Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

Institut für Reaktorsicherheit

Numerische Untersuchung der Strömung von Taylor-Blasen in einem kleinen quadratischen Kanal

Dr.-Ing. Martin Wörner

Forschungszentrum Karlsruhe, Institut für Reaktorsicherheit

Seminar der Technischen Chemie, Universität Paderborn

12. Mai 2005

Forschungszentrum Karlsruhe

- Beschäftigte:3600Wissenschaftler:1420Institute:22Budget 2003:294 M€Eigene Erträge:76 M€
- Forschungsgebiete:
- Energie
- Gesundheit
- Struktur der Materie
- Erde und Umwelt
 Schlüsseltechnologien

Gliederung des Vortrags

- Motivation
- Numerische Simulation
 - Rechenprogramm TURBIT-VOF
 - Beschreibung des physikalischen Problems
- Ergebnisse
 - Einfluss der Blasenlänge
 - Einfluss der Kapillarzahl
 - Bestimmung der Verweilzeitverteilung
- Zusammenfassung und Ausblick

Motivation

Mehrphasenströmungen in kleinen Kanälen

- Monolithische Reaktoren mit katalytischen Wänden
 - Chemisch inerte Gasblasen segmentieren die flüssige
 Phase und verstärken deren Durchmischung

Motivation

- Mikro-Blasensäule des IMM*
 - Hohe Werte der Phasengrenzfläche pro Volumen
 - Effiziente Stoffübertragung über die Phasengrenzfläche (z.B. Absorption, Extraktion)
 - Definierte Geometrie der Phasengrenzfläche
 - Konzept des "numbering up" anstatt "scaling up"

Kanalweite: mehrere 100 µm

Motivation

 Experimentelle Untersuchungen der Strömungsvorgänge gestalten sich aufgrund der kleinen Kanalabmessungen schwierig und liefern häufig nur integrale Daten

• <u>Ziel:</u>

Einblick in lokale Strömungsphänomene durch direkte numerische Simulation der Strömung zweier nicht mischbarer Fluide in einem <u>einzelnen</u> Kanal

Gliederung des Vortrags

- Motivation
- Numerische Simulation
 - Rechenprogramm TURBIT-VOF
 - Beschreibung des physikalischen Problems
- Ergebnisse
 - Einfluss der Blasenlänge
 - Einfluss der Kapillarzahl
 - Bestimmung der Verweilzeitverteilung
- Zusammenfassung und Ausblick

Annahmen

- Zwei nicht mischbare Fluide
- Phasengrenzfläche ist unendlich dünn
- Oberflächenspannung ist konstant
- Inkompressible Fluide
- Newtonsche Fluide mit konstanter Viskosität

Grundgleichungen#

$$\begin{aligned} \frac{\partial \rho_1^*}{\partial t^*} + \nabla^* \cdot \rho_1^* \mathbf{u}_1^* &= 0 \\ \frac{\partial \left(\rho_1^* \mathbf{u}_1^*\right)}{\partial t^*} + \nabla^* \cdot \left(\rho_1^* \mathbf{u}_1^* \mathbf{u}_1^*\right) &= -\nabla^* \rho_1^* + \nabla^* \cdot \mu_1^* \left(\nabla^* \mathbf{u}_1^* + \left(\nabla^* \mathbf{u}_1^*\right)^T\right) + \rho_1^* \mathbf{g}^* \end{aligned} \right\} \mathbf{x}^* \in \Omega_1 \left(t^*\right)$$

$$\begin{aligned} \frac{\partial \rho_2^*}{\partial t^*} + \nabla^* \cdot \rho_2^* \mathbf{u}_2^* &= 0 \\ \frac{\partial \left(\rho_2^* \mathbf{u}_2^*\right)}{\partial t^*} + \nabla^* \cdot \left(\rho_2^* \mathbf{u}_2^* \mathbf{u}_2^*\right) &= -\nabla^* p_2^* + \nabla^* \cdot \mu_2^* \left(\nabla^* \mathbf{u}_2^* + \left(\nabla^* \mathbf{u}_2^*\right)^{\mathsf{T}}\right) + \rho_2^* \mathbf{g}^* \end{aligned} \right\} \mathbf{x}^* \in \Omega_2 \left(t + \frac{\partial \left(\rho_2^* \mathbf{u}_2^* \mathbf{u}_2^*\right)}{\partial t^*} + \nabla^* \cdot \left(\rho_2^* \mathbf{u}_2^* \mathbf{u}_2^*\right) = -\nabla^* p_2^* + \nabla^* \cdot \mu_2^* \left(\nabla^* \mathbf{u}_2^* + \left(\nabla^* \mathbf{u}_2^*\right)^{\mathsf{T}}\right) + \rho_2^* \mathbf{g}^* \end{aligned}$$

$$\mathbf{u}_{1}^{*} = \mathbf{u}_{2}^{*} = \mathbf{u}_{i}^{*}, \quad \left(p_{1}^{*} - p_{2}^{*} + H^{*}\sigma^{*}\right)\hat{\mathbf{n}}_{1} = \left(\mathbb{T}_{1}^{*} - \mathbb{T}_{2}^{*}\right)\cdot\hat{\mathbf{n}}_{1}, \quad \mathbf{x}^{*} \in S_{i}\left(t^{*}\right)$$

$$\Omega_1(t^*)$$
 $\Omega_2(t^*)$ $S_i(t^*)$ $X_1 = 1$ $X_1 = 0$

Dimensionsbehaftete Größen sind durch * gekennzeichnet

Grundgleichungen in Ein-Feld-Formulierung und dimensionsloser Form

$$f = \frac{1}{V} \iiint_{V} X_{1} dV, \quad \mathbf{x} = \frac{\mathbf{x}^{*}}{L_{ref}^{*}}, \quad t = \frac{t^{*} U_{ref}^{*}}{L_{ref}^{*}}, \quad \rho_{m} = \frac{f \rho_{1}^{*} + (1 - f) \rho_{2}^{*}}{\rho_{1}^{*}}, \quad \mu_{m} = \frac{f \mu_{1}^{*} + (1 - f) \mu_{2}^{*}}{\mu_{1}^{*}}$$
$$\mathbf{u}_{m} = \frac{1}{U_{ref}^{*}} \frac{f \rho_{1}^{*} \mathbf{u}_{1}^{*} + (1 - f) \rho_{2}^{*} \mathbf{u}_{2}^{*}}{f \rho_{1}^{*} + (1 - f) \rho_{2}^{*}}, \quad P = \frac{1}{\rho_{1}^{*} U_{ref}^{*}} \left(p^{*} - \rho_{1}^{*} \mathbf{g}^{*} \cdot \mathbf{x}^{*} + \frac{|\Delta p^{*}|}{L_{ref}^{*}} \hat{\mathbf{e}}_{p} \cdot \mathbf{x}^{*}\right)$$

$$\frac{\partial}{\partial t}\rho_{\rm m}\mathbf{u}_{\rm m} + \nabla \cdot \rho_{\rm m}\mathbf{u}_{\rm m}\mathbf{u}_{\rm m} = -\nabla P + \frac{\nabla \cdot \left[\mu_{\rm m}\left(\nabla \mathbf{u}_{\rm m} + \nabla \mathbf{u}_{\rm m}^{\rm T}\right)\right]}{Re_{\rm ref}} - (1-f)\frac{E\ddot{o}_{\rm ref}}{We_{\rm ref}}\frac{\mathbf{g}^{*}}{g^{*}} + Eu_{\rm ref}\hat{\mathbf{e}}_{\rm p} + \frac{a_{\rm i}\kappa\hat{\mathbf{n}}_{\rm i}}{We_{\rm ref}}$$

$$\frac{\partial f}{\partial t} + \nabla \cdot f \,\mathbf{u}_{\rm m} = 0 \qquad \nabla \cdot \mathbf{u}_{\rm m} = 0$$

$$Re_{\rm ref} \equiv \frac{\rho_1^* L_{\rm ref}^* U_{\rm ref}^*}{\mu_1^*}, \quad E\ddot{o}_{\rm ref} \equiv \frac{\left(\rho_1^* - \rho_2^*\right) g^* L_{\rm ref}^{*-2}}{\sigma^*}, \quad We_{\rm ref} \equiv \frac{\rho_1^* L_{\rm ref}^* U_{\rm ref}^{*-2}}{\sigma^*}, \quad Eu_{\rm ref} \equiv \frac{\left|\Delta p^*\right|}{\rho_1^* U_{\rm ref}^{*-2}}$$

Rechenprogramm TURBIT-VOF

- Eigenentwicklung des IRS
- Diskretisierung im Raum
 - Finite-Volumen Formulierung
 - Strukturiertes, kartesisches, versetztes Gitter
 - Zentrale Differenzen-Approximationen 2. Ordnung
- Lösungsstrategie
 - Projektionsmethode
 - Lösung der Druck-Poisson-Gleichung mit CG-Verfahren
 - Explizites Runge-Kutta Zeitintegrationsverfahren 3. Ordnung
- Lösung der *f*-Gleichung mit Volume-of-Fluid Methode

Volume-of-Fluid Methode (VOF)

- $f_{i,j,k} \equiv$ Volumenfraktion von Phase 1 in einer Gitterzelle ($0 \le f_{i,j,k} \le 1$)
- In Zellen mit 0 < f_{i,j,k} < 1 wird die Phasengrenzfläche lokal als <u>Ebene</u> angenähert
- Position und Orientierung der Ebene wird aus Verteilung von f in Nachbarzellen "rekonstruiert"
- "Geometrische" Berechnung der konvektiven Flüsse von *f*

0.493	0.493	0.177	0.0
1.0	1.0	0.925	0.177
1.0	1.0	1.0	0.493
1.0	1.0	1.0	0.493

Gliederung des Vortrags

- Motivation
- Numerische Simulation
 - Rechenprogramm TURBIT-VOF
 - Beschreibung des physikalischen Problems
- Ergebnisse
 - Einfluss der Blasenlänge
 - Einfluss der Kapillarzahl
 - Bestimmung der Verweilzeitverteilung
- Zusammenfassung und Ausblick

Charakterisierung der Strömung

 Blasen sind lang gestreckt und füllen nahezu den ganzen Kanalquerschnitt aus (Taylor-Blasen)

- Die Blasen haben identische Form und bewegen sich mit gleicher Geschwindigkeit durch den Kanal
- Die Strömung wird vollständig beschrieben durch eine Einheitszelle der Länge L_{uc} bestehend aus Blase und "Slug" der Flüssigkeit

Experiment von Thulasidas et al.*

- Quadratischer vertikaler Kanal
 - Querschnittsfläche: 2 mm \times 2 mm (W^* = 2 mm)
- Luftblasen in Silikonöl
 - Silikonöl unterschiedlicher Viskosität
 - Breiter Bereich der Kapillar-Zahl $Ca_{\rm B} \equiv \mu_1^* U_{\rm B}^* / \sigma^*$
- Aufprägung des Volumenstroms von Luft und Öl
- Länge der Einheitszelle, Gasanteil in der Einheitszelle und Druckverlust stellen sich ein

Abbildung im Rechenprogramm

- Betrachtung <u>einer</u> Einheitszelle (eine Blase, ein Slug)
- Einfluss der vor- und nacheilenden Blasen wird durch periodische Randbedingungen abgebildet
 - Aufspaltung des Druckes (siehe Grundgleichungen)
- Die Strömung wird angetrieben vom Auftrieb und einem vorgegeben axialen Druckgradienten
 - Volumenstrom von Gas und Flüssigkeit stellt sich ein
- Der Gasgehalt der Einheitszelle und deren Länge wird zu Beginn der Simulation vorgegeben
 - Untersuchung des Einflusses von L_{uc}^* / W^*

Stoffwerte und Anfangsbedingungen

• Stoffwerte ρ_2^* und μ_2^* sind um Faktor 10 höher als bei Luft

${ ho_1}^{\star}$	ρ_2^{*}	μ_1^{*}	μ_2^*	σ*
957 kg/m ³	11,7 kg/m ³	0,048 Pa s	1,84×10 ⁻⁴ Pa s	0,022 N/m

• Anfängliche Blasenformen (Gasgehalt ε = 33%)

Simulationen starten aus Ruhezustand

Numerische Parameter

Fall	$L_{ m uc}$ * / W *	Gebiet	Gitter	Zeitschritte
A1	1	1 × 1 × 1	$48 \times 48 \times 48$	24.000
A2	1	$1 \times 1 \times 1$	$64 \times 64 \times 64$	60.000
В	1,25	1 × 1,25 × 1	$48 \times 60 \times 48$	24.000
С	1,5	1 × 1,5 × 1	$48\times72\times48$	26.000
D	1,75	$1 \times 1,75 \times 1$	$48 \times 84 \times 48$	26.000
Е	2	$1 \times 2 \times 1$	$48 \times 96 \times 48$	28.000

Ergebnisse auf beiden Gittern zeigen nur geringe Unterschiede

Gliederung des Vortrags

- Motivation
- Numerische Simulation
 - Rechenprogramm TURBIT-VOF
 - Beschreibung des physikalischen Problems
- Ergebnisse
 - Einfluss der Blasenlänge
 - Einfluss der Kapillarzahl
 - Bestimmung der Verweilzeitverteilung
- Zusammenfassung und Ausblick

Entwicklung der mittleren Geschwindigkeit

Geschwindigkeit von Blase und Flüssigkeit nehmen mit Zunahme von Luc zu

Blasenform und Bahnen von virtuellen Partikeln für Fall A2

- Blase ist rotationssymmetrisch
- Ein großer Wirbel in der Blase
- Geringe Strömung in Umfangsrichtung innerhalb der Blase

Blasenform und Geschwindigkeitsfeld

anittif y 0 x ··· 340 1.0 111111izza У У Π. 0.5 an it filling in m 0.d....inifififi TTTT 1. 0.5

Geschwindigkeitsfeld in vertikaler Mittelebene*

Rechte Hälfte: mit Blase mitbewegtes Bezugssystem Linke Hälfte: ortsfestes Bezugssystem

* In y-Richtung ist nur jeder 8. Vektor dargestellt

x

Vergleich mit dem Experiment*

Dimensionsloser Blasendurchmesser					
Fall	L _{uc} */W *	Ca _B	<i>D</i> _B */ <i>W</i> *	$(U_{\rm B}^{*} - J_{\rm ges}^{*})/U_{\rm B}^{*}$	$U_{\rm B}^*/J_{\rm ges}^*$
A	1	0,204	0,81	1,80	0,445
В	1,25	0,207	0,84	1,75	0,430
С	1,5	0,215	0,85	1,75	0,430
D	1,75	0,238	0,85	1,78	0,438
Е	2	0,253	0,85	1,8	0,445
Experimentelle Daten[*] als Funktion der Kapillar-Zahl Ca _B = $\mu_1^* U_B^* / \sigma^*$					
0,2-0,25 0,82-0,86 1,68-1,84 0,4			0,435–0,475		
			\checkmark	\checkmark	\checkmark

Blasendurchmesser über Diagonale^{*}

Blasendurchmesser in der Simulation

 D_{B}^{*}/W^{*} nimmt mit Zunahme von Ca_{B} <u>nur</u> ab, wenn die Blasenlänge L_{B}^{*}/W^{*} größer ist als ca. 1,2 mal Kanalweite (dies ist in den Experimenten von Thulasidas et al. der Fall)

Blasendurchmesser über Diagonale^{*}

Einfluss der Kapillar-Zahl^{*} obere Reihe: $Ca_{\rm B}$ = 0,205; untere Reihe: $Ca_{\rm B}$ = 0,043

* Doktorarbeit von B. Ghidersa

Bestimmung der Verweilzeitverteilung

- Die Verweilzeitverteilung ist eine wichtige Größe zur Charakterisierung eines chemischen Reaktors
 - Verweilzeitverteilung beeinflusst Ausbeute und Selektivität
- Experimentelle Bestimmung der Verweilzeitverteilung
 - Zugabe eines Tracers in den Zulauf (als Impuls oder Sprung) und Messung der Konzentration des Tracers im Ablauf
- Probleme bei Mikro-Reaktoren
 - Reaktionsvolumen ist häufig kleiner als das des Zulaufs und ist kleiner als das notwendige Messvolumen im Ablauf
 - Die Folge sind experimentelle Ungenauigkeiten
- <u>Alternative</u>: Bestimmung der Verweilzeitverteilung aus CFD

Entwickelte Postprocessing-Methode

- Verwendung des zuvor berechneten voll entwickelten Strömungsfeldes zu einem bestimmten Zeitpunkt
- Initialisierung virtueller Partikel in regelmäßigem Abstand in Gitterzellen, die vollständig mit Flüssigkeit gefüllt
- Berechnung der Partikel-Bahnlinien und Bestimmung der Zeit, die jedes Partikel braucht um sich in axialer Richtung um die Länge der Einheitszelle L_{uc} weiterzubewegen
- Bestimmung der momentanen Geschwindigkeit des Partikels auf seiner Bahn aus seiner relativen Position zur virtuell mit der Geschwindigkeit $U_{\rm B}$ bewegten Blase
- Normierung der Häufigkeitsverteilung liefert die Verweilzeitverteilung der Flüssigkeit

Beispiel für Häufigkeitsverteilung

Zusammenfassung

- Direkte numerische Simulation von Taylor-Blasen
 - Quadratischer vertikaler Kanal von W^* = 2 mm Breite
 - Untersuchung des Einflusses der Länge der Einheitszelle
 - Gute Übereinstimmung mit experimentellen Daten aus Literatur
- Abhängigkeit des Blasendurchmessers von Kapillar-Zahl
 - Regime I: Zunahme von D_{B^*} mit Ca_{B} für $L_{B^*} < 1,2 W^*$
 - Regime II: Abnahme von D_B^* mit Ca_B für $L_B^* > 1,2 W^*$
 - Aus Experimenten ist nur Regime II bekannt (lange Blasen)
- Großer Einfluss der Kapillar-Zahl auf Blasenform und Strömung in der Blase und im Flüssigkeits-Slug
- Vorstellung einer Methode zur Bestimmung der Verweilzeitverteilung der Flüssigkeit

Ausblick

- Erweiterung des Rechenprogramms zur Beschreibung von Stoffübergang und einfachen chemischen Reaktionen (Doktorarbeit von A. Onea)
- Aktuelle Anwendungen
 - Kanal mit Querschnitt $300\mu m \times 400\mu m$
 - Kleinere Werte der Kapillar-Zahl so dass die Blasenform nicht mehr rotationssymmetrisch ist