Forschungszentrum Karlsruhe

in der Helmholtz-Gemeinschaft

Universität Karlsruhe Institut für Organische Chemie

Lichtstreuung

Vorlesung: Strukturaufklärung von Biomolekülen SS 05

- Einführung
- Lichtstreuverfahren
- Statische Lichtstreuung Theorie Geräteaufbau Anwendung
- Dynamische Lichtstreuung Theorie Geräteaufbau Anwendung

Lichtstreuung – ein alltägliches Phänomen

Bsp.: Lichtstreuung an Nebeltröpfchen

http://www.meteoros.de/streu/streue.htm

Lichtstreuung – ein alltägliches Phänomen

Bsp.: Blauer Himmel (wenn wolkenlos)

http://www.allsky.de/de/199

•Lord Rayleigh, 1871 "Warum ist der Himmel blau?"

•Licht regt Elektronen zum Oszillieren an (induzierter Hertz-Dipol)

$$\vec{\mu} = \alpha \cdot \vec{E}$$

 $\vec{\mu}$ =Ind. Dipolmoment

 α =Polarisierbarkeit, \vec{E} =elektr. Feldstärkevektor des Lichts

http://www.wyatt.co.uk

- •Für Teilchen mit d << Wellenlänge des Lichts sog. Punktdipol oszillieren alle Elektronen mit gleicher Phase
- •Bewegte elektr. Ladung sendet EM-Strahlung aus
- d.h. Teilchen strahlt Licht in alle Richtungen wieder ab

•Für linear polarisiertes Licht (z.B. Laser) gilt:

$$\frac{Is}{Io} = \frac{\alpha^2 \cdot \pi^2 \cdot \sin^2 \varphi_z}{\varepsilon_o^2 \cdot r^2 \cdot \lambda^4}$$

Is = Streuintensität, Io= Intensität des einfallenden Lichts α = Polarisierbarkeit, φ z= Winkel zur z-Achse, ϵ = dielektrische Konstante, λ =Wellenlänge des Lichts, r= Abstand Probe-Detektor

Ref.: Winter/Noll, Methoden der Biophysikalischen Chemie, Teubner Verlag

•Für linear polarisiertes Licht (z.B. Laser) gilt:

$$\frac{Is}{Io} = \frac{\alpha^2 \pi^2 \cdot \sin^2 \varphi_z}{\varepsilon_o^2 \cdot r^2 \cdot \lambda^4}$$

Polarisierbarkeit sagt wie gut Elektronen bewegt werden können

•Für linear polarisiertes Licht (z.B. Laser) gilt:

$$\frac{Is}{Io} = \frac{\alpha^2 \cdot \pi^2 \cdot \sin(\varphi_z)}{\varepsilon_o^2 \cdot r^2 \cdot \lambda^4}$$

Keine Lichtstreuung in z-Richtung

•Für linear polarisiertes Licht (z.B. Laser) gilt:

$$\frac{Is}{Io} = \frac{\alpha^2 \cdot \pi^2 \cdot \sin^2 \varphi_z}{\varepsilon_o^2 \cdot r^2 \cdot \lambda^4}$$

Lichtstreuung sehr stark abhängig von der Wellenlänge des Lichts

Richtungsabhängigkeit der Rayleigh-Streuung

Ref.: Winter/Noll, Methoden der Biophysikalischen Chemie, Teubner Verlag

Rayleigh-Verhältnis

• Rayleigh-Verhältnis wird definiert als:

$$R_{\theta} = \frac{I_s \cdot r^2}{I_o} = \frac{\pi^2 \cdot \alpha^2}{\lambda^4 \cdot \varepsilon_0^2}$$

$$\stackrel{\text{polarisiertes Licht}}{\underset{\text{Laser}}{}^{\text{polarisiertes Licht}}} \stackrel{\text{polarisiertes Licht}}{\underset{\text{Elektrischen Dipolmoment in z-Richtung}}{}^{\text{streuendes Molekül mit oszillierendem}}$$

streuendes Molekül mit oszillierendem elektrischen Dipolmoment in z-Richtung

Rayleigh-Streuung durch Teilchen mit d<λ/20 in Lösung (Rayleigh-Debye-Gans-Theorie)

 Lichtstreuung durch zeitliche Änderungen der Polarisierbarkeit δα

$$\delta \alpha = 2 \cdot \varepsilon o \cdot n_{LM} \cdot \left(\frac{dn_L}{dc_m}\right) \cdot \frac{M}{N_A}$$

$$R_{\theta} = K \cdot c \cdot M$$
$$K = \frac{2\pi^2 \cdot n_{LM}^2}{\lambda^4 \cdot N_A} \cdot \left(\frac{dn}{dc}\right)^2$$

$$\frac{K \cdot c}{R_{\theta}} = \frac{1}{M} + 2 \cdot B \cdot c$$

Lichtstreuung

Statische Lichtstreuung (SLS)

Dynamische Lichtstreuung (DLS)

Statische Lichtstreuung (SLS)

• Misst die zeitlich gemittelte Intensität des gestreuten Lichts (daher statisch)

Aufbau einer Apparatur zur statischen Lichtstreuung

Praktische Durchführung einer SLS-Messung

- Messung der Streuintensität eines Standards (z.B.Toluol) mit bekanntem Rayleigh-Verhältnis.
- Messung der Streuintensität des Lösungsmittels (z.B. Wasser od. Puffer)
- Messung der Streuintensität der Probe f
 ür verschiedene Probenkonzentrationen (typisch: 0,2 – 1 mg/ml)
- dn/dc muss bekannt sein
- Brechungsindex muss bekannt sein

Debye-Diagramm

- Bestimmung des Molekulargewichts einer Substanz
- Bestimmung des zweiten Virialkoeffizienten B (Wechselwirkungen)
- Debye plot:

Debye-Diagramm

 Molekulargewicht ist gewichtsgemittelt!

Direkte Bestimmung, keine Kalibrierung nötig! Ideal auch als Detektion in HPLC oder FPLC !

- Zweiter Virialkoeffizient B :
- B<0: gutes Lösungsmittel für Substanz
- B=0: Lösungsmittel ist sog. Theta-Lösungsmittel
- B>0: schlechtes Lösungsmittel für Substanz

Abschätzung des Molekulargewichts von Proteinen

- Messung bei nur einer Konzentration
- Voraussetzung: bekanntes dn/dc und geringe Konzentration
- Zweiter Vrialkoeffizient spielt nur geringe Rolle
- Bsp.: 0,1 mg/ml Lysozym

Lichtstreuung durch große Teilchen

Lichtstreuung an verschiedenen Stellen eines Teilchens (Makromoleküls) führt zu Richtungsabhängigkeit der Intensität (sog. Debye-Streuung)

Zimm-Diagramm

- Graphische Auswertung von Lichtstreudaten in Abhängigkeit von Streuwinkel und Teilchenkonzentration
- Extrapolation der Messwerte auf c=0 liefert Gyrationsradius R_g
- Extrapolation der Messwerte auf θ=0 liefert zweiten Virialkoeffizienten B
- Achsenabschnitt mit y-Achse liefert M_w
- wichtig: nur f
 ür monodisperse Proben geeignet, nicht z.B. f
 ür aggregierende Proteine usw.

Gyrationsradius R_g

Beispiele:

(Trägheitsradius oder Streumassenradius)

Teilchen	M (kDa)	Rg [nm]
BSA	67	2,98
Myosin	493	46,8
DNA	4000	117,0
Tabakmosaik-virus	39000	92,4

Gyrationsradius sagt nichts über die Teilchenform!

Geometrie	Definition der Parameter	Streumassenradius
Zufallsknäuel	h ² : mittlerer quadratischer End-zu-End-Abstand	$R_{\rm G}^2 = \overline{h^2}/6$
Kugel	R: Kugelradius	$R_{\rm G}^2 = (3/5)R^2$
Langer Stab	L: Stablänge	$R_{\rm G}^2 = L^2 / 12$
Zylindrische Scheibe	R: Scheibenradius	$R_{\rm G}^2 = R^2 / 2$
Ellipsoid	a, b, c: Halbachsen	$R_{\rm G}^2 = (a^2 + b^2 + c^2)/5$

Bei bekannter Teilchenform ist Teilchendimension aus Rg abschätzbar!

Welche Informationen liefert die SLS?

- Molekulargewicht
- Gyrationsradius
- Zweiter Virialkoeffizient

Lichtstreuung durch sehr große Teilchen d $\approx \lambda$

- Keine Rayleigh-Streuung, sondern sog. Mie-Streuung
- Mie-Theorie sehr kompliziert!
- Teilchen streuen vor allem nach vorn.
- Bsp. Für Mie-Streuung: Wolken -

Dynamische Lichtstreuung (DLS)

(Photonenkorrelationsspektroskopie (PCS))

Misst Zeit abhängige Intensitätsfluktuationen des gestreuten Lichts

Brownsche Molekularbewegung

Stokes-Einstein-Gleichung

D= Diffusionskoeffizient

K= Boltzmann-Konstante, T= thermod. Temperatur

η=dyn. Viskosität, Rs=Stokes-Radius

Nur für starre Kugeln gültig!

Bsp.: BSA (67kDa) (D=6*10¹¹m²*s⁻¹⁾ für 1cm Wegstrecke werden 77h benötigt!

Brownsche Molekularbewegung bringt Interferenzen Interferenzen erzeugen Intensitätsfluktuationen

Destruktive Interferenz

Konstruktive Interferenz

Ref.: Winter/Noll, Methoden der Biophysikalischen Chemie, Teubner Verlag

Zufallsbewegung

Zufallsfluktuationen

Fluktuation läßt sich auswerten - Autokorrelationsfunktion

I

Autokorrelationsfunktion

• δt = Delayzeit, typischerweise ns- μ s

•Signal mit der Zeit wird immer unkorrelierter (zufällige Teilchenbewegung)

•Zum Zeitpunkt t ist Signal perfect korreliert (=1), nach langer Zeit keine Korrelation mehr (=0)

Autokorrelationsfunktion

$$C(t) = A_1 + A_2 \cdot e^{-2DQ^2 t}$$

Autokorrelationsfunktion von Brechungsindex, Wellenlänge und Streuwinkel abhängig

$$Q = \left(\frac{4\pi \cdot n}{\lambda}\right) \cdot \sin\left(\frac{\theta}{2}\right)$$

Auswertung der Korrelationsfunktion

- Einfacher exponentieller Fit (Kumulantenanalyse) ergibt durchschnittliche Teilchengröße (Z-Mittel) und Breite der Größenverteilung (Polydisersitätsindex)
- Fit mit mehrfachen Exponentialfunktionen (z.B. CONTIN) ergibt Verteilung von Teilchengrößen

Ergebnis ist Intensitäts-Größen-Verteilung

Intensität

Informationsgehalt der Autokorrelationsfunktion

2 Je flacher die AKF abfällt, desto mehr Polydispersität!

Größenverteilungen

Bsp.: Gemisch aus 5nm und 50nm Teilchen

Instrumenteller Aufbau der DLS

DLS Instrument in unserer Arbeitsgruppe: Zetasizer Nano S von Malvern Instruments

He-Ne Laser (632 nm)
Fester Winkel (173° backscatter)
Probenvolumen 12µl-2ml
Temperaturkontrolle 20-90°C
Teilchen mit 0.6-6µm Durchmesser
Áuch für statische LS

Anwendungen:

- •Größenbestimmungen (Peptide, Proteine, Micellen, Vesikel, Bicellen, Sporen, Zellen etc.)
- •Abschätzung der Teilchenform
- Molekulargewichtsbestimmungen
- •Zweiter Virialkoeffizient B
- Proteindenaturierung (Schmelzpunkt)

Ref.: Malvern Instruments

NIBS-Technologie

• NIBS= <u>Non Invasive Back Scatter (dt. nicht-invasive Rückstreuung)</u>

Vorteile:

•Geringe Streuung durch Staub

(wenig Mie-Streuung)

•Auch trübe Lösungen messbar

•Fokus beweglich, um bestes Signal zu bekommen

DLS-Messungen an sehr trüben Proben

• Bsp.: Vollmilch, unverdünnt ("Landliebe")

Richtige Proben: Bsp. Lysozym

Probe: 10mg/ml Lysozym in 10mM NaPi pH 7,0, frisch (!) angesetzt

Bsp. Lysozym: Qualität der Fits

Bsp. TatA: Qualität der Fits

Abschätzung der Teilchenform aus DLS Messergebnissen

- Perrin-Faktor: Verhältnis der Diffusionskoeffizienten für Teilchen mit bestimmtem hydrodynamischem Durchmesser und Teilchen mit bestimmter Masse
- Formabschätzung mit Ellipsoid-Modell

Achsen-Verhältnisse geben über Form des Teilchens Auskunft

Beispiel: Lysozym

- Lysozym: hydrodynamischer Radius: 1,9 nm
- Berechnung des Masseradius R_{Mass} aus spez. Volumen und Molmasse
- Verhältnis R_{vol}/R_{Mass} ergibt Perrin-Faktor
- Perrin-Faktor: 1,02
- Achsenverhältnis 1,73
- Lysozym keine wirkliche Kugel

Ref.: Malvern Instruments

Abschätzung der Molekularmasse aus DLS Messergebnissen

•	Mark-Houkin-Beziehung $\longrightarrow D = k \cdot M^{-a}$
•	Diffusionskoeffizient (durch DLS messbar) wird in Relation zur Molekularmasse gesetzt.
	Mark Haukin Daramatar: k und a

• Mark-Houkin-Parameter: k und a

sind in Tabellenwerken zu finden

Für globuläre Proteine:

$$M = (1, 68 \cdot R_H)^{2,3394}$$

Bestimmung des Schmelzpunktes von Proteinen

- Prinzip: Messung des hydrodyn. Durchmessers des Proteins in Abhängigkeit von der Temperatur (z.B. 20-90°C)
- Wenn Protein denaturiert wird Durchmesser größer (Entfaltung)
- Bsp.: Alkoholdehydrogenase, 1mg/ml in 10mM NaPi pH 7,0

Probenvorbereitung für die LS

 Wichtig: staubfreie Proben (wegen NIBS nicht so problematisch) Maßnahmen: Filtration durch Membranfilter (z.B. 0,2 µm Porengröße) oder Zentrifugation

Problematik: Probe wird verändert, Bsp.: aggregiertes Protein wird entfernt

- Probenvolumina: von 20µl bis 3ml (je nach Probenangebot)
- Lösungsmittel: (fast) alles Voraussetzung: Viskosität und Brechungsindex sind bekannt, ggf. experimentell ermitteln (mit Viskosimeter bzw. Refraktometer)!

Welche Informationen liefert die DLS?

- Diffusionskoeffizient D
- Hydrodynamischer Radius R_h
- Änderung des R_h durch Konformationsänderung
- Form des Teilchens (Perrin-Theorie)

Vorteile und Nachteile von SLS und DLS

• Vorteile

zerstörungsfreie Methoden wenig Probenvorbereitung schnelle Durchführung verschiedenste Proben messbar

Nachteile

nicht diskriminierende Methoden ("was streut denn da?") nur für "einfache" Proben geeignet

Ende