Institut für Reaktorsicherheit

Assessment of closure assumptions in turbulence kinetic energy equation for bubble-driven liquid flow

Milica Ilić¹, Martin Wörner¹, Dan G. Cacuci²

¹ Forschungszentrum Karlsruhe, Institut für Reaktorsicherheit

² Universität Karlsruhe, Institut für Kerntechnik und Reaktorsicherheit

Multiphase Flows: Simulation, Experiment and Application Rossendorf, 1. – 3. Juni 2005

Content

- Introduction and motivation
- Direct numerical simulation
 - Verification for single bubbles
 - Results for bubble swarms
- Analysis of $k_{\rm L}$ -equation
 - Profiles of balance terms (budget of $k_{\rm L}$)
 - Assessment of closure assumptions
- Conclusions and outlook

Introduction

- Background:
 - Computations of turbulent bubbly flows with the two-fluid-model
- Status:
 - See keynote lecture of Prof. Lopez de Bertodano on Friday
- Problem:
 - No established and for wide range of parameters validated turbulence model available for bubbly flows
- Often made simplification:
 - Application of k- ε model for liquid phase with standard set of coefficients derived for single-phase flow

Motivation

- Liquid phase turbulence kinetic energy:
- $k_{\rm L} \equiv \overline{\mathbf{u}_{\rm L}^{'} \cdot \mathbf{u}_{\rm L}^{'}} / 2$
- Analytical transport equation^{*} for $k_{\rm L}$:

- Terms on right hand side of equation must be modeled
- Experimental data for individual closure terms is missing
 ⇒ <u>Direct numerical simulation</u> of bubble swarm flow

In-house code TURBIT-VOF

- Volume-of fluid method for interface tracking
 - Interface is locally approximated by plane (PLIC method)
- Governing equations for two incompressible fluids
 - Single field momentum equation with surface tension term
 - Zero divergence condition for center-of-mass velocity
 - Advection equation for liquid volumetric fraction f
- Solution strategy
 - Projection method resulting in pressure Poisson equation
 - Explicit third order Runge-Kutta time integration scheme
- Discretization in space
 - Finite volume formulation for regular staggered grid
 - Second order central difference approximations

Code verification

- Medium Morton number ellipsoidal bubble DNS for $\Gamma_{\mu} = \mu_{d} / \mu_{c} = 1$, $Mo = 3.09 \cdot 10^{-6}$, $E\ddot{o}_{B} = 3.06$ $\Gamma_{\rho} = \rho_{d} / \rho_{c} = 0.5; 0.2; 0.1; 0.02$
- 2 High Morton number ellipsoidal cap bubble DNS for $\Gamma_{\mu} = \mu_{d} / \mu_{c} = 1$, Mo = 266, $E\ddot{o}_{B} = 243$ $\Gamma_{\rho} = \rho_{d} / \rho_{c} = 0.5$; 0.2; 0.1

Computational set-up

- Domain: 2 x 1 x 1
- Grid: 128 x 64 x 64
- Bubble diameter: 0.25
 (= 16 mesh cells)
- Gas holdup: $\approx 0.4\%$
- Boundary conditions
 - walls at z = 0 and z = 1
 - periodic in x and y
- Liquid & gas initially at rest

Bubble Reynolds number over time

Comparison of bubble shape (case 2)

Experiment Bhaga & Weber

 $(\Gamma_{\rho} \approx 0,0008; \Gamma_{\mu} \approx 10^{-5})$

TURBIT-VOF ($\Gamma_{\rho} = 0,5; \Gamma_{\mu} = 1$)

Bubble swarm simulations

- Simulation mimics part of a flat bubble column
 - two lateral walls
 - periodic b.c. in vertical and lateral direction
- Parameters fixed
 - $E\ddot{o}_{\rm B}$ =3,06 ; $\Gamma_{\rho} = 0.5$; $\Gamma_{\mu} = 1$
- Parameters varied
 - Morton number (liquid viscosity) $Mo = 3 \times 10^{-6}$; 3×10^{-4} ; 3×10^{-2}
 - Gas content: 1, 5 and 8 bubbles with $Mo = 3 \times 10^{-6}$
- Cubic computational domain
 - Grid: $64 \times 64 \times 64$ mesh cells

Bubble shape and path (case 1)

Bubble shape and path

Visualization of bubble motion

Averaging of simulation results

Terms in exact k_L-equation

Models for production term

• Exact term:

$$\operatorname{Prod}(k_{\mathrm{L}}) = -\alpha_{\mathrm{L}} \overline{\mathbf{u}_{\mathrm{L}}^{'} \mathbf{u}_{\mathrm{L}}^{'}} : \nabla \overline{\overline{\mathbf{u}}_{\mathrm{L}}}$$

Common ansatz:

$$\operatorname{Prod}(k_{\mathrm{L}}) \approx \alpha_{\mathrm{L}} \boldsymbol{v}_{\mathrm{L}}^{\operatorname{eff}} \left[\nabla \overline{\mathbf{u}}_{\mathrm{L}}^{\mathrm{eff}} + \nabla \overline{\mathbf{u}}_{\mathrm{L}}^{T} \right] : \nabla \overline{\overline{\mathbf{u}}_{\mathrm{L}}^{\mathrm{eff}}}$$

• One-equation model:

 $v_{\rm L}^{\rm eff} = \beta_1 l_{\rm TP} \sqrt{k_{\rm L}}$ with $\beta_1 = 0,56$ and $l_{\rm TP} = \alpha_{\rm G} d_{\rm B}/3$

• Two-equation model:

$$\begin{aligned} v_{\rm L}^{\rm eff} &= v_{\rm L}^{k-\varepsilon} = C_{\mu} k_{\rm L}^2 / \varepsilon_{\rm L} \\ v_{\rm L}^{\rm eff} &= v_{\rm L}^{k-\varepsilon} + v_{\rm L} \\ v_{\rm L}^{\rm eff} &= v_{\rm L}^{k-\varepsilon} + 0, 6\alpha_{\rm G} d_{\rm B} \left| \mathbf{\ddot{u}}_{r} \right| = v_{\rm L}^{k-\varepsilon} + v_{\rm L}^{\rm B} \end{aligned}$$

Evaluation of production term models

Models for diffusion term

• Exact term:

$$\operatorname{Diff}(k_{\mathrm{L}}) = v_{\mathrm{L}} \nabla \cdot \left(\alpha_{\mathrm{L}} \overline{\mathbb{T}_{\mathrm{L}}^{'} \cdot \mathbf{u}_{\mathrm{L}}^{'}} \right) - \nabla \cdot \left[\alpha_{\mathrm{L}} \left(\overline{p_{\mathrm{L}}^{'} \mathbf{u}_{\mathrm{L}}^{'}} + \frac{1}{2} \overline{(\mathbf{u}_{\mathrm{L}}^{'} \cdot \mathbf{u}_{\mathrm{L}}^{'})\mathbf{u}_{\mathrm{L}}^{'}} \right) \right]$$

Common ansatz:

$$\operatorname{Diff}(k_{\mathrm{L}}) \approx \nabla \cdot \left(\alpha_{\mathrm{L}} \boldsymbol{\nu}_{\mathrm{L}}^{\operatorname{Diff}} \nabla k_{\mathrm{L}} \right)$$

• One-equation model:

 $v_{\rm L}^{\rm Diff} = 0, 5v_{\rm L} + \beta_2 l_{\rm TP} \sqrt{k_{\rm L}}$ with $\beta_2 = 0,38$ and $l_{\rm TP} = \alpha_{\rm G} d_{\rm B}/3$

• Two-equation model:

$$\begin{aligned} v_{\rm L}^{\rm Diff} &= v_{\rm L}^{k-\varepsilon} = C_{\mu} k_{\rm L}^2 / \varepsilon_{\rm L} \\ v_{\rm L}^{\rm Diff} &= v_{\rm L}^{k-\varepsilon} + v_{\rm L} \\ v_{\rm L}^{\rm Diff} &= v_{\rm L}^{k-\varepsilon} + 0, 6\alpha_{\rm G} d_{\rm B} \Big| \mathbf{u}_r \Big| = v_{\rm L}^{k-\varepsilon} + v_{\rm L}^{\rm B} \end{aligned}$$

Evaluation of diffusion term models

Models for interfacial term			
Exa	ict term:	$\operatorname{IFT}(k_{\mathrm{L}}) = \overline{\left[\frac{1}{Re_{\mathrm{ref}}}\mathbb{T}_{\mathrm{L;in}}^{'} - \right]}$	$\left[p'_{\mathrm{L};\mathrm{in}} \mathbb{I} \right] \cdot \mathbf{u}'_{\mathrm{L};\mathrm{in}} \cdot \mathbf{n}_{\mathrm{L};\mathrm{in}} a_{\mathrm{in}}$
Reference		Work of drag force, $W_{\rm D}^{*}$	Other contributions, $W_{\rm ND}^{*}$
Kataoka & Serizaw Model 1, KS	a (1997) S	$0.075 f_{\rm w} \left[\frac{3}{4} \alpha_{\rm G} \frac{C_{\rm D}}{d_{\rm B}^*} U_{\rm T}^{*3} \right]$	$-\alpha_{\rm G}\frac{k_{\rm L}^{*3/2}}{d_{\rm B}^*}$
Hill <i>et al.</i> (199 Model 2, H	$\frac{3}{4} \frac{\alpha_{\rm g} C_{\rm p}}{d_{\rm B}^*}$	$\frac{1}{\mathbf{u}_{R}^{*}} \left \frac{\mu_{L}^{*} \overline{\mathbf{u}_{R}^{*}} \cdot \nabla^{*} \alpha_{G}}{0.3 \rho_{L}^{*} \alpha_{L} \alpha_{G}} + 2k_{L}^{*} (C_{t} - 1) \right $	None
Lahey & Drew (2 Model 3, LI	2000))	$\frac{1}{4}\alpha_{\rm L}\left(1+C_{\rm D}^{4/3}\right)\alpha_{\rm G}\frac{\left \overline{\mathbf{u}_{\rm R}^*}\right ^3}{d_{\rm B}^*}$	None
Morel (1997 Model 4, M)	$\frac{3}{4}\alpha_{\rm G}\frac{C_{\rm D}}{d_{\rm B}^*}\left \overline{\mathbf{u}_{\rm R}^*}\right ^3$	$\frac{1+2\alpha_{\rm G}}{2\alpha_{\rm L}}\alpha_{\rm G}\left\{\frac{{\rm D}_{\rm G}\overline{\mathbf{u}_{\rm G}^*}}{{\rm D}t^*}-\frac{{\rm D}_{\rm L}\overline{\mathbf{u}_{\rm L}^*}}{{\rm D}t^*}\right\}\cdot\overline{\mathbf{u}_{\rm R}^*}$
Pfleger & Becker Model 5, PE	(2001) B	$1.44\alpha_{\rm L} \left[\frac{3}{4} \alpha_{\rm G} \frac{C_{\rm D}}{d_{\rm B}^*} \left \overline{\mathbf{u}_{\rm R}^*} \right ^3 \right]$	None

Evaluation of models for interfacial term

Conclusions and outlook

- Detailed analysis of transport equation for liquid turbulence kinetic energy in bubbly flow
 - Production by shear stresses is negligible
 - Importance of interfacial term and diffusion term
- Evaluation of model assumptions
 - Production term, diffusion term $\, \wp \,$
 - Interfacial term 4
- Outlook
 - Development of improved models
 - Implementation of improved models in CFX code and recalculation of experiments for bubble columns