
,

ust
d time

the

pti-
ss as
ghly
g
our
all
e so
f
the
ing
real

ate-
es. In
con-
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Abstract

In the area of micro system design the usage of simulation and optimization m
precede the production of specimen or test batches due to the expensive an
consuming nature of the production process itself. In this paper we report on
design optimization of aheterodyne receiverwhich is a detection module for opti-
cal communication-systems. The collimating lens-system of the receiver is o
mized with respect to the tolerances of the fabrication and assembly proce
well as to the spherical aberrations of the lenses. It is shown that this is a hi
multimodal problem which cannot be solved by traditional local hill climbin
algorithms. For the applicability of more sophisticated search methods like
extended Genetic Algorithm GLEAM short runtimes for the simulation or a sm
amount of simulation runs is essential. Thus we tested a new approach, th
calledoptimization foreruns,the results of which are used for the initialization o
the main optimization run. The promising results were checked by testing
approach with mathematical test functions known from literature. The surpris
result was that most of these functions behave considerable different from our
world problems, which limits their usefulness drastically.

1 Introduction

The production of specimen for microcomponents or microsystems is both, m
rial and time consuming because of the sophisticated manufacturing techniqu
a traditional design process the number of possible variations which can be
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sidered is very limited. Consequently, the manufacturing step should be prec
by simulations; the results of which may constitute a basis for making a labora
specimen. Measurements performed on laboratory specimens furnish dat
comparison to validate the simulation model and to learn about the microsys
behavior as well.

Thus, in microsystem technology computer-based design techniques be
more and more important - similar to the development of microelectronics.
computer aided development and optimization is based on simulation mo
These must be sufficiently fast computable and need to be parameterizable. I
dition they need to be accurate enough, as the quality of an optimization dep
highly on the quality of the simulation model.

In this paper we report on the design optimization of aheterodyne receiver
which is a detection module for optical coherent communication-systems
mixes the carrier wave coherently with a locally produced signal of slightly d
ferent frequency. The collimating lens-system of the receiver is optimized w
respect to the tolerances of the fabrication and the assembly process and
spherical aberrations of the lenses. It is shown that this is a highly multimo
problem which cannot be solved by traditional local hill climbing algorithms.

We used ourSIMulation andOptimizationTool EnvironmentSIMOT, see
Jakob et al. [1], based on the extended Genetic AlgorithmGLEAM (Genetic
LearningAlgorithms andMethods, see Blume [2]) instead to obtain high quali
results. As the runtime for a simulation is in the range of about half a minute
an Ultra Sparc 2 the required number of simulations is essential to the applic
ity of our heuristic search method. Thus we tested a new approach, the so c
optimization foreruns,the results of which are used for the initialization of th
main optimization run. To achieve reliable test results a set of runs must be
formed for every parametrization of the forerun concept. To do this within a r
sonlable amount of time a simplified and therefore much faster model was u
which dropped the effects of wave field propagation. The promising results w
checked against mathematical test functions known from literature, before
applied the method of foreruns to the actual optimization problem.

SIMOT supports the designer to develop and optimize simulation model
well as to optimize complex (micro-)systems or components. It includes optim
tion tools and simulators. The optimization tools GAMA (Genetic Algorithm f
Model Adaptation) and GADO (Genetic Algorithm for Design Optimization) a
based on GLEAM and are developments of our institute. The simulators are c

mercial tools: an FEM simulator, an analog network simulator and Mathemati1.
The optimizer and the simulator are loosely coupled and may be chosen depe
on the problem on hand. For the optical system described further on we used M
ematica for the simulation and GADO as optimizer. The optimization of the des
of a collimation system under realistic production conditions shows how SIM
is successfully used on a multiple objectives problem with conflicting criteria. T

1. Mathematica is a registered trademark of Wolfram Research, Inc.
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search space of the application is of complex nature although there are only
variables to be considered.

2 Evolutionary Design Optimization

During the design process the engineer is faced with a large search space of
ble design solutions and parameterizations. Building models is limited to a few
ly. The situation becomes better by creating a computer model which migh
evaluated by a simulator, see Fig 1a. During an optimization process many s
lations with various parameter settings have to be done. The complexity of
search space is in general high so that a manual exploration is limited and m
influenced by personal knowledge, previous experiments, intuition of the engin
and good luck. An optimal system design might not be expected under these
ditions.

Assuming that we are able to build a simulation model being accurate eno
and parameterizable, then the engineer‘s optimization task can be supported b
olutionary search techniques explorating and exploitating the search space
Fig. 1b. The engineer’s task is now the specification of the optimization para
ters and restrictions and the formulation of the criteria of optimization. In case
multiple objectives being not mutually independent we cannot optimize for
quality goals separately. The formulation of grading functions and priorities as
scribed below gives the engineer the possibility to provide the optimizer wit
suitable way of making its decisions. The task of the optimizer is to implemen
‘intelligent‘ search focusing on promising areas of the search space, avoiding
optima and adapting itself to the search landscape.

2.1 The GLEAM Concept

The GLEAM concept has been extended by a spatially structured population
proach, see Gorges-Schleuter [3] and approved its performance in such diff
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areas of application as machine learning (Jakob et al. [4]), robot path plan
(Blume et al. [5]), resource planning and job shop scheduling (Blume et al. [6

The representation of an individual is a list-like hierarchical data structu
The elements of the data structure depend on the actual application. The hier
may be used to treat parts of the data structure as a unit, termed section, an
prevent them from being separated by the crossover operators.

The mutation operator is inspired from its counterpart in evolution strateg
in the sense that small variations of genetic values are more likely than larger o
There are various crossover operators implementing traditional n-point cross
and uniform crossover as used in genetic algorithms and crossover operato
specting the creation and existence of sections, which itself underlay the evolu
ary process. Each genetic operator may be independently activated on a perce
basis. Whenever an operator is chosen, a new offspring is generated. Thus, i
eral genetic operators have a percentage of choice greater than zero, there w
a chance that more than one offspring will be generated from one pair of par
The resulting set of descendants will be evaluated and only the best will be con
ered to be included into the population as described by the survival rule.

The total population of individuals is distributed in a geographic space. In
following experiments with GADO a linear ring structure has been chosen and
selection process acting through both, mate selection and survival rule, is lim
to locally nearby individuals. The size of the neighbourhood of any individua
set to 8, thus each individual has only knowledge of its four neighbours to the r
and left, respectively. Each individual and its partner being chosen by local lin
ranking produce offsprings by means of the genetic operators. The descendan
evaluated and the best of them is compared with the individual and replaces i
mediately, but only if the offspring is better than the weakest in its neighbourh
and with the exception of those individuals being the locally best, then the
spring must be better than the individual itself (local elitism), see Gorges-Schle
[3]. This process is continued until a termination criterion is reached.

2.2 Concept of Foreruns

Two different types of experiments were performed: the first type consists of a
gle more-or-less “large” population while the second one is split into a forerun
a main run. The forerun consists of small sized pre-populations performing on
small number of generations. The final best individuals obtained from the forer
are used to initialize the main population. The idea of combining foreruns follow
by a main run is inspired by the promising results of using previous knowledge
the initial population reported by Jakob et al. [4] and shall hopefully reduce
number of required evaluations.

2.3 Local Hill Climbing Algorithm

Our simple derivation free hillclimber (Gauss-Seidel-Strategy with fixed step s
for the line search and multiple restart) starts from a random initial setting of
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parameters. One of them is chosen and optimized until no further improveme
this parameter is possible, then the next one is chosen and optimized and this
peated until no further improvement is possible.

3 The Task: Optimization of a Microoptical Collimation System

The design of systems incorporating a laser beam, as many microoptical app
tions do, mostly requires the modification of the “raw“ beam. The beam mus
properly modified, e.g. expanded, refocused and collimated. This modification
be performed by using lenses, mirrors or prisms, see O’Shea [7]. For our app
tion, the collimation system, we will use two microoptical ball lenses. The geo
etry of the 2-lens system is shown in Fig. 2.

The beam as it comes out of a single mode fiber is refocused by the first
and then collimated by the second one in order to position the collimated b
waist at the location of the photodiode. In an ideal case of geometric optics
possible under some restrictions to derive for each lens with refractive valuen1 a
second lens with refractive valuen2 so that the required irradiation is yielded. In
reality, we need to place the elements into prefabricated LIGA structures, see
et al. [8], and this can only be done with some tolerances. These tolerance v
of insertion are given in the top row of Fig. 2.

These variations of the placement influence the position of the beam w
and the diameter of the beam at the photodiode. The optimization task is to d
mine a collimation system being as insensitive as possible with respect to the
iances of insertion. The optimization parameters are the refractive valuesn1 and

SMF 1. Kugellinse 2. Kugellinse Photodiode

5µm 2µm 2µm

d

Tolerances
of insertion:

n1 n2

Illumination:

Stability:

Waist position:

diameter of the photodiode
diameter of the beam at the photodiode

max diameter of the beam at the photodiode
min diameter of the beam at the photodiode  [>90%]

 [4300µm]

 [90..95%]

position of the collimated beam waist

Distance between lenses: [100...1000µm]

1. Ball lens 2. Ball lens

Figure 2: Geometry of the collimation system. The bottom box shows the defi
tion of the optimization criteria and the range of success values.
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n2 of the ball lenses in the range of 1.4 to 2.0 and a valuez in the range of 1.0 to
2.0. Usingz and the focus of the first ball lens we compute the distance of the fi
to the first lens as

wheren1 is the refractive value of the first lens andR=450µm is the radius of this
ball lens.

The optimization criteria are stability, illumination, waist position and distan
between the two lenses. The definition of these values as well as the range of
values is given in Fig. 2. The optimum values are 100% for stability, 90% for il
mination, 4300µm for the beam waist position and the distance between the len
should be preferably be above 100µm and below 1000µm.

The collimation system is simulated with Mathematica, where the extreme
ues of the displacement are used to determine the number of necessary Math
ica simulations for one design evaluation. Using the simulation outcome
compute the absolute value of the optimization criteria. The multiple objective
timization is done by using grading functions assigning to each absolute val
grade (N) between 0 and 100000. Fig. 3 shows these grading functions at ha
the illumination and stability criteria. For example, for the illumination criterio
90% is optimal and a value of up to 95% is regarded as a success; if the simul
detects a further underfill or overfill at the photodiode the outcome is degraded
ponentially. A solution is regarded as a success, if the values of Fig.2 are fulf
and with increasing stability values successful runs are ranked higher. All gra
are then weighted, as specified by the weight functions given by the engineer
summed up. In our setting a total maximum of 100000 might be reached in ca
mutual independent criteria.

We used two versions of the simulation model: The original model takes b
into account, the insertion tolerances as shown in Fig. 4 as well as the spheric
errations as reported by Sieber [9], while the simplified one ignores the sphe
aberrations and uses the simplified insertion tolerances as shown in Fig. 2. The
son for this are the much shorter evaluation times of the simplified model of ab
1 second compared to about 35 seconds of the original model. Thus compar
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Figure 3: Grading functions for illumination (left) and stability (right) .
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studies could only be done using the simplified model. The reason for the m
more expendable model is that numerous studies ([10], [11]) show that sphe
aberrations are the optical effect dominating the performance of microoptical
tems with ball lenses as imaging elements.

4 Results

4.1 Design Optimization Using the Simplified Model

The hillclimber (HC) produced widely differing solutions depending on the ra
domly chosen start values. Especially, the demands on stability were hard to
fill. This indicates the highly multimodal nature of the problem. The number
evaluations needed until this strategy converges differs in a wide range of 200
42000 yielding in a range of quality grade values between 72340 and 79
Details of the best solution found are reported in section 4.3.

For reasons of comparability the runs using GLEAM were limited to an up
limit of about 36000 evaluations. For each setting (job) 40 runs were done and
quality threshold was set to a grade of 80500, which is not the best we c
achieve (the best solution found has a quality of 81031), but a pretty good de
quality. We recorded how many runs meet this requirement and how many ev
ations were used by the “good” runs. The results are shown in Table 1.

As none of the HC runs meet the target grade the figures for the number of e
uations are calculated on the base of all runs and not of only the “good” one
with the rest of the table. It is obviously that the HC approach is not sufficien
tackle the task.

As expected GLEAM delivers with single runs (GS) reliable good results w
increasing population size. Thus we can take the GS7 job as a reference fo
jobs with foreruns (GF). The foreruns of all GF jobs were done using t a population
size of 16 each. Neither GF1 nor GF4 are considered further due to the low num
of successful runs. GF2 delivers reliable results with 21% less average evalua
than GS7. Further reductions to 46% can only be achieved by a slightly loss o
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Figure 4: Insertion tolerances of the model considering spherical aberration
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liability as shown by GF3. Thus we decided to proceed with the settings of G
for the optimization of the original model.

4.2 Design Optimization Using the Original Model

The first 2 rows of Table 2 compare the results achieved applying the hill clim
ing algorithm (HC) andGLEAM to thesimplifiedmodel (GSM). Although there
are comparable results the appendant optical systems are completely differe
shown in the third row the best solution using the more sophisticatedoriginal
model (GOM) results again in a different optical system as expected. Due to
different nature of the model other optimization criteria had to be used describ
similar properties as with the simplified model.

Table 2.Comparison of the Optimization Results

4.3 Benchmark Functions

In order to check our approach of foreruns we decided to apply the concep
some commonly used multimodal benchmark functions, see Bäck [12] and R
enberg [13]: Shekel’s Foxholes problem, Ackley’s function, a fractal function,
generalized Rastrigin function and Rechenberg’s truly multimodal test probl
The results using various population sizes are shown in Figure 5. All test fu
tions except of the fractal function show a roughly linear behavior of the com
tational load with respect to the population size and work still with extreme sm
populations. This differs significantly from the design optimization task and

Table 1. Results from hillclimber (HC), GLEAM with single runs (GS) and foreruns (G

Job
Foreruns Main Popu- # of Success- Speed-up Evaluations of Fore a. Main Runs

Number Gen. lation Size full Runs wrt GS7 [%] Median Average Variance
HC 1 6483 10986 15354
GS1 60 28 2570 3844 3765
GS2 90 28 4472 5845 6782
GS3 120 36 4295 4802 3905
GS4 150 39 4231 5252 4799
GS5 180 39 5825 6276 3989
GS6 210 39 5858 6644 4020
GS7 240 40 7674 7743 4282
GF1 10 10 60 33 41 4082 4601 3433
GF2 20 10 60 40 21 5719 6113 4291
GF3 10 20 60 39 46 3407 4147 3168
GF4 10 10 90 37 33 5343 5195 3301
GF5 10 20 90 39 30 3193 5448 4792

n1 n2 d Illumination Stability Waist Pos.

HC 2.00 1.58 495 90.7 90.28 4294
GSM 1.60 1.55 792 90.0 91.22 4300
GOM 1.99 1.65 450
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other real world problems mentioned in section 2.1. For real world problems
typical that there exists a problem dependent lower limit of the population size
reliable results. Increasing this size the amount of evaluations as well as the
ance decreases until a minimum is reached and afterwards the computationa
increases again. This minimum span can be regarded as thebest working areaof
our heuristic search method. As Fig 5 shows this area is for the design proble
hand a population size of about 150 and for the fractal function of about 200.
decrease of the two plots at their left end with very low population sizes is cau
by failed runs which have been stopped due to premature convergence.

A benchmark or test function is only as good as it mimicks the behavior of
original task. Thus all the test functions except of the fractal function must be
jected as benchmarks for evolutionary optimization methods in particular and
sumable for heuristic general purpose optimization algorithms in general. T
can be used only as a first check for testing algorithms but not for performance
ing or as a method of comparison.

5 Conclusions and Outlook

We have shown that the optimization task of the heterodyne receiver is desp
the few parameters of such complex nature because having regarded to the
tion tolerances that the application of our evolutionary search method is ad
able. A simplified but fast model of the receiver was used to investigate
concept of foreruns in detail. The obtained parameter settings were used to
mize the original model taking spherical aberrations and more fabrication
insertion tolerances into account. Finally we analyzed the usefulness of some
quently used benchmark functions and concluded that most of them are of
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Currently an even more sophisticated model is under development which

include then the complete receiver with wave superpositioning and therma
fects.

References

1. Jakob, W., Meinzer, S., Quinte, A., Gorges-Schleuter, M. & Eggert, H.: Partial Au
mated Design optimization Based on Adaptive Search Techniques.Proceedings of
ACEDC 96, I.C. Parmee (ed.), PEDC, University of Plymouth, pp. 236-241, 1996.

2. Blume, C.: GLEAM - A System for “Intuitive Learning”.Proc. of the 1st Int. Work-
shop on Parallel Problem Solving from Nature. LNCS 496, Springer-Verlag, 1991.

3. Gorges-Schleuter, M.: Parallel Evolutionary Algorithms and the Concept of Pop
tion Structures, Chapt.15 and 16,Frontier Decision Support Concepts,V. Plantamura,
B. Soucek, G. Visaggio (eds.), Wiley, New York, pp. 261-319, 1994

4. Jakob, W., Gorges-Schleuter, M., Blume, C.: Application of Genetic Algorithms
Task Planning and Learning.Proc. 2nd Int. Conf. PPSN, R. Männer & B. Manderick
(eds.), North-Holland, pp. 291-300, 1992.

5. Blume, C., Krisch, S., Jakob, W.: Robot Trajectory Planning with Collision Avoi
ance Using Genetic Algorithms.Proc. 25th Int. Symp. on Industrial Robots, Han-
nover, 1994.

6. Blume, C., Jakob, W.: Closing the Optimization Gap in Production by Genetic Al
rithms. Proc. of the 1st European Congress on Fuzzy and Intelligent Technolo
(EUFIT). Aachen, 1993.

7. O‘Shea, D. C.:Elements of Modern Optical Design. Wiley & Sons, 1985.

8. Bley, P., Göttert, J., Harmening, M. et al.: The LIGA Process for the Fabrication
Micromechanical and Microoptical Components. Micro System Technologies ’91,
VDE Verlag, Berlin, 1991.

9. Sieber, I., Eggert, H., Guth, H. & Jakob, W.: Design Simulation and Optimization
Microoptical Components.Proc. SPIE’s 43rd Annual Meeting, Novel Optical System
and Large-Aperture Imaging,J.M. Sasian, M.K. Powers, K.D. Bell (eds.), Vol. 3430
1998.

10. Sumida, M. & Taemoto, K.: Lens coupling of laser diodes to single-mode fibersJ.
Lightw. Techn., LT-2, pp. 305-311, 1984.

11. Karstensen, H.: Laser diode to single-mode fiber coupling with ball lenses,J. Opt.
Commun.,9, pp. 42-49, 1988.

12. Bäck, T.: GENEsYs 1.0, ftp://lumpi.informatik.uni-dortmund.de/pub/GA

13. Rechenberg, I.:Evolutionsstrategie ‘94, Frommann-Holzboog, Bad Cannstatt, pp
154, 1994.


	Solving a highly multimodal design optimization problem using the extended genetic algorithm GLEAM
	Abstract
	1. Jakob, W., Meinzer, S., Quinte, A., Gorges-Schleuter, M. & Eggert, H.: Partial Automated Desig...
	2. Blume, C.: GLEAM - A System for “Intuitive Learning”. Proc. of the 1st Int. Workshop on Parall...
	3. Gorges-Schleuter, M.: Parallel Evolutionary Algorithms and the Concept of Population Structure...
	4. Jakob, W., Gorges-Schleuter, M., Blume, C.: Application of Genetic Algorithms to Task Planning...
	5. Blume, C., Krisch, S., Jakob, W.: Robot Trajectory Planning with Collision Avoidance Using Gen...
	6. Blume, C., Jakob, W.: Closing the Optimization Gap in Production by Genetic Algorithms. Proc. ...
	7. O‘Shea, D. C.: Elements of Modern Optical Design. Wiley & Sons, 1985.
	8. Bley, P., Göttert, J., Harmening, M. et al.: The LIGA Process for the Fabrication of Micromech...
	9. Sieber, I., Eggert, H., Guth, H. & Jakob, W.: Design Simulation and Optimization of Microoptic...
	10. Sumida, M. & Taemoto, K.: Lens coupling of laser diodes to single-mode fibers, J. Lightw. Tec...
	11. Karstensen, H.: Laser diode to single-mode fiber coupling with ball lenses, J. Opt. Commun., ...
	12. Bäck, T.: GENEsYs 1.0, ftp://lumpi.informatik.uni-dortmund.de/pub/GA
	13. Rechenberg, I.: Evolutionsstrategie ‘94, Frommann-Holzboog, Bad Cannstatt, pp. 154, 1994.



