
Improving Data Layout

through

Coloring�Directed Array Merging

Daniela Genius
Institut f�ur Programmstrukturen und Datenorganisation�

Fakult�at f�ur Informatik Universit�at Karlsruhe
Zirkel �� ����� Karlsruhe� Germany

E	mail
 genius�ipd�info�uni�karlsruhe�de�
WWW
 http���i��www�info�uni�karlsruhe�de��genius

Tel�
 ���� ��� ���	����
Fax
 ���� ��� �� � ��

Sylvain Lelait
Institut f�ur Computersprachen� Technische Universit�at Wien

Argentinierstra�e �� A	���� Wien� Austria
E	mail
 sylvain�complang�tuwien�ac�at

WWW
 http���www�rocq�inria�fr��lelait
Tel�
���� � ��� �� ��� ��
Fax
 ���� � ��� �� ��� ��

January ��� ����

�

�

Abstract

Scienti�c computing and image processing applications access large
amounts of data in regular patterns� In order to relieve the memory bottle�
neck� caching tries to keep recently referenced data available in fast storage�
This is increasingly important as the gap between processor and memory
hierarchy speed has widened in recent years�

There are two main di�culties that cannot be dealt with by hardware
alone� Firstly� a cache line usually holds several values� often only one
of them is actually used� Secondly� con�icting accesses to one cache line
cause data to be evicted which is still required� In the extreme case� data
is replaced on every access� a situation we denote as cache thrashing� To
overcome these problems� the temporal	spatial structure of accesses has to
be changed�

Compile�time cache optimizations exploit regular access patterns� Loop
transformations as e�g� tiling are well�established� For caches with limited
associativity� it is often crucial to additionally adjust the placement of
data in memory� We show that compiler techniques for register allocation�
namely graph coloring� support a systematic data placement�

For innermost loops� con�icts and temporal reuse can be modeled to�
gether in a cyclic interval graph� If reuse stretches over several loop itera�
tions� live ranges may overlap themselves� prohibiting usual cyclic coloring�
By applying the meeting graph method� the compiler can determine an un�
rolling factor and determine the maximal number of colors� i�e� of cache
lines required�

Values of the same color are mapped to memory together� Since these
values may stem from di
erent data structures� our technique o
ers a nat�
ural way of dealing with con�icts between di
erent arrays�

We implement this scheme through modifying the standard memory
mapping� At run time� the new compile time mapping function is used as
index function� The tradeo
 between the additional cost for more complex
indexing and reduced miss penalty is re�ected by a cost function�

For typical example codes from the above areas� reuse and con�ict be�
havior are considerably improved� yielding moderate run time reductions�
In addition� on a more coarse level� paging activity is often signi�cantly
postponed�

� INTRODUCTION �

� Introduction

Scienti�c programs cause large numbers of cache misses due to competition for
a cache line as well as bad cache line utilization� Although to some extent the
hardware can be improved� e�g� by increasing cache line size or associativity�
good cache utilization for high�performance codes often remains a task for hand�
optimization� There are though a number of approaches to having the com�
piler improve cache behavior� For instance� Temam and McKinley have shown
that for typical loop nests� con�ict misses account for up to 	
� of all cache
misses �MT��� For caches with limited associativity� it is possible to in�u�
ence cache behavior via the memory layout� But alternative data layouts have
rarely been considered� although their importance has been fully recognized by
now �RT���
An analysis of memory accesses in innermost loops informs us which portions

of an array must be present in the cache� Interference and temporal reuse can
then both modeled by a cyclic interval graph� In order to determine potential
con�icts and to �nd out which data should be loaded into the same cache line�
we apply some heuristics from register allocation� As array live ranges in the
cache are similar to variable lifetimes handled in loops by cyclic graph coloring
methods� we take advantage of this formalization� The obtained coloring gives us
information for the occupation of the cache lines by the arrays in order to reduce
the cache misses� Then this allow us to deduce a new data layout for these arrays
in memory� In this framework� cache misses are reduced in two ways� a better
utilization of the cache lines reduces capacity problems� while also many con�icts
are avoided� Our experimental results show improvements concerning cache miss
rates and also run times improvements for a set of benchmarks typical of scienti�c
code�
Section � contains basic terminology and prerequisites� while Section � sums

up recent related work� We show in Section � how cache value live ranges are de�
rived and describe in Section 	 how the meeting graph is applied� Section � shows
the application of the result to actual memory layout� Results of measurements
can be found in Section �� We conclude by outlining further work�

� Related work

Graph coloring wrt� caches was examined in the context of cache analysis by
Rawat �Raw��� He contributes the notion of togetherness of values in a cache
line� Coloring as a heuristic is more appropriate for optimization� By not tak�
ing reuse information into account� the estimations made by Rawat overestimate
cache misses signi�cantly� Hashemi� Kaeli and Calder �HKC�� applied a coloring
technique for direct mapped instruction caches in order to obtain con�ict�minimal
mappings for procedures� For this area coloring applies more easily� Their opti�

� BASIC NOTIONS �

mizations are based on trace�driven simulations� Restricting to scienti�c appli�
cations� we can obtain more information at compile time�
There are still few works on the impact of data layout on cache misses� all of

very recent origin� They are mostly dealing with padding� the insertion of useless
data into data structures� Rivera and Tseng �RT�� classify padding more pre�
cisely and provide comprehensive experimental results� Panda et�al� �PNDN��
propose to combine padding with a tiling scheme� Their run time improvements
are very small due to operation overhead� Ghosh et al� �GMM�� use cache miss
equations to select padding and tile size however they do not provide much exper�
imental data� The gaps �lled with useless data that are characteristic for padding
are no longer required� Kandemir et�al� �KCR��� target exclusively at spatial
locality�

Merging is a simple but e�ective way to prevent the arrays from interfer�
ing with each other� usually performed by the programmer �HP�� LW��� The
method we present enables the compiler to intermix arrays in a systematic way
that goes beyond merging� We have already employed the meeting graph in pre�
vious work �Gen��� where we proposed a general way of deriving data layouts
from array indexes� In this approach� coloring was performed after building cache
lines� it was not used as a togetherness criterion�

� Basic notions

��� Cache Terminology

For the basics of cache architecture we refer to �HP��� Whenever a value re�
quested in a calculation is present neither in registers nor in the cache� a cache
miss occurs� A value is loaded into one of the registers� At the same time
the corresponding memory location and its surrounding values are loaded into a
�physical� cache line� Compulsory misses occur when �lling up an empty cache�
When the size of a portion of data that is required to be in the cache exceeds
cache size� capacity misses are caused� Con�ict misses are due to the competition
of memory locations for the same cache line� they do not occur in fully associative
caches� Self interference denotes con�icts that are caused by accesses to the same
array� Cross interference occurs when di�erent arrays compete for a cache line�
A comprehensive analysis can be found in �TFJ���
By cache thrashing we denote the situation when on every iteration of the

innermost loop� references cause data to be evicted from the cache� This notion
corresponds to severe con�icts in �RT���Temporal reuse of data in the cache
occurs when the same data item is accessed several times� Spatial reuse means
accesses to data in the same cache line� Temporal reuse is a special case of spatial
reuse�

� EXTRACTING CACHE BEHAVIOR FROM THE CODE 	

��� Prerequisites

Our primary application area is scienti�c computing� where nested loops with
regular accesses to large portions of memory have to be handled� The goal is
to extract as much information as possible at compile time� so the following
restrictions have to be imposed� We consider such array references that are
generated by an a�ne mapping of the loop counter vector �WL��� One loop
nest without branches is considered at a time� We focus on the improvement
of innermost loops as the greatest e�ects can be achieved here� We concentrate
on �rst�level data caches with limited associativity� Unless loops are unrolled
extensively� it is legitimate to leave the instruction cache behavior out of the
focus�
We present our method for a Low Intermediate Representation �LIR� for a

Risc architecture� which means that arithmetic operations are performed only
on registers� The method is applicable for any architecture without out�of�order
execution� Furthermore we denote memory addresses by their corresponding
array locations� load�a�i�� stands for a load from a memory address calculated
from i�
The running examples satisfy the code properties stated above� For presenting

our method we only show the interesting loop nests� whereas we use the entire
programs for measurement�

Example � �Benchmarks�
Consider some main loops from scienti�c benchmarks� In the Livermore kernel of
Figure ��a� there is only one loop� references to all four arrays are uniformly gener�
ated� values of vector u are heavily reused� Matrix multiply� shown in Figure ��b�
contains accesses to three arrays� In a preliminary step� matrix b is transposed
for improving spatial reuse� A typical application taken from image processing
is �ltering� presented in Figure ��c� which exhibits a bad cache miss behavior be�
cause values from former�future iterations of the outer loop are reused� Images
are usually rather big� so these values will be evicted before they are reused� Fast
Fourier Transform� shown in Figure ��d� also su�ers from the problem that from
the log�N � ��th iteration on a value will be evicted before it is reused� as it is
pointed out in �PNDN��� The additional problem here is that problem sizes are
always a power of two� which is pathological when dealing with caches�

� Extracting Cache Behavior from the Code

A physical cache line is represented in memory as a virtual cache line consisting
of cache values of data item size� The number of processor cycles in which a
value is actually present in the cache is called the cache value live range �Gen���
From the Risc�LIR representation of the innermost loop body� load and store
instructions can be easily extracted�

� EXTRACTING CACHE BEHAVIOR FROM THE CODE �

a� LL�

for�k��� k�SIZE� k���	

x
k� � u
k�

�r��z
k��r�y
k��

�t��u
k���r��u
k���

�r�u
k�����t��u
k���

�r��u
k����r�u
k������

�

b� Matrix Multiply

for �i��� i�SIZE� i���	

for �j��� j�SIZE� j���	

for �k��� k�SIZE� k���	

c
i�
j���a
i�
k��b
j�
k��

�

�

�

c� Filter

for � k�� � k�SIZE � k�� �	

for � j�� � j�SIZE � j�� �	

b
i�
j�������

�a
i���
j��a
i�
j���

�a
i���
j��a
i�
j����

�

�

d� FFT

le���n� windex��� wptrind���

for�l���l�n�l���	

le�le���

for�j���j�le�j���	

wpr�wreal
wptrind��

wpi�wimag
wptrind��

for�i�j�i���n�i����le�	

tmpr�sigreal
i��

sigreal
i���sigreal
i�le��

tmpi�sigimag
i��

sigimag
i���sigimag
i�le��

tr�tmpr�sigreal
i�le��

ti�tmpi�sigimag
i�le��

sigreal
i�le��tr�wpr�ti�wpi�

sigimag
i�le��tr�wpi�ti�wpr�

�

wptrind��windex�

�

windex�windex���

�

Figure �� Benchmarks

� EXTRACTING CACHE BEHAVIOR FROM THE CODE �

a(i) a(i)

0 1 01 12 23 32 3

a) b) c)

1:subc(1,t1,t2) 1:subc(1,t1,t2)

0:load(a[i],t1)0:load(a[i],t1)

0:subc(1,t1,t2)

1:move(t0,t1)

t1 t1 t1

t2 t2 t2

2:store(t2,a[i]) 2:store(t2,a[i]) 2:move(t2,t0)

3:mult(t2,t3,t4) 3:mult(t2,t3,t4) 3:mult(t2,t3,t4)

0

Figure �� Deriving cache value live ranges

Assume two short sequences of LIR code and consider the content of a�i��
Figure � relates cache value live ranges �a�i�� to register live ranges �t��t	�� while
the latter refer to registers� the former refer to cache � and thus memory �
locations when dealing with limited associativity� Memory accesses are depicted
by full dots� register operations by empty dots�� Figure ��a shows that a�i� is
reused� although it is kept in di�erent registers and its content is changed� If
data are accessed only once� we consider them as surviving one cycle� This is
the case if only loads are considered like in Figure ��b� When the value is loaded
from a register t
 rather than a memory location a�i�� register�only computation
does not a�ect the cache as shown in Figure ��c�

Example �
Values of vector u in the Livermore kernel LL� of Figure 	�a are heavily reused�
u�k��� is �rst used in iteration k� last used in iteration k��� live ranges last �
cycles� Accesses to x�y and z last one cycle�

Example �
In the matrix example of Figure ��a� values of a and b live one cycle� while values
of c stretch over all iterations� To achieve a form suitable for our representation�
scalar expansion is applied� The loop body now has the form c�i�j�k�c�i�j�k�
����a�i�k��b�k�j��� so that lifetimes for c stretch over four cycles�

Example �
In the �lter example shown in Figure ��a� elements are accessed twice in the
innermost loop �i�e� a�i�j��� and a�i�j����� Live ranges survive three iterations�
e�g� from iteration j�� to iteration j��� Reuse in direction of i is unlikely because
after the array has been fully traversed by the innermost loop in direction of j at
�level� i� values of �level� i�� will have been evicted�

�Note that this notions can be easily transferred to non�Risc architectures� any memory�
a�ecting instruction is considered a load or store�

� COLORING THE CYCLIC INTERVAL GRAPH �

Example �
Fast Fourier Transform �FFT� Figure ��a� su�ers similarly from the problem that
from the n� �th iteration on a value will be evicted before it is reused� as was
pointed out by �PNDN��� The additional problem with FFT is that problem
sizes are always a power of two� a pathological situation causing a lot of cache
con�icts� In order to overcome the problem caused by the outer loop which makes
every array location alive most of the time� we unroll it completely and we execute
in fact n times the loop nest composed of the two other loops�

��� A Togetherness Criterion

Cache lines usually hold more than one element� In which way can we con�
trol which data is placed in a physical cache line� That is� how is togetherness
achieved�
Intra�array regrouping� vertical grouping� is done by displacing cache line sized

pieces of data in memory via an injective function that redistributes cache line
sized pieces of data in order to reduce interferences �Gen��� The main disad�
vantages are that arrays have to be mapped wrt� spatial reuse in a preliminary
phase� As arrays stay separate� cross interference has to be dealt with separately�
On the other hand� it is possible to have a cyclic interval graph handling also

togetherness� By chaining together live ranges� horizontal grouping� we determine
which elements should be together in a cache line� In order to reduce the degrees
of freedom we always assume that the order in memory is the same as the sequence
of lifetimes�
Figure � shows the dilemma for two arrays� the upper part shows vertical� the

lower part horizontal grouping� In the following� choosing the second approach
allows us to formulate the following togetherness criterion�

Claim �
Togetherness is given for m lifetimes as a result of cyclic graph coloring� if they
share the same color� they are grouped horizontally�

� Coloring the Cyclic Interval Graph

We have now achieved live ranges of the form required by cyclic interval graph
coloring algorithms� A variable or register live range originally denotes the period
during which a certain value is present in a register during the program execution�
Finding a con�ict layout for possibly in�nitely many live ranges onto a limited
number of resources is also the aim of register allocation techniques like �Cha���
�Figure ��b�� given k registers� an undirected graph is checked for k�colorability�
where nodes and edges stand for live ranges and interferences� respectively� The
small example of Figure ��a� taken from �HGAM��� shows in Figure ��c how live

� COLORING THE CYCLIC INTERVAL GRAPH

(a)

(b)

b(i)

a(i)

a(i)

a(i+1)

b(i)

b(i)

a(i+1)

a(i)

a(i)

b(i)
grouping

horizontal

vertical
grouping

a(i+1)
a(i+1)

Figure �� The grouping dilemma

 x1 = x3*10
 x2 = x4*20
 x3 = x1+5
 x4 = x2+x3

Do i=1,N,1 x1

x2

x3

x4

a) 1 loop

2

2

22
x1 x2

x3
x4

b) c) d)

x1 x2

x3x4

Figure �� Cyclic interval graph�meeting graph

ranges in innermost loops can be represented by a cyclic interval family� which
gives the cyclic interval graph of Figure ��b� On the other hand� the intention
of the meeting graph method �ELM	� is to handle loop unrolling and register
allocation simultaneously for live ranges lasting more than one iteration of the
loop�

��� Usual Cyclic Interval Graph Coloring

Cyclic interval graph coloring� also known as circular�arc graph coloring� is a
polynomial problem �GJMP�
�� But the q�coloring algorithm is only practical
for small values of q� therefore heuristics are used� One of the most e�cient is
the one introduced in �HGAM��� They try to minimize the number of colors
used� The lower bound on the number of colors is the maximum number of
live ranges overlapping a point in the interval family� often noted MaxLive� For
instance in Figure ��c�MaxLive is equal to �� Unfortunately they can not handle
intervals overlapping themselves� In this case a step of unrolling is necessary to
have a set of intervals not overlapping themselves� Furthermore this method does
not guarantee a coloring withMaxLive colors� even if it is usually rather e�cient�

� COLORING THE CYCLIC INTERVAL GRAPH �

��� Meeting Graph

With this method� intervals overlapping themselves can be handled� The meeting
graph heuristic was designed to minimize the unrolling degree necessary to obtain
a family of intervals that can be colored with MaxLive colors� It only works for
families of constant width� therefore some �ctitious intervals may be added� Then
the graph itself is built like in Figure ��c� We have one node for each interval� and
an arc between a node i and a node j if the interval corresponding to i ends at the
point where the interval corresponding to j begins� A weight w corresponding
to the length of the interval is added to each node� Similarly each circuit has a
weight equals to the sum of the weights of its nodes divided by the number of
cycles of the loop� To �nd a suitable unrolling degree one has to take the lcm of
the weights of disjoint circuits which can be found in the graph� hence the weights
of its connected components if it is not decomposed� Several heuristics have been
proposed to �nd a decomposition which minimizes the lcm �ELM	�� In all cases
�nding a decomposition is a polynomial problem and the coloring withMaxLive

colors is ensured� The optimal unrolling degree is the least lcm computed over
all the possible decompositions� �nding it is an exponential problem�
In our context� the intervals depict the time that a value must stay in the

cache� The meeting graph is used to �nd an unrolling degree� and a coloring of
the cyclic interval graph� A decomposition is computed� the lcm of the circuits
weights gives the unrolling degree� An unrolling degree equal to � means that
no unrolling is necessary� Then the sequence of the intervals in the circuits gives
the order of the arrays in the cache lines� Furthermore minimizing the number of
colors is equivalent to minimize the number of cache lines used� In the following�
we apply this method on the running examples�

Example 	 �Example � continued�
Figure 	�b shows the meeting graph of Livermore Loop � which can be derived
easily from the cyclic interval family of Figure 	�a� Each live range is represented
by a node labeled with the number of cycles it is required to be in the cache�
As MaxLive � � during only the last cycle� we must add �ctitious intervals�
� during cycles
�� and ������ and � during cycles ����� As no interval begins
or ends during cycles ���
 and ����	� the unit intervals were merged to build
f��f	 and f�� This does not change the results� but allows to have less nodes
in the graph� Thus� per iteration� six �ctitious intervals have to be inserted�
Figure 	�c shows one possible decomposition� yielding a circuit of weight � and
one of weight �� An unrolling factor of lcm��� �� � � is required to prevent u from
overlapping itself� The interval graph is unrolled six times and colored according
to the result� six colors are required for the live ranges of u� one additional color
for those belonging to the other arrays�

� COLORING THE CYCLIC INTERVAL GRAPH ��

f1

z

f4

u

f2
f3

f5

f6

x

y

1
1

9

1

1
9

5

1

1

97

(b) (c)

f1

z

f4

u

f2
f3

f5

f6

x

y

1
1

9

1

1
9

5

1

1

97

(d)

...y y

u ...

z xz x

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

x[k]
xz

y
y[k]

z[k]

u

f1
f2

f3

f4

f5
f6

u[k]
u[k+1]

u[k+2]

u[k+3]

u[k+6]

u[k+5]
u[k+4]

(a)16:add(t16,t4,t17)
17:store(t17,x[k])

15:add(t15,t10,t16)
14:add(t11,t14,t15)
13:add(t12,t13,t14)
12:load(u[k+6],t13)
11:load(u[k+5],t12)
10:load(u[k+4],t11)
9:add(t5,t9,t10)
8:add(t7,t8,t9)
7:load(u[k+3],t8)
6:load(u[k+2],t7)
5:load(u[k+1],t6)
4:add(t1,t4,t5)
3:add(t2,t3,t4)
2:load(y[k],t3)
1:load(z[k],t2)
0:load(u[k],t1)

Figure 	� Coloring Livermore loop �

� COLORING THE CYCLIC INTERVAL GRAPH ��

0:load(a[i,k],t1)
1:load(b[k,j],t2)
2:mult(t1,t2,t3)

4:add(t4,t3,t5)
3:load(c[i,j,k-1],t4)

5:store(t5,c[i,j,k])
0 1 2 3 4 5

b
c

a

f1
f2

f3
f4

a b a b

c

...

...

(d)

b

f1

f4

a

c f2

f3

1

4

11

1

1

1

b

f1

f4

a

c f2

f3

1

4

11

1

1

1

(b) (c)

(a)

Figure �� Coloring matrix multiply

Example
 �Example � continued�
Consider again matrix multiply of Figure ��a� Fictitious intervals f� to f� have
to be inserted in order to derive the meeting graph� Figure ��b shows the corre�
sponding meeting graph� It has two connected components� each with a weight
equal to �� �����

�
and �

�
respectively as shown in Figure ��c� The cyclic interval

graph can thus be colored with two colors without unrolling�

Example � �Example � continued�
The meeting graph for the �lter example is shown in Figure ��b� Because of the
more complex access pattern� seven �ctitious intervals are required� It can be
decomposed into two circuits as shown in Figure ��c� each with a weight of � ��

�
��

Thus we don�t need to unroll the cyclic interval graph in order to color it with
two colors�

Example � �Example � continued�
For each loop nest of the FFT example� we get the interval representation of
Figure ��a� Figure ��b presents the corresponding meeting graph� It can be
decomposed in � circuits as shown in Figure ��c�

� COLORING THE CYCLIC INTERVAL GRAPH ��

0: load (a[i-1,j],t1)

1: load (a[i,j-1],t2)

2: add (t1,t2,t3)

3: load (a[i+1,j],t4)

4: add (t3,t4,t5)

5: load (a[i,j+1],t6)

6: add (t5,t6,t7)

7: mulc (t7,0.25,t8)

8: store (t8,b[i,j])

f6

f1

f2

f5

a(i)f3

f4

f6

f7

b

(c)

1

1

1

1

61

1

1

3

1
1

a(i+1)

a(i-1)
f1

f2

f5

a(i)f3

f4

f7

b

(b)

1

1

1

1

61

1

1
1

a(i+1)

a(i-1)

1

3

a(i+1)a(i-1) b
a(i)

a(i+1)a(i-1) b
a(i)

(a)

0 1 2 3 4 5 6 7 8 9

b[i,j]a[i-1,j]
a(i+1)a(i-1) b

a[i,j+1]
a(i)

a[i+1,j]

a[i,j+1]

f1
f2
f3

f4
f5
f6

f7

(d)

Figure �� Coloring Filter

� COLORING THE CYCLIC INTERVAL GRAPH ��

11:load(sigimag[i+le],t10)

15:store(sigimag[i+le])
14:store(sigreal[i+le])
13:fi(t10,t9,t13)

12:fr(t9,t10,t12)

10:load(sigreal[i+le],t9)
9:store(t8,sigimag[i])
8:add(t6,t7,t8)
7:load(sigimag[i+le],t7)

6:load(sigimag[i],t6)
5:load(sigimag[i],t5)
4:store(t4,sigreal[i])
3:add(t2,t3,t4)

2:load(sigreal[i+le],t3)
1:load(sigreal[i],t2)
0:load(sigreal[i],t1)

f3

f2 f1

f3

f2 f1

(d)

3

(b) (c)

sigimag [i+le]

sigreal [i]
9

2

sigreal [i+le]

13

sigimag [i]

sigreal [i]

sigreal [i+le]

sigimag [i]

sigimag [i+le] sigreal [i+le]sigreal [i]

sigimag [i]

9

2

3

13

1

22

1
2

...sigimag [i+le]

...

sigreal [i+le]

f1
f2

f3

sigimag [i]

sigimag [i+le]

(a)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

sigreal [i]

2

Figure �� Coloring FFT

� DETERMINING A NEW DATA LAYOUT �	

� Determining a new Data Layout

To avoid a table that maps each element separately to its new location� which
incurs high run time cost for indexing and additional cache misses� the new
location should be calculated from the position within the original array �Gen���

��� Standard Data Layout

C compilers allocate contiguous memory space more or less arbitrarily from an
arbitrary starting address start� Let ai be an n�dimensional array� The di de�
note the o�sets in direction of the array dimensions� sizej the boundary of dj
�e�g� column length�� C maps arrays row major� Fortran column major� In the
following� we consider a linearized C layout� A standard data layout dl for one
array is a function dl � INn � IN �

dl�d�� � � � � dn� � d� � size� � � � � � sizen d� � size� � � � � � sizen � � � dn start�

��� Deriving a Coloring�directed Data Layout

In the general de�nition� a compiler�directed data layout can follow any injective
function� Horizontal grouping now results in systematically intermixing arrays�
Assume that p arrays are accessed in a loop nest which was unrolled and colored
with k� � k colors c�� � � � � ck�� Live ranges that have been identi�ed as belonging
to the same color ci stem from pi � p di�erent arrays� These arrays have to be
combined in a mergeset mi� In the following� we describe the transformations for
one array ai from one such mergeset�
While cyclic interval graph coloring handles only the innermost loop� the re�

sulting layout a�ects all dimensions of an array that are accessed through the
innermost loop index in� In a �rst step� arrays are transposed so that the inner�
most loop variable in accesses dimension dj of the array

�� Let � � INn � INn be
a permutation such that ��d�� � � � � dj� � � � � dn� � �d�� � � � � dn� dj�� If nothing is to
be done� � is the identity permutation�
In a second step� data items of size s are mixed� They stem either from one or

from several di�erent arrays� The number s of consecutive items from one array
ranges from � over row size to arrays size� representing elementwise� piecewise�
rowwise merging and no merging at all� respectively� s � � is the usual case� For
the jth array aj of a mergeset� let dn be the o�set in direction of the innermost
loop index� The position j of the array in the mergeset determines which of the
pi � s blocks is addressed� dn mod �pi � s� yields the o�set inside such a block�
merge � IN � IN a�ects only the �innermost� dimension�

merges�j�dn� � �pi � s� � ��dn � pi� div s� �j � �� �dn mod �pi � s��

�Note that in contrast to loop transformations �WL	
�� dj is modied instead of the loop
index vector �i�� � � � � in�

T �

� DETERMINING A NEW DATA LAYOUT ��

In a third step� we add starting address adjustments for the ck� di�erent
mergesets� To avoid cache thrashing� which is now a greater risk because arrays
are accessed side�by�side� it is simply required that they do not start at memory
addresses that are equal modulo the total number of cache lines k� Assuming
that all mergesets were previously aligned to the same memory address modulo
k� all arrays aj� � � � � � ajpi of a mergeset mj share the same adjustment� which is
simply a constant added to the starting address of all arrays in mj�

adjust �m�� � � � � mk�� � �j� l � �ajl � mj � adjust�ajl��
where �mj� mj� start�mj� mod k �� start�mj�� mod k

In total� we get for one array aij belonging to mergeset mj the following data
layout function dls�j � IN

n � IN �

dls�j�d�� � � � � dn� � merges�j � dl � ��d�� � � � � dn� adjust�aj��

Proposition �
Injectivity is preserved�

This holds simply because coloring assigns only one color to one mergeset� a value
belongs to one mergeset only� Merging does not endanger injectivity as merge
maps items from di�erent arrays onto di�erent locations� values subsequent in a
live range are also subsequent in memory �parameter j��

Theorem �
For every innermost loop� if its cyclic interval graph can be colored with k� � k

colors� then it is guaranteed that there are no con�icts stemming from this loop�

We will just give a sketch of the proof� The cyclic coloring heuristic guarantees
that the cyclic interval graph can be colored with at most k colors� Con�icting
data items bear di�erent colors� thus they belong to di�erent mergesets� These
are mapped according to dls�j� From Proposition � follows that this mapping is
injective�
Figure ��� summarizes the steps of our method� Let us consider the new data

layouts for the running examples�

Example � �Example 	 continued�
There is no danger of self�interference when Livermore kernel � is unrolled �
times� just the starting addresses of stu�stx�sty and stz are adjusted in order to
avoid cache thrashing� The decomposition from Figure 	�c prescribes to merge z�
y and x as described in Figure 	�d� One can observe that cache line boundaries
do not matter in this approach� if a cache line can hold � items� just imagine �
subsequent lines holding � sequences of z�y�x�

Example �� �Example
 continued�
In the matrix example� mergeset m� contains a�i�k� and b�k�j�� thus arrays a and
b are merged� b is also transposed as shown in Figure ��d�

� DETERMINING A NEW DATA LAYOUT ��

In� representation of cache value live ranges� item size s
Out� data layout dls�j

determine the array live ranges
build the meeting graph and �nd an unrolling degree
perform cyclic interval graph coloring� k� colors
if two live ranges have the same color ci � �ci� � � � � ck��
then put them into mergeset mi

end if
for all mergesets m�� � � � � mk�

for all arrays� n�dimensional array aj � mj

transpose� ��d�� � � � � dn�
if jmergesetj � �
then merges�j�dn�
end if

end for
end for
adjust�m�� � � � � mk��

Figure � Deriving a New Data Layout

� EXPERIMENTAL RESULTS ��

Example �� �Example � continued�
Here� m� contains a�i���j��a�i���j� and b�i�j�� m� contains a�i� j�� Rows a�i���j�
and a�i���j� are thus interleaved with row b�i�j�� This is depicted in Figure ��d�
Here� the parameter s is of row size� We can note that in such cases� graphs
similar to Figure ��c indicate the need for tiling which we plan to integrate into
our method�

Example �� �Example � continued�
It is recommended to have sigreal�i�le� follow sigreal�i�� the same is true for
sigimag as shown in Figure ��d� This is de�ned for a �xed size of le� Ideally�
thus� for every iteration of the loop over le� memory would have to be reordered�
This is not realistic� for small le that do not exceed the cache size� there is no
self�interference� For the others� the cost of reordering has to be weighed up
against the cost of con�ict misses� For problems of this structure� reordering is
worthwhile because the array is one dimensional� whereas on every step a cache
miss occurs�

� Experimental Results

In the following� we show experimental results for the four running examples�
We used the realistic C codes transformed source�to�source for implementing
the layout transformation� currently we are integrating our optimization into a
larger compiler framework� The DEC Alpha memory hierarchy is typical for a
direct mapped separate data and instruction cache architecture� Measurements
are made in standalone mode on a �

 MHz ��
�� with �K of direct mapped
�rstlevel data cache ��� Byte cache lines�� on a 	

 MHz ����� with the same
�rstlevel cache architecture� on a �

 MHz Pentium Pro with the same cache and
line size but ��way set associativity� and on a ���MHz Pentium �i	��� with also
�KB size� but ��way set associativity�
We show sample miss rates and run times for Livermore kernel �� a cross

�lter kernel� matrix multiply and Fast Fourier Transform �FFT� on Alpha and
Pentium Pro� respectively� They were chosen because of the ways in which their
memory access patterns di�er from each other�
In the following� standard and thrash denote standard memory allocation and

cache thrashing� respectively� while GE�� stands for the data layout of �Gen���
merge for the new layout� All miss rates were measured with the �O� option�
Concerning the run times results for LL� and FFT� run times were taken from
�

 repetitions for accuracy�
The graph in Figure �
 presents miss rate improvements for Livermore ker�

nel �� As we measure only �rst�level cache misses� the sharp increase that is
characteristic when data exceeds second level cache capacity does not occur in
the results� The two new layout methods perform generally better� Note that� as
cache miss rates oscillate heavily� lines between the points may not be drawn� we

� EXPERIMENTAL RESULTS �

0

0.1

0.2

0.3

0.4

0.5

10 100 1000 10000 100000 1e+06

m
is

s
ra

te

size

standard
cache thrashing

GE98
merged

Figure �
� Miss rates for Livermore kernel �

do so only to improve visibility� merge outperforms all other methods� only GE��
is better twice� and it decreases regularly unlike other methods� We also checked
sizes of a power of two as pathological cases� to which merge is quite insensitive�
a similar e�ect was observed in �PNDN���
For matrix multiply� in addition to the naive algorithm we compare a trans�

position for improving spatial reuse �transpose� and a well�established blocking
technique �block �WL���� Miss rates are signi�cantly improved� Even if separate
and block improve it even more� the former is much more expensive at run time
due to integer division and modulo calculations� and the latter is a somewhat
unfair competition� as it is no data� but a loop transformation�
The results for �lter shown in table � indicate that miss rates are very similar

for all methods�
For �t� the miss rate results are very good in comparison with the standard

method and particularly with GE��� Concerning cache misses merge wins on
both architectures due to the avoidance of cross interference� remember that in
FFT� four arrays of a size of a power of two are accessed� making it extremely
prone to cross interference� in this example� reuse is mainly present in the outer
loop�
Figures �� to �� present run time improvements for the running examples�
Compared to the miss rates presented in Figure �
 and Table �� it becomes

obvious that run times do not improve proportionally to miss rates� in contrast
to what is often assumed� The explanation is as follows� for multiple functional

� EXPERIMENTAL RESULTS �

Matrix multiply
size miss rate �

none transpose block separate merge
�	� ���� ���� ���
 ���� ���
�

 ��	� ���	 ���� ��	� ���	
�
� ���� ���� ���� ��	� ����

Filter
size miss rate �

none separate merge
		
 ��
� ��
� ��
�
�
�� ���� ���� ����

Fast Fourier Transform
size miss rate �

none separate merge
�	� ���� �	�� ���	
�
�� ���� �	�	 ���

�
� ��� �	�� ����

Table �� Miss rates for Matrix multiply� cross �lter and FFT on DEC Alpha

units� cache misses a�ect run time only if the �oating point unit is not completely
�lled and su�ers a stall� otherwise� the actions overlap� This becomes particularly
obvious for the Livermore kernel �LL�� in Figure �
�

Livermore kernel � is generally assumed to be rather well�behaved� up to now�
nearly no methods exist to improve it further� We also checked sizes of powers of
two ! known as pathological cases for caches� merge is quite insensitive to those�
For run time measurements� we included the standard layout with loop unrolling
as well as a version where x� y and z were merged without unrolling� It is known
that unrolling generally may have positive e�ects on the run time� the larger part
of the improvement however is due to merging� Furthermore� paging is postponed
for merge because the number of di�erent memory pages is reduced� this e�ect is
much stronger on the Alpha architectures�
The �lter calculates image data from its four neighbors� array accesses are

cross�shaped� Reuse occurs both within the inner and the outer loop� Miss
rates are very similar for all methods� The run times for merge are up to �
�
faster than all others on Alpha and su�er much less from jumps on Pentium�
For matrix multiply� we compare additionally a transposition for improving spa�
tial reuse �transpose� �merging implies a transposition of one matrix� and a

� EXPERIMENTAL RESULTS ��

0

50

100

150

200

250

300

0 500000 1e+06 1.5e+06 2e+06 2.5e+06

se
c

size

Livermore Kernel 7 on DEC Alpha 21064

standard
unroll
merge

unroll merge

�a�

0

20

40

60

80

100

120

140

0 1e+06 2e+06 3e+06 4e+06

se
c

size

Livermore Kernel 7 on DEC Alpha 21164

standard
unroll
merge

unroll merge

�b�

Figure ��� Run times for Livermore kernel � on Alpha

� EXPERIMENTAL RESULTS ��

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 500000 1e+06 1.5e+06 2e+06 2.5e+06

se
c

size

Livermore Kernel 7 on Pentium

standard
unroll

separate
merge

unroll merge
cachethrash

�a�

0

20

40

60

80

100

120

3e+06 3.25e+06 3.5e+06 3.75e+06 4e+06

se
c

size

Livermore Kernel 7 on Pentium Pro

standard
unroll

separate
merge

unroll merge

�b�

Figure ��� Run times for Livermore kernel � on Pentium

� EXPERIMENTAL RESULTS ��

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

50 60 70 80 90 100

se
c

size

Matrix Multiplication on DEC Alpha 21064

standard
blocked

transposed
separate
merged

�a�

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

50 60 70 80 90 100

se
c

size

Matrix Multiplication on DEC Alpha 21164

standard
blocked

transposed
separate
merged

�b�

Figure ��� Run times for matrix multiply on Alpha

� EXPERIMENTAL RESULTS ��

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

50 60 70 80 90 100

se
c

size

Matrix Multiplication on Pentium

standard
blocked

transposed
separate
merged

�a�

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

50 60 70 80 90 100

se
c

size

Matrix Multiplication on Pentium Pro

standard
blocked

transposed
separate
merged

Figure ��� Run times for matrix multiply on Pentium

� EXPERIMENTAL RESULTS �	

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

700 750 800 850 900 950 1000

se
c

size

Filter on DEC Alpha 21064

standard
separate

merge

�a�

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

700 750 800 850 900 950 1000

se
c

size

Filter on DEC Alpha 21164

standard
separate

merge

�b�

Figure �	� Run times for �lter on Alpha

� EXPERIMENTAL RESULTS ��

0.22
0.24
0.26
0.28
0.3

0.32
0.34
0.36
0.38
0.4

0.42
0.44

700 720 740 760 780 800

se
c

size

Filter on Intel Pentium

standard
separate

merge

�a�

0.2
0.25
0.3

0.35
0.4

0.45
0.5

0.55
0.6

0.65
0.7

0.75

700 750 800 850 900 950 1000

se
c

size

Filter on Intel Pentium Pro

standard
separate

merge

�b�

Figure ��� Run times for �lter on Pentium

� EXPERIMENTAL RESULTS ��

0

10

20

30

40

50

60

70

80

90

100

14 15 16 17 18 19 20

se
c

n

Fast Fourier Transform on DEC Alpha 21064

standard
separate

merge

�a�

0

5

10

15

20

25

14 15 16 17 18 19 20

se
c

n

Fast Fourier Transform on DEC Alpha 21164

standard
separate

merge

�b�

Figure ��� Run times for FFT on Alpha

� EXPERIMENTAL RESULTS ��

0

5

10

15

20

25

30

35

40

45

50

14 15 16 17 18 19 20

se
c

n

Fast Fourier Transform on Pentium

standard
separate

merge

�a�

0

5

10

15

20

25

30

35

40

45

14 15 16 17 18 19 20

se
c

n

Fast Fourier Transform on Pentium Pro

standard
separate

merge

�b�

Figure ��� Run times for FFT on Pentium

� CONCLUSIONS AND FUTURE WORK �

well�established blocking technique �block �WL���� Miss rates are signi�cantly
improved� Even if separate and block improve them even more� the former is much
more expensive at run time due to integer division and modulo calculations� and
the latter is a somewhat unfair competition� as it is no data� but a loop transfor�
mation� About run times� the performance curve for matrix multiply with row
major layout su�ers from jumps� The performance ofmerge is comparable to that
of blocking �block�� but more even� This applies for both architectures� separate
su�ers heavily from the more expensive indexing functions on Pentium� while on
Alpha� it beats all other methods due to a drastic reduction of cache con�icts� For
FFT run times� merge performs comparably to the standard method on Alpha�
while it performs up to �
� better on Pentium Pro� Concerning cache misses
merge wins on both architectures due to the avoidance of cross interference� in
FFT� four arrays of a size of a power of two are accessed� making it extremely
prone to cross interference� Reuse is mainly present in the outer loop�
For codes with extensive reuse in the innermost loop� i�e� LL�� the new layout

yields the most signi�cant speedup� FFT and �lter fall behind because a lot of
reuse is due to the outer loop� Several other Livermore kernels and many image
processing and compression algorithms can be classi�ed along with LL�� making
a more thorough examination clearly promising�

� Conclusions and future work

We have introduced a method that improves cache line usage with the help of the
meeting graph and a new notion of togetherness� Cyclic graph coloring is used to
determine the distribution of the arrays in the cache lines� Thus a new data layout
is then computed thanks to this information� For a class of scienti�c applications�
we gain exact control over the memory layout and signi�cantly reduce con�ict
misses� The experimental results show improvements in the cache miss rates�
especially for the Livermore kernel �� as well as run times improvements for all
benchmarks�
Let us outline some directions of further research� Prefetching� the preload�

ing of data from memory into cache ahead of time �MLG��� can be easily inte�
grated into our framework� and our approach is complementary to tiling �LRW��
MCT��� Furthermore our approach will have to be extended beyond innermost
loops� Innermost loops are not speci�c to the area of scienti�c computing� In
more general application areas� data type sizes vary and accesses are less regular�
Still� a clever data layout helps to improve performance as shown in �GTZ���
We plan also to examine the interaction with compiler�controlled instruction

scheduling in more detail� In the presence of branches� a speci�c data �ow analysis
is required�

REFERENCES �

Acknowledgments This work was initiated by discussions with Uwe Assmann�
we furthermore thank the authors of Atom providing their tool� S� Lelait is
funded by the Austrian Science Fund �FWF�� D� Genius is on a grant from
Graduiertenkolleg �Beherrschbarkeit Komplexer Systeme� of the German Science
Foundation �DFG��

References

�Cha��� G� J� Chaitin� Register allocation and spilling via graph coloring�
In Proceedings of the SIGPLAN ��� Symposium on Compiler Con�
struction� pages �!�
	� ACM� ACM� ���� Available as SIGPLAN
Notices ����� June ����

�ELM	� Christine Eisenbeis� Sylvain Lelait� and Bruno Marmol� The meeting
graph� A new model for loop cyclic register allocation� In Lubomir
Bic� Wim B"ohm� Paraskevas Evripidou� and Jean�Luc Gaudiot� ed�
itors� Proceedings PACT���� pages ���!���� Limassol� Cyprus� June
��!�� �	� ACM Press�

�Gen�� Daniela Genius� Handling cross interferences by cyclic cache line col�
oring� In ���� Parallel Architectures and Compilation Techniques
Conference �PACT����� Paris� France� October ����� ��� to ap�
pear� IEEE�

�GJMP�
� M�R� Garey� D�S� Johnson� G�L� Miller� and C� H� Papadimitriou�
The complexity of coloring circular arcs and chord s� SIAM J� Alg�
Disc� Meth�� ��������!���� June ��
�

�GMM�� S� Ghosh� M� Martonosi� and S� Malik� Cache miss equations� An
analytical representation of cache misses� In Proceedings of the ��th
International Conference on Supercomputing �ICS����� pages ���!
���� New York� July�!�� ��� ACM Press�

�GTZ�� Daniela Genius� Martin Trapp� and Wolf Zimmermann� An approach
to improve locality using sandwich types� In Proceedings of the ����
Types in Compilation workshop� Kyoto� Japan� march ��� Springer
LNCS�

�HGAM�� L� Hendren� G� Gao� E� Altman� and C� Mukerji� A register allocation
framework based on hierarchical cyclic interval graphs� In Proc� 	th
Int� Conf� Compiler Construction� volume ��� of LNCS� pages ���!
��� Springer�Verlag� ���

REFERENCES ��

�HKC�� Amir H� Hashemi� David R� Kaeli� and Brad Calder� E�cient pro�
cedure mapping using cache line coloring� In PLDI ����� pages ���!
���� jun ��� Proceedings of the ACM SIGPLAN ��� Conference on
Programming Language Design and Implementation�

�HP�� John L� Hennessy and David A� Patterson� Computer Architecture �
A Quantitative Approach� Morgan Kaufman� �nd edition� ���

�KCR��� M� Kandemir� A� Choudhary� J� Ramanujam� N� Shenoy� and
P� Banerjee� Enhancing spatial locality via data layout optimzations�
In Proceedings of EuroPar���� pages ���!���� Heidelberg� September
��� Springer LNCS�

�LRW�� Monica S� Lam� Edward E� Rothberg� and Michael E� Wolf� The
cache performance and optimizations of blocked algorithms� In Pro�
ceedings of the Fourth International Conference on Architectural Sup�
port for Programming Languages and Operating Systems� pages ��!
��� Santa Clara� California� April �!��� ���

�LW�� Alvin R� Lebeck and David A� Wood� Cache pro�ling and the SPEC
benchmarks� A case study� Computer� ����
���	!��� October ���

�MCT�� Kathryn S� McKinley� Steve Carr� and Chau�Wen Tseng� Improv�
ing data locality with loop transformations� ACM Transactions on
Programming Languages and Systems� ���������!�	�� July ���

�MLG�� Todd C� Mowry� Monica S� Lam� and Anoop Gupta� Design and eval�
uation of a compiler algorithm for prefetching� In Fifth International
Conference on Architectural Support for Programming Languages and
Operating Systems� pages ��!��� October ���

�MT�� Kathryn S� McKinley and Olivier Temam� A quantitative analysis
of loop nest locality� In Seventh International Conference on Archi�
tectural Support for Programming Languages and Operating Systems�
pages �!�
�� Cambridge� Massachusetts� �!	 October ��� ACM
Press�

�PNDN�� Preeti Ranjan Panda� Hiroshi Nakamura� Nikil D� Dutt� and A� Nico�
lau� Improving cache performance through tiling and data alignment�
In IRREGULAR ����� pages ���!��	� Springer LNCS ��	�� ���

�Raw�� Jai Rawat� Static analysis of cache performance for real�time pro�
gramming� Technical Report IASTATECS��TR���� Iowa state
university� Nov ���

REFERENCES ��

�RT�� Gabriel Rivera and Chau�Wen Tseng� Data transformations for elim�
inating con�ict misses� In Proceedings of the ���� ACM SIGPLAN
Conference on Programming Language Design and Implementation
�PLDI����� Montreal� Canada� june ���

�TFJ�� O� Temam� C� Fricker� and W� Jalby� Cache interference phenomena�
In Proceedings of the Sigmetrics Conference on Measurement and
Modeling of Computer Systems� pages ���!���� New York� NY� USA�
May ��� ACM Press�

�WL�� Michael E� Wolf and Monica S� Lam� A data locality optimizing
algorithm� SIGPLAN Notices� �������
!��� jun ��� Proceedings
of the ACM SIGPLAN ��� Conference on Programming Language
Design and Implementation�

