DETERMINATION OF NO AND NO₂ AIRCRAFT EMISSION INDICES AT AIRPORTS BY OPEN-PATH DOAS

K. Schäfer, G. Schürmann, S. Emeis, C. Jahn, H. Hoffmann

Third International DOAS Workshop, March 20 – 22, 2006, Bremen

Motivation

- Airport air quality is not well known because emission inventories are estimated only
- On airports, aircraft engines are one of the major sources for air pollutants
- Emission indices of ICAO^{*} are used to calculate aircraft emissions: 4 different thrust levels Idle, approach, climb out, take off (LTO cycle)

=> Applicability of ICAO data must be shown with measured data, but not yet done

*ICAO: International Civil Aviation Organization

- Passive remote sensing using FTIRspectroscopy (K300, SIGIS) for determination of emission indices of one single engine
- Concentration measurement in the plume with FTIR & DOAS
- Determination of emission indices
- Inverse modelling to estimate multiple sources

Data Processing

The determination of emission indices from concentration measurements:

- Use of the known emission index of CO₂ (3.15 g/kg)
- Background measurement of CO₂ and the gaseous compound
- Measurement in the plume of CO₂ and the gaseous compound

$$EI_{Gas} \sim EI_{CO_2} \frac{\Delta_{Gas}}{\Delta_{CO_2}}$$

Measurement – Instrumentation

FTIR spectrometry with a spectrometer from Kayser Threde and the use of glowbars as IR-source

DOAS from Opsis in monostatic configuration with retroreflectors

Measurement Locations

Airport Zurich Kloten (ZRH)

Airport Paris Charles de Gaulle (CDG)

Vienna

Institute of Meteorology and Climate Research – Atmospheric Environmental Research Division (IMK-IFU)

Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

Measured components

- FTIR: CO, CO₂ simultaneous
- DOAS: NO, NO_2 one after another

Averaging temporal interval: ~ 3 Minutes

Measurement results

Measurement results

Measurement results

Results Vienna

Stopping aircraft for measurements at taxiway

Summer and winter campaign

Cooperation with University of Technology Graz: Schäfer, K., Jahn, C., Sturm, P., Lechner, B., Bacher, M.: Aircraft emission measurements by remote sensing methodologies at airports. Atmospheric Environment 37, 37 (2003), 5261-5271

Summary

- CO: more than 100 aircrafts, 36 different engines
- NO_x: more than 100 aircraft, 24 different engines

Results Zurich

One measurement - one aircraft

One engine type – several emission measurements

 \Rightarrow One ICAO value compared with multiple measurements

Summary

- CO: 44 aircrafts, 8 different engines
- NO_x : 6 aircraft, 3 different engines

Results Paris CDG

One measurement – several aircraft

 \Rightarrow One measured emission index – multiple ICAO values

Summary

- CO: 9 measurements,
- NO_x: 4 measurements,

- 4 18 aircrafts / measurement
- 6 10 aircrafts / measurement

Variability of data

The power settings of an aircraft control the emission characteristic

The power settings for the individual measurements is unknown

Other sources may influence single measurements

Conclusions

The presented method is a tool to determine emissions of a single aircraft

For better conclusions, more measurements are necessary for a statistical treatment of the data

Emission indices for idle conditions are different under inuse conditions in comparison to ICAO data base: EI(CO)higher, $EI(NO_x)$ slightly smaller