Improving Data Layout
through
Coloring-Directed Array Merging

Daniela Genius
Institut fur Programmstrukturen und Datenorganisation,
Fakultat fir Informatik Universitat Karlsruhe
Zirkel 2, 76128 Karlsruhe, Germany
E-mail: genius@ipd.info.uni-karlsruhe.de,
WWW: http://i44www.info.uni-karlsruhe.de/"genius

Tel.: (+49) 721 608-4763
Fax: (4+49) 721 30 0 47

Sylvain Lelait
Institut fur Computersprachen, Technische Universitat Wien
Argentinierstrafie 8, A-1040 Wien, Austria
E-mail: sylvain@complang.tuwien.ac.at
WWW: http://www-rocq.inria.fr/"lelait
Tel.:(+43) 1 588 01 185 11
Fax: (+43) 1 588 01 185 98

January 29, 1998

Abstract

Scientific computing and image processing applications access large
amounts of data in regular patterns. In order to relieve the memory bottle-
neck, caching tries to keep recently referenced data available in fast storage.
This is increasingly important as the gap between processor and memory
hierarchy speed has widened in recent years.

There are two main difficulties that cannot be dealt with by hardware
alone. Firstly, a cache line usually holds several values; often only one
of them is actually used. Secondly, conflicting accesses to one cache line
cause data to be evicted which is still required. In the extreme case, data
is replaced on every access, a situation we denote as cache thrashing. To
overcome these problems, the temporal/spatial structure of accesses has to
be changed.

Compile-time cache optimizations exploit regular access patterns. Loop
transformations as e.g. tiling are well-established. For caches with limited
associativity, it is often crucial to additionally adjust the placement of
data in memory. We show that compiler techniques for register allocation,
namely graph coloring, support a systematic data placement.

For innermost loops, conflicts and temporal reuse can be modeled to-
gether in a cyclic interval graph. If reuse stretches over several loop itera-
tions, live ranges may overlap themselves, prohibiting usual cyclic coloring.
By applying the meeting graph method, the compiler can determine an un-
rolling factor and determine the maximal number of colors, i.e. of cache
lines required.

Values of the same color are mapped to memory together. Since these
values may stem from different data structures, our technique offers a nat-
ural way of dealing with conflicts between different arrays.

We implement this scheme through modifying the standard memory
mapping. At run time, the new compile time mapping function is used as
index function. The tradeoff between the additional cost for more complex
indexing and reduced miss penalty is reflected by a cost function.

For typical example codes from the above areas, reuse and conflict be-
havior are considerably improved, yielding moderate run time reductions.
In addition, on a more coarse level, paging activity is often significantly
postponed.

1 INTRODUCTION 3

1 Introduction

Scientific programs cause large numbers of cache misses due to competition for
a cache line as well as bad cache line utilization. Although to some extent the
hardware can be improved, e.g. by increasing cache line size or associativity,
good cache utilization for high-performance codes often remains a task for hand-
optimization. There are though a number of approaches to having the com-
piler improve cache behavior. For instance, Temam and McKinley have shown
that for typical loop nests, conflict misses account for up to 50% of all cache
misses [MT96|. For caches with limited associativity, it is possible to influ-
ence cache behavior via the memory layout. But alternative data layouts have
rarely been considered, although their importance has been fully recognized by
now [RT98].

An analysis of memory accesses in innermost loops informs us which portions
of an array must be present in the cache. Interference and temporal reuse can
then both modeled by a cyclic interval graph. In order to determine potential
conflicts and to find out which data should be loaded into the same cache line,
we apply some heuristics from register allocation. As array live ranges in the
cache are similar to variable lifetimes handled in loops by cyclic graph coloring
methods, we take advantage of this formalization. The obtained coloring gives us
information for the occupation of the cache lines by the arrays in order to reduce
the cache misses. Then this allow us to deduce a new data layout for these arrays
in memory. In this framework, cache misses are reduced in two ways: a better
utilization of the cache lines reduces capacity problems, while also many conflicts
are avoided. Our experimental results show improvements concerning cache miss
rates and also run times improvements for a set of benchmarks typical of scientific
code.

Section 3 contains basic terminology and prerequisites, while Section 2 sums
up recent related work. We show in Section 4 how cache value live ranges are de-
rived and describe in Section 5 how the meeting graph is applied. Section 6 shows
the application of the result to actual memory layout. Results of measurements
can be found in Section 7. We conclude by outlining further work.

2 Related work

Graph coloring wrt. caches was examined in the context of cache analysis by
Rawat [Raw93]. He contributes the notion of togetherness of values in a cache
line. Coloring as a heuristic is more appropriate for optimization. By not tak-
ing reuse information into account, the estimations made by Rawat overestimate
cache misses significantly. Hashemi, Kaeli and Calder [HKC97] applied a coloring
technique for direct mapped instruction caches in order to obtain conflict-minimal
mappings for procedures. For this area coloring applies more easily. Their opti-

3 BASIC NOTIONS 4

mizations are based on trace-driven simulations. Restricting to scientific appli-
cations, we can obtain more information at compile time.

There are still few works on the impact of data layout on cache misses, all of
very recent origin. They are mostly dealing with padding, the insertion of useless
data into data structures. Rivera and Tseng [RT98] classify padding more pre-
cisely and provide comprehensive experimental results. Panda et.al. [PNDN97]
propose to combine padding with a tiling scheme. Their run time improvements
are very small due to operation overhead. Ghosh et al. [GMM97] use cache miss
equations to select padding and tile size however they do not provide much exper-
imental data. The gaps filled with useless data that are characteristic for padding
are no longer required. Kandemir et.al. [KCR98] target exclusively at spatial
locality.

Merging is a simple but effective way to prevent the arrays from interfer-
ing with each other, usually performed by the programmer [HP96, LW94|. The
method we present enables the compiler to intermix arrays in a systematic way
that goes beyond merging. We have already employed the meeting graph in pre-
vious work [Gen98], where we proposed a general way of deriving data layouts
from array indexes. In this approach, coloring was performed after building cache
lines, it was not used as a togetherness criterion.

3 Basic notions

3.1 Cache Terminology

For the basics of cache architecture we refer to [HP96]. Whenever a value re-
quested in a calculation is present neither in registers nor in the cache, a cache
miss occurs: A value is loaded into one of the registers. At the same time
the corresponding memory location and its surrounding values are loaded into a
(physical) cache line. Compulsory misses occur when filling up an empty cache.
When the size of a portion of data that is required to be in the cache exceeds
cache size, capacity misses are caused. Conflict misses are due to the competition
of memory locations for the same cache line; they do not occur in fully associative
caches. Self interference denotes conflicts that are caused by accesses to the same
array. Cross interference occurs when different arrays compete for a cache line.
A comprehensive analysis can be found in [TFJ94].

By cache thrashing we denote the situation when on every iteration of the
innermost loop, references cause data to be evicted from the cache. This notion
corresponds to severe conflicts in [RT98]. Temporal reuse of data in the cache
occurs when the same data item is accessed several times. Spatial reuse means
accesses to data in the same cache line. Temporal reuse is a special case of spatial
reuse.

4 EXTRACTING CACHE BEHAVIOR FROM THE CODE 5

3.2 Prerequisites

Our primary application area is scientific computing, where nested loops with
regular accesses to large portions of memory have to be handled. The goal is
to extract as much information as possible at compile time, so the following
restrictions have to be imposed. We consider such array references that are
generated by an affine mapping of the loop counter vector [WL91]. One loop
nest without branches is considered at a time. We focus on the improvement
of innermost loops as the greatest effects can be achieved here. We concentrate
on first-level data caches with limited associativity. Unless loops are unrolled
extensively, it is legitimate to leave the instruction cache behavior out of the
focus.

We present our method for a Low Intermediate Representation (LIR) for a
Ri1sc architecture, which means that arithmetic operations are performed only
on registers. The method is applicable for any architecture without out-of-order
execution. Furthermore we denote memory addresses by their corresponding
array locations: load(al[i]) stands for a load from a memory address calculated
from 1.

The running examples satisfy the code properties stated above. For presenting
our method we only show the interesting loop nests, whereas we use the entire
programs for measurement.

Example 1 (Benchmarks)

Consider some main loops from scientific benchmarks. In the Livermore kernel of
Figure 1.a, there is only one loop; references to all four arrays are uniformly gener-
ated, values of vector u are heavily reused. Matrix multiply, shown in Figure 1.b,
contains accesses to three arrays. In a preliminary step, matrix b is transposed
for improving spatial reuse. A typical application taken from image processing
is filtering, presented in Figure 1.c, which exhibits a bad cache miss behavior be-
cause values from former/future iterations of the outer loop are reused. Images
are usually rather big, so these values will be evicted before they are reused. Fast
Fourier Transform, shown in Figure 1.d, also suffers from the problem that from
the log(IV — 1)th iteration on a value will be evicted before it is reused, as it is
pointed out in [PNDN97]. The additional problem here is that problem sizes are
always a power of two, which is pathological when dealing with caches.

4 Extracting Cache Behavior from the Code

A physical cache line is represented in memory as a wvirtual cache line consisting
of cache values of data item size. The number of processor cycles in which a
value is actually present in the cache is called the cache value live range [Gen98|.
From the Risc-LIR representation of the innermost loop body, load and store
instructions can be easily extracted.

4 EXTRACTING CACHE BEHAVIOR FROM THE CODE 6

a) LL7

for(k=1; k<SIZE; k++){
x[k] = ulk]
+r* (z [k]+r*y [k])
+t* (u[k+6] +r* (u[k+5]
+r¥u[k+4]) +t* (u[k+3]
+r*(ulk+2] +r*ulk+11)))
}

b) Matrix Multiply

for (i=0; i<SIZE; i++){
for (j=0; jJ<SIZE; j++){
for (k=0; k<SIZE; k++){
c[il [j1+=alil [k1*b[j] [k];
}
}
}

c) Filter

for (k=1 ; k<SIZE ; k++){
for (j=1 ; jJ<SIZE ; j++){
b[i] [j1=0.25%
(ali-11[j1+alil [j-1]
+al[i+1] [j1+al[il [j+1]1)

Figure 1:

d) FFT

le=2"n; windex=1; wptrind=0;
for(1=0;1<n;1++){
le=le/2;
for(j=0;j<le;j++){
wpr=wreal [wptrind] ;
wpi=wimag[wptrind];
for(i=j;i<2"n;i+=2*le){
tmpr=sigreall[i];
sigreal[i]+=sigreall[i+le];
tmpi=sigimagl[i];
sigimag[i]+=sigimag[i+le];
tr=tmpr-sigreal[i+le];
ti=tmpi-sigimag[i+le];
sigreal[i+le]=tr*wpr-ti*wpi;
sigimag[i+le]=tr*wpi-ti*wpr;
}
wptrind+=windex;
}

windex=windex*2;

Benchmarks

4 EXTRACTING CACHE BEHAVIOR FROM THE CODE 7

a) b) c)
O0:load(alil, tl) 0:load(alil, tl) 1l:move (t0,tl)
l:subc(1,tl,t2) 1l:subc(1,tl1,t2) 0:subc(1,tl,t2)
2:store(t2,alil) 2:store(t2,alil]) 2:move (t2,t0)
3:mult(t2,t3,t4) 3:mult(t2,t3,t4) 3:mult(t2,t3,t4)
t1 @—O— 1 @—O— t1 O—O—

2 @O = oC—0O o——©O0
a) @—@— &) @—

0o 1 2 3 0 1 2 3 0 1 2 3

Figure 2: Deriving cache value live ranges

Assume two short sequences of LIR code and consider the content of a(i).
Figure 2 relates cache value live ranges (a(i)) to register live ranges (¢3,t4): while
the latter refer to registers, the former refer to cache — and thus memory —
locations when dealing with limited associativity. Memory accesses are depicted
by full dots, register operations by empty dots'. Figure 2.a shows that a(7) is
reused, although it is kept in different registers and its content is changed. If
data are accessed only once, we consider them as surviving one cycle. This is
the case if only loads are considered like in Figure 2.b. When the value is loaded
from a register ¢0 rather than a memory location a(i), register-only computation
does not affect the cache as shown in Figure 2.c.

Example 2

Values of vector v in the Livermore kernel LL7 of Figure 5.a are heavily reused.
u(k+6) is first used in iteration k, last used in iteration k+6; live ranges last 7
cycles. Accesses to z,y and z last one cycle.

Example 3

In the matrix example of Figure 6.a, values of ¢ and b live one cycle, while values
of ¢ stretch over all iterations. To achieve a form suitable for our representation,
scalar expansion is applied. The loop body now has the form ¢(%,5,k)=c(i,j,k-
1)+(a(i,k)*b(k,j)), so that lifetimes for ¢ stretch over four cycles.

Example 4

In the filter example shown in Figure 7.a, elements are accessed twice in the
innermost loop (i.e. a(i,j-1) and a(i,j+1)). Live ranges survive three iterations,
e.g. from iteration j-1 to iteration j+1. Reuse in direction of ¢ is unlikely because
after the array has been fully traversed by the innermost loop in direction of j at
“level” 4, values of “level” i-1 will have been evicted.

!Note that this notions can be easily transferred to non-Risc architectures: any memory-
affecting instruction is considered a load or store.

5 COLORING THE CYCLIC INTERVAL GRAPH 8

Example 5

Fast Fourier Transform (FFT, Figure 8.a) suffers similarly from the problem that
from the n — 1th iteration on a value will be evicted before it is reused, as was
pointed out by [PNDNO97]. The additional problem with FFT is that problem
sizes are always a power of two, a pathological situation causing a lot of cache
conflicts. In order to overcome the problem caused by the outer loop which makes
every array location alive most of the time, we unroll it completely and we execute
in fact n times the loop nest composed of the two other loops.

4.1 A Togetherness Criterion

Cache lines usually hold more than one element. In which way can we con-
trol which data is placed in a physical cache line? That is, how is togetherness
achieved?

Intra-array regrouping, vertical grouping, is done by displacing cache line sized
pieces of data in memory via an injective function that redistributes cache line
sized pieces of data in order to reduce interferences [Gen98|. The main disad-
vantages are that arrays have to be mapped wrt. spatial reuse in a preliminary
phase. As arrays stay separate, cross interference has to be dealt with separately.

On the other hand, it is possible to have a cyclic interval graph handling also
togetherness. By chaining together live ranges, horizontal grouping, we determine
which elements should be together in a cache line. In order to reduce the degrees
of freedom we always assume that the order in memory is the same as the sequence
of lifetimes.

Figure 3 shows the dilemma for two arrays; the upper part shows vertical, the
lower part horizontal grouping. In the following, choosing the second approach
allows us to formulate the following togetherness criterion:

Claim 1
Togetherness is given for m lifetimes as a result of cyclic graph coloring: if they
share the same color, they are grouped horizontally.

5 Coloring the Cyclic Interval Graph

We have now achieved live ranges of the form required by cyclic interval graph
coloring algorithms. A wariable or register live range originally denotes the period
during which a certain value is present in a register during the program execution.
Finding a conflict layout for possibly infinitely many live ranges onto a limited
number of resources is also the aim of register allocation techniques like [Cha82]
(Figure 4.b): given k registers, an undirected graph is checked for k-colorability,
where nodes and edges stand for live ranges and interferences, respectively. The
small example of Figure 4.a, taken from [HGAMO92], shows in Figure 4.c how live

5 COLORING THE CYCLIC INTERVAL GRAPH 9

@ ai) T TTTTTTTTo |

¢ ') |

ai+1) vertical o

o grouping i ai+1) 3

® M A
o

,,,,,,,,,,,,,,,,,,,,,,,

- PO &t f
.a(i +1) horizontal ! :

grouping B e e

Figure 3: The grouping dilemma

a) b) C) 1 loop d)
1 2 2
Do ic1.N,1 I R T I H N B B | @ .
x1l = x3*10 x1 | ! .I A ! ’
x2 = x4%20 x2 | .—'—|I | | \
x3 = x1+5 x3 o—
= | | | 2
x4 = x2+x3 . x4 | . . @

Figure 4: Cyclic interval graph/meeting graph

ranges in innermost loops can be represented by a cyclic interval family, which
gives the cyclic interval graph of Figure 4.b. On the other hand, the intention
of the meeting graph method [ELM95] is to handle loop unrolling and register
allocation simultaneously for live ranges lasting more than one iteration of the
loop.

5.1 Usual Cyclic Interval Graph Coloring

Cyclic interval graph coloring, also known as circular-arc graph coloring, is a
polynomial problem [GJMP80]. But the g-coloring algorithm is only practical
for small values of ¢, therefore heuristics are used. One of the most efficient is
the one introduced in [HGAMO92]. They try to minimize the number of colors
used. The lower bound on the number of colors is the maximum number of
live ranges overlapping a point in the interval family, often noted MaxLive. For
instance in Figure 4.c, Max Live is equal to 2. Unfortunately they can not handle
intervals overlapping themselves. In this case a step of unrolling is necessary to
have a set of intervals not overlapping themselves. Furthermore this method does
not guarantee a coloring with Max Live colors, even if it is usually rather efficient.

5 COLORING THE CYCLIC INTERVAL GRAPH 10

5.2 Meeting Graph

With this method, intervals overlapping themselves can be handled. The meeting
graph heuristic was designed to minimize the unrolling degree necessary to obtain
a family of intervals that can be colored with MaxLive colors. 1t only works for
families of constant width, therefore some fictitious intervals may be added. Then
the graph itself is built like in Figure 4.c. We have one node for each interval, and
an arc between a node 7 and a node j if the interval corresponding to ¢ ends at the
point where the interval corresponding to j begins. A weight w corresponding
to the length of the interval is added to each node. Similarly each circuit has a
weight equals to the sum of the weights of its nodes divided by the number of
cycles of the loop. To find a suitable unrolling degree one has to take the lem of
the weights of disjoint circuits which can be found in the graph, hence the weights
of its connected components if it is not decomposed. Several heuristics have been
proposed to find a decomposition which minimizes the lecm [ELM95]. In all cases
finding a decomposition is a polynomial problem and the coloring with M ax Live
colors is ensured. The optimal unrolling degree is the least lcm computed over
all the possible decompositions, finding it is an exponential problem.

In our context, the intervals depict the time that a value must stay in the
cache. The meeting graph is used to find an unrolling degree, and a coloring of
the cyclic interval graph. A decomposition is computed, the lem of the circuits
weights gives the unrolling degree. An unrolling degree equal to 1 means that
no unrolling is necessary. Then the sequence of the intervals in the circuits gives
the order of the arrays in the cache lines. Furthermore minimizing the number of
colors is equivalent to minimize the number of cache lines used. In the following,
we apply this method on the running examples.

Example 6 (Example 2 continued)

Figure 5.b shows the meeting graph of Livermore Loop 7 which can be derived
easily from the cyclic interval family of Figure 5.a. Each live range is represented
by a node labeled with the number of cycles it is required to be in the cache.
As MaxLive = 7 during only the last cycle, we must add fictitious intervals,
1 during cycles 0-2 and 12-16, and 2 during cycles 3-11. As no interval begins
or ends during cycles 4-10 and 13-15, the unit intervals were merged to build
f4,f5 and f6. This does not change the results, but allows to have less nodes
in the graph. Thus, per iteration, six fictitious intervals have to be inserted.
Figure 5.c shows one possible decomposition, yielding a circuit of weight 1 and
one of weight 6. An unrolling factor of lem(1,6) = 6 is required to prevent u from
overlapping itself. The interval graph is unrolled six times and colored according
to the result: six colors are required for the live ranges of u, one additional color
for those belonging to the other arrays.

5 COLORING THE CYCLIC INTERVAL GRAPH

0 g0 Ul WD B O

HRERRRRR
u b WD R oV

BPR
S o

:load (ulk], tl)
:load(z [k],t2)
:load (y[k], t3)
:radd (t2,t3,t4)
tadd(tl, t4,t5)
:load (ul[k+1],t6)
:load (ulk+2],t7)
:load (ul[k+3],t8)
:add(t7,t8,t9)
tadd (t5,t9,t10)
:load (ulk+4],tl1ll)
:load (ul[k+5],t12)
:load(ulk+6],t13)
:add (tl2,t13,t14)
:add(tll, t14,tl1l5)
tadd(tl5,t10,t16)

:add(tl6,t4,tl7)
:store (t17,x[k])

(b)

11

f1 f3
u[K] fa .
® o ufk+1]
u[k+2]
ulk+3]
® Ps u[k+4]
PY ufk+5]
ylK] u[k+6]
y @— UGg———
2Kl X[K]
z@—
X‘.;;»
012 3 45 6 7 8 9 101112 13 14 15 16 17
@

(d)

©

Figure 5: Coloring Livermore loop 7

5 COLORING THE CYCLIC INTERVAL GRAPH 12

0:load(ali, k], tl1) f3
1:load(blk,3],t2) A g4
2:mult(tl, t2,t3) a@— |f2—| @
3:load(cli,j,k-11,t4) b @—

4:add(t4,t3,t5) — o c—
5:store(t5,cli,j,k]) r

\m@f OF 20 (@

(b) (©

Figure 6: Coloring matrix multiply

Example 7 (Example 3 continued)

Consider again matrix multiply of Figure 6.a. Fictitious intervals f1 to f4 have
to be inserted in order to derive the meeting graph. Figure 6.b shows the corre-
sponding meeting graph. It has two connected components, each with a weight
equal to 1: 1143 and g respectively as shown in Figure 6.c. The cyclic interval

5
graph can thus be colored with two colors without unrolling.

Example 8 (Example 4 continued)

The meeting graph for the filter example is shown in Figure 7.b. Because of the
more complex access pattern, seven fictitious intervals are required. It can be
decomposed into two circuits as shown in Figure 7.c, each with a weight of 1 (3).
Thus we don’t need to unroll the cyclic interval graph in order to color it with
two colors.

Example 9 (Example 5 continued)

For each loop nest of the FFT example, we get the interval representation of
Figure 8.a. Figure 8.b presents the corresponding meeting graph. It can be
decomposed in 2 circuits as shown in Figure 8.c.

5 COLORING THE CYCLIC INTERVAL GRAPH 13

0: load (ali-1,3j],tl)

. f3 6
1: load (ali,j-11,t2) o M
2 fl i = 7
: add (tl1,t2,t3) — | —
3: load (ali+l,3jl,t4) i j+1] a[i,j+1]
—@— i
4: add (t3,t4,t5) ali-1,] i+1,] s
a(i-1) @— a(i+1) b @@L

5: load (ali,j+1],té6)

6: add (t5,t6,t7)
7: mulc (t7,0.25,t8)

8: store (t8,bl[i,jl) @

xﬁj} \@.

@
@)

6 6
(b) (©)
ai-1) a(i+l) b
a(i)
ali-1) ali+l) b
a(i)
(d)

Figure 7: Coloring Filter

5 COLORING THE CYCLIC INTERVAL GRAPH

o~ ok Ww PP o

P RR RpRE
Uk WwpoR OV

:load (sigreall[i], t1)
:load(sigreal[il], t2)
:load(sigreal[i+le], t3)
:add (t2,t3,t4)
:store(t4,sigreall[il)
:load (sigimag[il, t5)
:load (sigimag[i], t6)
:load(sigimag[i+lel , t7)
:tadd (t6,t7,t8)
:store(t8,sigimagl[il)
:load (sigrealli+le], t9)
:load(sigimag[i+le], t10)
:fr(t9,tl1l0,tl2)
:f£i(t10,t9,tl13)
:store(sigreal[i+lel)
:store(sigimag[i+lel)

(b)

14

f2 AEW

f1 —_—

—_—
sigimag [i+le] @ @

sigimag)] @-@—
sigredl [i+le] @ @
sigreal [i] @ @—
T

0123456738

@

sigimag [|+Ie]

sgmdpﬂﬂ

sigimag [I]

Figure 8: Coloring FFT

9 10 11 12 13 14 15

| sigred [i] [sigred [i+l¢]] -

[sigimag [i] [sigimag [i+l¢]] --

(d)

6 DETERMINING A NEW DATA LAYOUT 15

6 Determining a new Data Layout

To avoid a table that maps each element separately to its new location, which
incurs high run time cost for indexing and additional cache misses, the new
location should be calculated from the position within the original array [Gen98|.

6.1 Standard Data Layout

C compilers allocate contiguous memory space more or less arbitrarily from an
arbitrary starting address start. Let a; be an n-dimensional array. The d; de-
note the offsets in direction of the array dimensions, size; the boundary of d;
(e.g. column length). C maps arrays row major, FORTRAN column major. In the
following, we consider a linearized C layout. A standard data layout dl for one
array is a function dl : IN" — IN:

dl(dy,...,d,) =dy * sizeg * ... % size, +dy x sizes % ... % size, + ... +d, + start.

6.2 Deriving a Coloring-directed Data Layout

In the general definition, a compiler-directed data layout can follow any injective
function. Horizontal grouping now results in systematically intermixing arrays.
Assume that p arrays are accessed in a loop nest which was unrolled and colored
with &' < k colors ¢y, ..., ¢p. Live ranges that have been identified as belonging
to the same color ¢; stem from p; < p different arrays. These arrays have to be
combined in a mergeset m;. In the following, we describe the transformations for
one array a; from one such mergeset.

While cyclic interval graph coloring handles only the innermost loop, the re-
sulting layout affects all dimensions of an array that are accessed through the
innermost loop index 7,. In a first step, arrays are transposed so that the inner-
most loop variable 4, accesses dimension d; of the array?. Let 7 : IN® — IN" be
a permutation such that w(dy,...,d;,...,d,) = (di,...,dy,d;). If nothing is to
be done, 7 is the identity permutation.

In a second step, data items of size s are mixed. They stem either from one or
from several different arrays. The number s of consecutive items from one array
ranges from 1 over row size to arrays size, representing elementwise, piecewise,
rowwise merging and no merging at all, respectively. s = 1 is the usual case. For
the jth array a; of a mergeset, let d,, be the offset in direction of the innermost
loop index. The position j of the array in the mergeset determines which of the
pi * s blocks is addressed, d, mod (p; * s) yields the offset inside such a block.
merge : IN — IN affects only the “innermost” dimension:

merge, j(dn) = (pi* 8) % ((dn * pi) divs) + (j = 1) + (dn mod (p; * 5))

’Note that in contrast to loop transformations [WL91], d; is modified instead of the loop
index vector (iy,...,i,)7.

6 DETERMINING A NEW DATA LAYOUT 16

In a third step, we add starting address adjustments for the ¢y different
mergesets. To avoid cache thrashing, which is now a greater risk because arrays
are accessed side-by-side, it is simply required that they do not start at memory
addresses that are equal modulo the total number of cache lines k. Assuming
that all mergesets were previously aligned to the same memory address modulo
k, all arrays aj,,...,a;, of a mergeset m; share the same adjustment, which is
simply a constant added to the starting address of all arrays in m;:

adjust (mq,...,my) =Vj,1: (a; € m; : adjust(a;,))
where Vm;, m; start(m;) mod k # start(m;) mod k

In total, we get for one array a;; belonging to mergeset m; the following data
layout function dl,; : IN" — IN:

dlsj(dy, ..., d,) = merge, jodlon(dy,...,d,)+ adjust(a;).

Proposition 1
Injectivity is preserved.

This holds simply because coloring assigns only one color to one mergeset; a value
belongs to one mergeset only. Merging does not endanger injectivity as merge
maps items from different arrays onto different locations: values subsequent in a
live range are also subsequent in memory (parameter j).

Theorem 1
For every innermost loop, if its cyclic interval graph can be colored with &' < k
colors, then it is guaranteed that there are no conflicts stemming from this loop.

We will just give a sketch of the proof. The cyclic coloring heuristic guarantees
that the cyclic interval graph can be colored with at most %k colors. Conflicting
data items bear different colors, thus they belong to different mergesets. These
are mapped according to dl, ;. From Proposition 1 follows that this mapping is
injective.

Figure 6.2 summarizes the steps of our method. Let us consider the new data
layouts for the running examples.

Example 10 (Example 6 continued)

There is no danger of self-interference when Livermore kernel 7 is unrolled 6
times, just the starting addresses of st,,st,,st, and st, are adjusted in order to
avoid cache thrashing. The decomposition from Figure 5.c prescribes to merge z,
y and z as described in Figure 5.d. One can observe that cache line boundaries
do not matter in this approach: if a cache line can hold 8 items, just imagine 3
subsequent lines holding 8 sequences of z,y,x.

Example 11 (Example 7 continued)
In the matrix example, mergeset m; contains a(%,k) and b(k,j), thus arrays « and
b are merged; b is also transposed as shown in Figure 6.d.

6 DETERMINING A NEW DATA LAYOUT 17

In: representation of cache value live ranges, item size s
Out: data layout di, ;

determine the array live ranges
build the meeting graph and find an unrolling degree
perform cyclic interval graph coloring: k' colors
if two live ranges have the same color ¢; € (¢;, ..., cx)
then put them into mergeset m;
end if
for all mergesets my, ..., my
for all arrays: n-dimensional array a; € m;
transpose: m(dy,...,d,)
if |mergeset| > 1
then merge, ;(d,)
end if
end for
end for
adjust(my, ..., my)

Figure 9: Deriving a New Data Layout

7 EXPERIMENTAL RESULTS 18

Example 12 (Example 8 continued)

Here, m; contains a(i-1,j),a(i+1,j) and b(i,j), ms contains a(i, j). Rows a(i-1,j)
and a(i+1,j) are thus interleaved with row b(%,j). This is depicted in Figure 7.d.
Here, the parameter s is of row size. We can note that in such cases, graphs
similar to Figure 7.c indicate the need for tiling which we plan to integrate into
our method.

Example 13 (Example 9 continued)

It is recommended to have sigreal(i+le) follow sigreal(i); the same is true for
sigimag as shown in Figure 8.d. This is defined for a fixed size of le. Ideally,
thus, for every iteration of the loop over le, memory would have to be reordered.
This is not realistic: for small /e that do not exceed the cache size, there is no
self-interference. For the others, the cost of reordering has to be weighed up
against the cost of conflict misses. For problems of this structure, reordering is
worthwhile because the array is one dimensional, whereas on every step a cache
miss occurs.

7 Experimental Results

In the following, we show experimental results for the four running examples.
We used the realistic C codes transformed source-to-source for implementing
the layout transformation; currently we are integrating our optimization into a
larger compiler framework. The DEC ALPHA memory hierarchy is typical for a
direct mapped separate data and instruction cache architecture. Measurements
are made in standalone mode on a 200 MHz 21064 with 8K of direct mapped
firstlevel data cache (32 Byte cache lines), on a 500 MHz 21164 with the same
firstlevel cache architecture, on a 200 MHz Pentium Pro with the same cache and
line size but 4-way set associativity, and on a 266MHz Pentium (i586) with also
8KB size, but 2-way set associativity.

We show sample miss rates and run times for Livermore kernel 7, a cross
filter kernel, matrix multiply and Fast Fourier Transform (FFT) on Alpha and
Pentium Pro, respectively. They were chosen because of the ways in which their
memory access patterns differ from each other.

In the following, standard and thrash denote standard memory allocation and
cache thrashing, respectively, while GE98 stands for the data layout of [Gen98|,
merge for the new layout. All miss rates were measured with the -O4 option.
Concerning the run times results for LL7 and FFT, run times were taken from
100 repetitions for accuracy.

The graph in Figure 10 presents miss rate improvements for Livermore ker-
nel 7. As we measure only first-level cache misses, the sharp increase that is
characteristic when data exceeds second level cache capacity does not occur in
the results. The two new layout methods perform generally better. Note that, as
cache miss rates oscillate heavily, lines between the points may not be drawn; we

7 EXPERIMENTAL RESULTS 19

0.5 T T T T
standard <—
cache thrashing -+--
GE98 -o--
merged
04 i
+ /JT
& JAY A
0.3 N FEAY /oA E
L ! ' ; \ / \
g s
! -
. i
£ A
0.2 R —+ -
0 1 1 1 1

10 100 1000 . 10000 100000 1le+06
size

Figure 10: Miss rates for Livermore kernel 7

do so only to improve visibility. merge outperforms all other methods, only GE98
is better twice, and it decreases regularly unlike other methods. We also checked
sizes of a power of two as pathological cases, to which merge is quite insensitive;
a similar effect was observed in [PNDN97].

For matrix multiply, in addition to the naive algorithm we compare a trans-
position for improving spatial reuse (transpose) and a well-established blocking
technique (block [WL91]). Miss rates are significantly improved. Even if separate
and block improve it even more, the former is much more expensive at run time
due to integer division and modulo calculations, and the latter is a somewhat
unfair competition, as it is no data, but a loop transformation.

The results for filter shown in table 1 indicate that miss rates are very similar
for all methods.

For fft, the miss rate results are very good in comparison with the standard
method and particularly with GE98. Concerning cache misses merge wins on
both architectures due to the avoidance of cross interference: remember that in
FFT, four arrays of a size of a power of two are accessed, making it extremely
prone to cross interference; in this example, reuse is mainly present in the outer
loop.

Figures 11 to 18 present run time improvements for the running examples.

Compared to the miss rates presented in Figure 10 and Table 1, it becomes
obvious that run times do not improve proportionally to miss rates, in contrast
to what is often assumed. The explanation is as follows: for multiple functional

7 EXPERIMENTAL RESULTS 20

Matrix multiply
size miss rate %
none | transpose | block | separate | merge
256 | 12.3 | 4.81 2.80 |2.24 2.49
300 | 7.57 | 2.45 1.11 | 2.52 2.75
301 | 6.33 | 2.26 1.12 | 2.53 2.76
Filter
size miss rate %
none | separate | merge
550 | 3.02 | 3.02 3.03
1024 | 37.8 | 37.8 37.8
Fast Fourier Transform
size miss rate %
none | separate | merge
256 | 12.3 | 15.2 11.5
1024 | 12.6 | 15.5 12.0
4096 | 12.9 | 15.6 12.3

Table 1: Miss rates for Matrix multiply, cross filter and FFT on DEC Alpha

units, cache misses affect run time only if the floating point unit is not completely
filled and suffers a stall; otherwise, the actions overlap. This becomes particularly
obvious for the Livermore kernel (LL7) in Figure 10.

Livermore kernel 7 is generally assumed to be rather well-behaved; up to now,
nearly no methods exist to improve it further. We also checked sizes of powers of
two — known as pathological cases for caches; merge is quite insensitive to those.
For run time measurements, we included the standard layout with loop unrolling
as well as a version where x, y and z were merged without unrolling. It is known
that unrolling generally may have positive effects on the run time; the larger part
of the improvement however is due to merging. Furthermore, paging is postponed
for merge because the number of different memory pages is reduced; this effect is
much stronger on the Alpha architectures.

The filter calculates image data from its four neighbors; array accesses are
cross-shaped. Reuse occurs both within the inner and the outer loop. Miss
rates are very similar for all methods. The run times for merge are up to 10%
faster than all others on Alpha and suffer much less from jumps on Pentium.
For matrix multiply, we compare additionally a transposition for improving spa-
tial reuse (transpose) —merging implies a transposition of one matrix— and a

7 EXPERIMENTAL RESULTS

300

21

Livermore Kernel 7 on DEC Alpha 21064

standard ——
unroll ——
250 + 4
merge = |
unroll merge -~
200 + /o
8 150 | L
. /}g,‘/,x
100 | e 1
50 B ”% &

0
size O

Livermore Kernel 7 on DEC Alp

(a)

500000 1e+06 1.5e+06 2e+06 2.5e+06

ha 21164

140
120

100

Figure 11:

unroll merge =

standard ——
unroll -+
merge =

I ‘1
I i
A-—:;' NN

1e+06 2e+06 3e+06

(b)

Run times for Livermore kernel 7 on Alpha

4e+06

7 EXPERIMENTAL RESULTS 22

Livermore Kernel 7 on Pentium

2 . : , , .
18 B ’VE\',,EJ
16 | standard ~— i

I unroll ——-

14 separate o

12 merge < e

é; 1 unroll merge -+~ 7 gy |

cachethrash -=-- s&%

08 B L '.,/ i

0_6 ,’\\ - |

0.4 1

0.2 1

(a)
Livermore Kernel 7 on Pentium Pro
120 T T T
standard ——
100 | unroll -
Separate =
merge =

80 [unroll merge -+

8 60

40

20

sze 3e+t06 3.25et06 3.5et06 3.75e+06 4e+06

(b)

Figure 12: Run times for Livermore kernel 7 on Pentium

7 EXPERIMENTAL RESULTS 23

Matrix Multiplication on DEC Alpha 21064

sze 50 60 70 80 90 100

0.045
0.04
0.035 r
0.03
0.025
0.02
0.015
0.005

size 50 60 70 80 90 100

(b)

Figure 13: Run times for matrix multiply on Alpha

7 EXPERIMENTAL RESULTS 24
Matrix Multiplication on Pentium
0.16 T T T : T
standard]
0.14 i
0.12
0.1
8 008
0.06
0.04
0.02
O I I I I
Sizes0 60 70 80 90 100
(a)
Matrix Multiplication on Pentium Pro
0.08 . . : .
0.07 standard ——
blocked -
0.06 [transposed
0.05 separale
8 004 :
0.03 .
0 I I I I
size 50 60 70 80 90 100

Figure 14: Run times for matrix multiply on Pentium

7 EXPERIMENTAL RESULTS 25

Filter on DEC Alpha 21064
0.65 T T T T T

0.6
055 ¢
0.5
045 ¢
0.4
035 1

o
w

T=s
1

0.25

0.2 - - - - -
sze 700 750 800 850 900 950 1000

(a)
Filter on DEC Alpha 21164
0.2 | | I T T
018 r standard ——
separate —— ﬂ ‘
016 B merge 7777777777 | _
gi 0.14 +
0.12 +
0.1t s
. \‘\“}' il ’\"" / i
0.08 p i _
0.06 | | | I I

size 700 750 800 80 900 950 1000

Figure 15: Run times for filter on Alpha

7 EXPERIMENTAL RESULTS 26

0.44
0.42

0.4
0.38

0.36

§ 0.34
0.32

0.3

0.28

0.22

\
I
I\
I
YR
IV
026 !
AN A .
A N
. (VAR AR VIR A

Filter on Intel Pentium

- standard —— -

size 700 720 740 760 780 800

0.75

0.7

0.65

0.6

0.55

§§ 0.5
0.45

0.4

0.35
0.3

y
0.25

0.2

size 700 750 800 80 900 950 1000

Figure 16: Run times for filter on Pentium

7 EXPERIMENTAL RESULTS

100

25

20

Fast Fourier Transform on DEC Alpha 21064

I standard —— |
Separate -+ /
merge =

Fast Fourier Transform on DEC Alpha 21164

standard —— |
separate -

merge =/

Figure 17: Run times for FF'T on Alpha

27

7 EXPERIMENTAL RESULTS 28

Fast Fourier Transform on Pentium

50 T T T T T ,,,
45 | standard —— /]

separate ¢
40 ¢ merge =/

20

Fast Fourier Transform on Pentium Pro

40 | standard —— |

Figure 18: Run times for FF'T on Pentium

8 CONCLUSIONS AND FUTURE WORK 29

well-established blocking technique (block [WL91]). Miss rates are significantly
improved. Even if separate and block improve them even more, the former is much
more expensive at run time due to integer division and modulo calculations, and
the latter is a somewhat unfair competition, as it is no data, but a loop transfor-
mation. About run times, the performance curve for matrix multiply with row
major layout suffers from jumps. The performance of merge is comparable to that
of blocking (block), but more even. This applies for both architectures. separate
suffers heavily from the more expensive indexing functions on Pentium, while on
Alpha, it beats all other methods due to a drastic reduction of cache conflicts. For
FFT run times, merge performs comparably to the standard method on Alpha,
while it performs up to 10% better on Pentium Pro. Concerning cache misses
merge wins on both architectures due to the avoidance of cross interference: in
FFT, four arrays of a size of a power of two are accessed, making it extremely
prone to cross interference. Reuse is mainly present in the outer loop.

For codes with extensive reuse in the innermost loop, i.e. LL7, the new layout
yields the most significant speedup. FFT and filter fall behind because a lot of
reuse is due to the outer loop. Several other Livermore kernels and many image
processing and compression algorithms can be classified along with LL7, making
a more thorough examination clearly promising.

8 Conclusions and future work

We have introduced a method that improves cache line usage with the help of the
meeting graph and a new notion of togetherness. Cyclic graph coloring is used to
determine the distribution of the arrays in the cache lines. Thus a new data layout
is then computed thanks to this information. For a class of scientific applications,
we gain exact control over the memory layout and significantly reduce conflict
misses. The experimental results show improvements in the cache miss rates,
especially for the Livermore kernel 7, as well as run times improvements for all
benchmarks.

Let us outline some directions of further research. Prefetching, the preload-
ing of data from memory into cache ahead of time [MLG92], can be easily inte-
grated into our framework, and our approach is complementary to tiling [LRWI1,
MCT96]. Furthermore our approach will have to be extended beyond innermost
loops. Innermost loops are not specific to the area of scientific computing. In
more general application areas, data type sizes vary and accesses are less regular.
Still, a clever data layout helps to improve performance as shown in [GTZ98].

We plan also to examine the interaction with compiler-controlled instruction
scheduling in more detail. In the presence of branches, a specific data flow analysis
is required.

REFERENCES 30

Acknowledgments This work was initiated by discussions with Uwe Assmann;
we furthermore thank the authors of ATOM providing their tool. S. Lelait is
funded by the Austrian Science Fund (FWF). D. Genius is on a grant from
Graduiertenkolleg “Beherrschbarkeit Komplexer Systeme” of the German Science
Foundation (DFG).

References

[Chag2] G. J. Chaitin. Register allocation and spilling via graph coloring.
In Proceedings of the SIGPLAN 82 Symposium on Compiler Con-
struction, pages 98-105. ACM, ACM, 1982. Available as SIGPLAN
Notices 17(6) June 1982.

[ELM95] Christine Eisenbeis, Sylvain Lelait, and Bruno Marmol. The meeting
graph: A new model for loop cyclic register allocation. In Lubomir
Bic, Wim Bohm, Paraskevas Evripidou, and Jean-Luc Gaudiot, ed-
itors, Proceedings PACT’95, pages 264267, Limassol, Cyprus, June
27-29, 1995. ACM Press.

[Gen98| Daniela Genius. Handling cross interferences by cyclic cache line col-
oring. In 1998 Parallel Architectures and Compilation Techniques
Conference (PACT’98), Paris, France, October 14-16 1998. to ap-
pear, IEEE.

[GIJMP80] M.R. Garey, D.S. Johnson, G.L. Miller, and C. H. Papadimitriou.
The complexity of coloring circular arcs and chord s. SIAM J. Alg.
Disc. Meth., 1(2):216-227, June 1980.

[GMM97] S. Ghosh, M. Martonosi, and S. Malik. Cache miss equations: An
analytical representation of cache misses. In Proceedings of the 11th

International Conference on Supercomputing (ICS-97), pages 317—
324, New York, July7-11 1997. ACM Press.

[GTZ98] Daniela Genius, Martin Trapp, and Wolf Zimmermann. An approach
to improve locality using sandwich types. In Proceedings of the 1998
Types in Compilation workshop, Kyoto, Japan, march 1998. Springer
LNCS.

[HGAMO92| L. Hendren, G. Gao, E. Altman, and C. Mukerji. A register allocation
framework based on hierarchical cyclic interval graphs. In Proc. 4th
Int. Conf. Compiler Construction, volume 641 of LNCS, pages 176—
191. Springer-Verlag, 1992.

REFERENCES 31

[HKC97]

[HPY6]

[KCR*98]

[LRWO1]

[LW94]

[MCT96]

[MLG92]

[MT96]

[PNDN97]

[Raw93]

Amir H. Hashemi, David R. Kaeli, and Brad Calder. Efficient pro-
cedure mapping using cache line coloring. In PLDI 1997, pages 171—
182, jun 1997. Proceedings of the ACM SIGPLAN 97 Conference on
Programming Language Design and Implementation.

John L. Hennessy and David A. Patterson. Computer Architecture -
A Quantitative Approach. Morgan Kaufman, 2nd edition, 1996.

M. Kandemir, A. Choudhary, J. Ramanujam, N. Shenoy, and
P. Banerjee. Enhancing spatial locality via data layout optimzations.
In Proceedings of EuroPar’98, pages 422—-434, Heidelberg, September
1998. Springer LNCS.

Monica S. Lam, Edward E. Rothberg, and Michael E. Wolf. The
cache performance and optimizations of blocked algorithms. In Pro-
ceedings of the Fourth International Conference on Architectural Sup-

port for Programming Languages and Operating Systems, pages 63—
74, Santa Clara, California, April 8-11, 1991.

Alvin R. Lebeck and David A. Wood. Cache profiling and the SPEC
benchmarks: A case study. Computer, 27(10):15-26, October 1994.

Kathryn S. McKinley, Steve Carr, and Chau-Wen Tseng. Improv-
ing data locality with loop transformations. ACM Transactions on
Programming Languages and Systems, 18(4):424-453, July 1996.

Todd C. Mowry, Monica S. Lam, and Anoop Gupta. Design and eval-
uation of a compiler algorithm for prefetching. In Fifth International
Conference on Architectural Support for Programming Languages and
Operating Systems, pages 62—73, October 1992.

Kathryn S. McKinley and Olivier Temam. A quantitative analysis
of loop nest locality. In Seventh International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
pages 94-104, Cambridge, Massachusetts, 1-5 October 1996. ACM
Press.

Preeti Ranjan Panda, Hiroshi Nakamura, Nikil D. Dutt, and A. Nico-
lau. Improving cache performance through tiling and data alignment.
In IRREGULAR 1997, pages 167-185. Springer LNCS 1253, 1997.

Jai Rawat. Static analysis of cache performance for real-time pro-
gramming. Technical Report TASTATECS//TR93-19, Iowa state
university, Nov 1993.

REFERENCES 32

[RT9S]

[TFJ94]

[WL91]

Gabriel Rivera and Chau-Wen Tseng. Data transformations for elim-
inating conflict misses. In Proceedings of the 1998 ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI’98), Montreal, Canada, june 1998.

O. Temam, C. Fricker, and W. Jalby. Cache interference phenomena.
In Proceedings of the Sigmetrics Conference on Measurement and
Modeling of Computer Systems, pages 261-271, New York, NY, USA,
May 1994. ACM Press.

Michael E. Wolf and Monica S. Lam. A data locality optimizing
algorithm. SIGPLAN Notices, 26(6):30—44, jun 1991. Proceedings
of the ACM SIGPLAN °91 Conference on Programming Language
Design and Implementation.

