made for all
the four problems.

Local conditions and global conditions. Cellular system performance criteria are
addressed by local conditions and global conditions. Local conditions, including
the traffic load and interference probability, are defined on each single cell,
while global conditions are defined on the whole system (a set of cells),
including the coverage rate, spectral cost, and financial cost. The global
conditions are used as optimization objectives and the local conditions are taken
as hard constraints.

Integrated multi-objective search and decision making. Cell planning is a typical
multi-objective optimization problem as several objectives need to be
considered simultaneously. After analyzing the insufficiency of classical
methods, we propose an approach for solving multi-objective problems by
integrating the search and decision making processes.

Disk graph models (DGMs). For the first time, DGMs are used to study cell
planning problems. The advantage of these models is that they are independent
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of geographical data and no field strength calculation is needed. Thus we can
concentrate on investigating algorithms. A number of test problems were
presented and simulations were made for the purpose of algorithm study.

Application of genetic algorithms (GAs) to cell planning problems. GAs are
particularly well-suited to multi-objective optimization because of their ability
to find multiple Pareto optimal solutions in a single run. The elitist NSGA is
applied to the cell planning problems. Various GA parameters are investigated
in order to improve the algorithm performance. Besides, real-valued GAs are
applied to the cell dimensioning problem, in comparison with binary GAs.
Simulation results demonstrate that real-valued GAs are more convenient and
may achieve better performance for continuous parameter optimization.

Hierarchical approach. A hierarchical approach is proposed to solve the ABSPAD
that is intractable due to the computational complexity. A geographical cost is
introduced in order to avoid unsuitable locations such as those in water, and a
breadth-first search method is used to prevent the automatic process from
stopping at local optima. Simulation results show that the hierarchical approach
can not only reduce the computational time but also obtain better solutions.

Growth planning algorithm. The growth planning problem has also been studied. A
novel heuristic algorithm based on the technique of cell splitting is presented to
solve this problem. Experiments were made for automatic growth planning. It is
demonstrated that this algorithm is able to find optimal sites for new cells and
optimize parameters of both original cells and additional cells, such that the
growing service demand can be met effectively while offering minimum
disturbance to the existing network.

As a whole, the present work is largely original and should be of great interest to
the mobile communications system design community and operations research
society, as well as other engineering design fields.

7.2 FUTURE WORK

Several promising areas for further work have arisen from this research concerning
multi-objective genetic algorithms (MOGAs), multi-objective decision making, and
cellular system design.

The MOGA should be further improved and made more efficient. This is an
important factor when dealing with large-scale problems. Parallelization of the
algorithm could provide great enhancement. Since the objective functions are
computationally intensive for cell planning problems, the computational time would
be significantly reduced if individuals can be evaluated in parallel. Performance
assessment of multi-objective optimization algorithms is also an interesting topic. In



7.2. FUTURE WORK 131

general, three criteria should be taken into account: i) minimal distance to the global
Pareto optimal front, ii) good distribution of the solutions found, iii) maximum spread
of the obtained non-dominated front.

The method for integrated multi-objective search and decision making has been
demonstrated to be superior to the other methods. However, it requires increased
interaction between the decision maker and the optimizer. In case of a human decision
maker, the need for constant human intervention may be actually a disadvantage.
Moreover, if more than three objectives are involved, the difficulty of showing the
tradeoff surface becomes apparent. This may heavily influence the human decision
maker. Therefore, we suggest an expert system is developed to integrate the
experience of human decision makers, such that man-machine interaction is not
mandatory.

Although this thesis has investigated many aspects of cell planning, a lot still
remains to be done in this area. Besides macrocells, experiments for microcells and
indoor picocells should be made. For the purpose of investigation of various
algorithms, a benchmark test problem suite needs to be built in consideration of
different design scenarios. Further development can be done for cell dimensioning
taking into account more parameters, such as the antenna height, type, azimuth, and
downtilt, in addition to the transmitted power. As the mobile communications system
evolves, the methodology and algorithms presented in this work can be applied to 3G
systems (e.g., UMTS) and 3G beyond systems.






Appendix A

Abbreviations and acronyms

2D

3D

3G
ABSPAD
ACI
BER
BS

Ccn
CAP
CCH
CCI
CDMA
COST

CPU
DCA
DGM
EA
EIRP
EP
erf
ESs
ETSI
FAP
FCA
FCH
FDMA
GA
GIS
GOS

two-dimensional

three-dimensional

third-generation

automatic base station placement and dimensioning
adjacent channel interference

bit error rate

base station

carrier-to-interference ratio

channel assignment problem

control channel

co-channel interference

code division multiple access

European Cooperation in the Field of Scientific and Technical
Research

central processing unit

dynamic channel assignment

disk graph model

evolutionary algorithm

effective isotropic radiated power

evolutionary programming

error function

Evolutionsstrategies, or evolution strategies
European Telecommunications Standard Institute
frequency assignment problem

fixed channel assignment

frequency channel

frequency division multiple access

genetic algorithm

geographic information systems

grade of service
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GSM global system for mobile communications
GTD geometrical theory of diffraction

HCA hybrid channel assignment

IEEE the Institute of Electrical and Electronics Engineers
iff if and only if

LOS line-of-sight

MOGA multi-objective genetic algorithm

MOP multi-objective optimization problem
MS mobile station

MSC mobile switching center

NLOS non-line-of-sight

NP nondeterministic polynomial

NSGA non-dominated sorting genetic algorithm
PC personal computer

PDA personal digital assistant

pdf probability density function

PL path loss

RAM random access memory

Rx receiver

SA simulated annealing

SBX simulated binary crossover

SOP single objective optimization problem
SP sequential packing

SPEA strength Pareto evolutionary algorithm
TCH traffic channel

TDMA time division multiple access

TSP travelling salesman problem

TRX transceiver

Tx transmitter

UDGM unit disk graph model

UMTS universal mobile telecommunications system

UTD uniform geometrical theory of diffraction
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