Automatic Domain Decomposition for a Black-Box PDE Solver

Torsten Adolph and Willi Schönauer

Forschungszentrum Karlsruhe Institute for Scientific Computing Karlsruhe, Germany

torsten.adolph@iwr.fzk.de willi.schoenauer@iwr.fzk.de

http://www.fzk.de/iwr http://www.rz.uni-karlsruhe.de/rz/docs/FDEM/Literatur

Motivation

Numerical solution of non-linear systems of Partial Differential Equations (PDEs)

- Finite Difference Method (FDM)
- Finite Element Method (FEM)
- Finite Volume Method (FVM)

Finite Difference Element Method (FDEM)

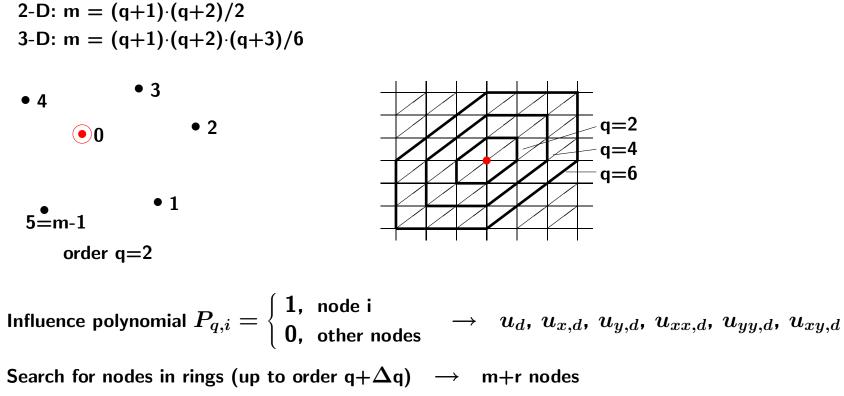
Combination of advantages of FDM and FEM: FDM on unstructured FEM grid

Objectives

- Elliptic and parabolic non-linear systems of PDEs
- 2-D and 3-D with arbitrary geometry
- Arbitrary non-linear boundary conditions (BCs)
- Subdomains with different PDEs
- Robustness
- Black-box (PDEs/BCs and domain)
- Error estimate
- Order control/Mesh refinement
- Efficient parallelization

Difference formulas of order q on unstructured grid

Polynomial approach of order q (m coefficients)



Selection of m appropriate nodes by special algorithm

Discretization error estimate

e.g. for
$$u_x$$
: $u_x = u_{x,d,q} + ar{d}_{x,q} = u_{x,d,q+2} + ar{d}_{x,q+2}$
 $ightarrow d_{x,q} = u_{x,d,q+2} - u_{x,d,q} \left\{ + ar{d}_{x,q+2}
ight\}$

Error equation

$$Pu \equiv P(t,x,y,u,u_t,u_x,u_y,u_{xx},u_{yy},u_{xy})$$

Linearization by Newton-Raphson

Discretization with error estimates d_t , d_x , \ldots and linearization in d_t , d_x , \ldots

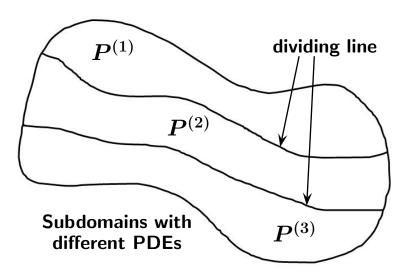
$$egin{array}{lll}
ightarrow \Delta u_d = & \Delta u_{Pu} + \Delta u_{D_t} + \Delta u_{D_x} + \Delta u_{D_y} + \Delta u_{D_{xy}} = & (ext{level of solution}) \ & = Q_d^{-1} \cdot \left[(Pu)_d \, + \, D_t \, + \, \{D_x \ + \ D_y \ + \ D_{xy}\}
ight] & (ext{level of equation}) \end{array}$$

Only apply Newton correction Δu_{Pu} :

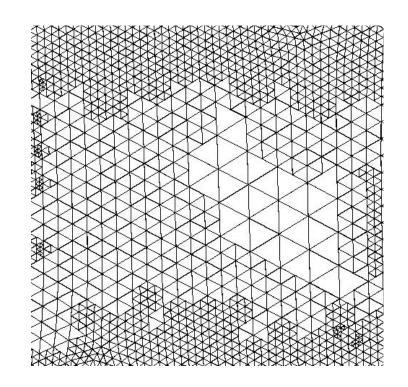
$$ightarrow \ Q_d \cdot \Delta u_{Pu} = (Pu)_d$$

Problem: Black-box for PDEs and domain

User input: <u>any</u> system of PDEs <u>any</u> unstructured FEM grid 2-D <u>and</u> 3-D (Sliding) dividing lines



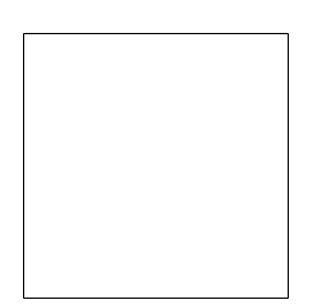
Local mesh refinement



Solution: 1-D DD with overlap

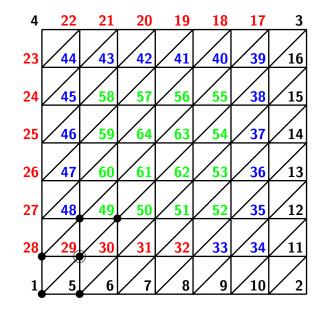
Re-sorting of the nodes

Domain

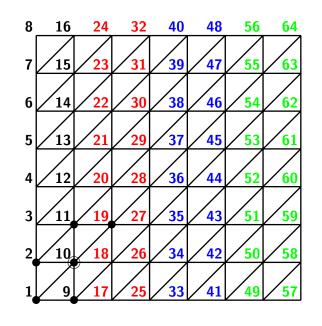


Proc. 1 2 3 4

Node numbering (from mesh generator)



Objective (by re-sorting for x-coordinate)



Difference star:

 $\frac{29}{29} \quad 1 \quad 5 \quad 28 \quad 48 \quad 49$ $\rightarrow \text{ all 4 processors involved}$

<u>10</u> 1 2 9 11 19

 \rightarrow only 2 (neighboured) processors involved

Algorithm for global sorting of the nodes I

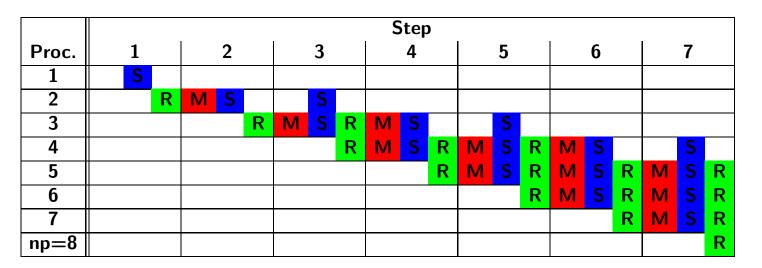
- Needs 2.(np-1) steps on np processors
- Step i ∈ { 1, ..., np-1}: Sorting until first sorted nodes are received by proc. np
- Step i ∈ { np, ..., 2·(np-1)}: Sorting, proc. np sends sorted nodes to processors 1 to np-1
- Always send to the right neighbour processor (except for processor np)
- Always receive from the left neighbour processor
- Up to np/2 processors active in parallel
- Communication via MPI
- Start with local sorting of the nodes (heapsort)
- Step after receiving nodes: merging (= local sorting)

Algorithm for global sorting of the nodes II

• Formal description of step i (illustration on next slide)

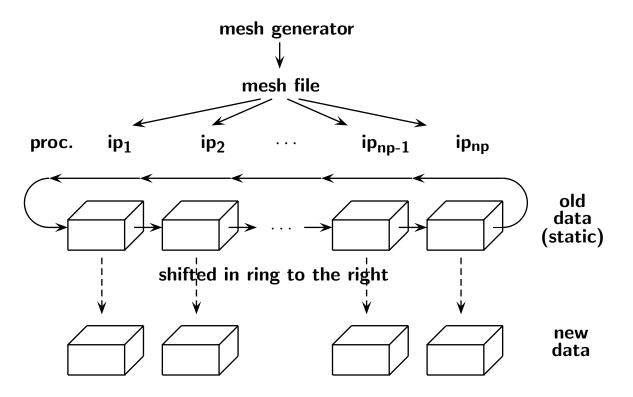
 $\mathsf{ip} \geq \frac{\mathsf{i+3}}{2} \land \mathsf{ip} \leq \mathsf{min}(\mathsf{i,np})$ merge i odd $\mathsf{ip} \geq \frac{\mathsf{i+1}}{2} \land \mathsf{ip} \leq \mathsf{min}(\mathsf{i,np})$ send $ip > \frac{i+3}{2} \land ip \le min(i,np)$ receive additionally: $i \in \{ 1, \ldots, np-1 \}$: ip = i+1 $i \in \{ np, ..., 2 (np-1) \}$: ip = i-np+1 $\mathsf{ip} \geq rac{\mathsf{i}}{2} + 1 \quad \land \quad \mathsf{ip} \leq \mathsf{min}(\mathsf{i},\mathsf{np})$ i even merge $\mathsf{ip} \geq \frac{\mathsf{i}}{2} + 1 \land \mathsf{ip} \leq \mathsf{min}(\mathsf{i},\mathsf{np})$ send $\mathsf{ip} \geq \frac{\mathsf{i}}{2} + 2 \land \mathsf{ip} \leq \mathsf{min}(\mathsf{i},\mathsf{np})$ receive additionally: $i \in \{ 1, \ldots, np-1 \}$: ip = i+1 $i \in \{ np, ..., 2 \cdot (np-1) \}$: ip = i-np+1

Illustration of the global re-sorting algorithm



	Step																				
Proc.		8			9			10			11			12			13			14	
1			R																		
2						R															
3									R												
4												R									
5	Μ	S			S										R						
6	Μ	S	R	Μ	S	R	Μ	S			S							R			
7	Μ	S	R	Μ	S	R	Μ	S	R	Μ	S	R	Μ	S			S				R
np=8	Μ	S	R	Μ	S	R	Μ	S	R	Μ	S	R	Μ	S	R	Μ	S	R	Μ	S	

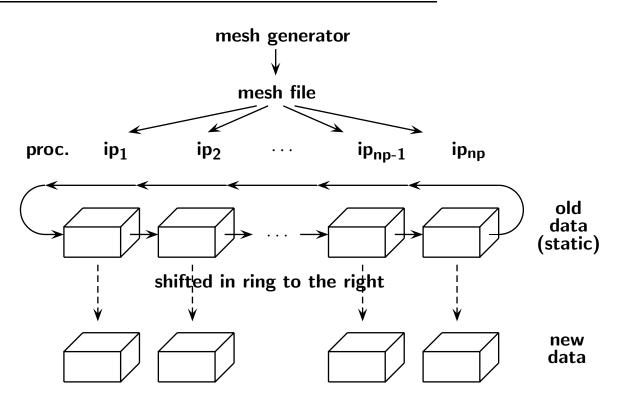
Distribution of the elements



Processor that owns leftmost node of an element becomes element owner

- \rightarrow Execution of 2 ring shifts
- 1^{st} : Determination of owner of leftmost node
- 2nd: Storing of element numbers on owning processors

Distribution of the boundary/DL/SDL nodes

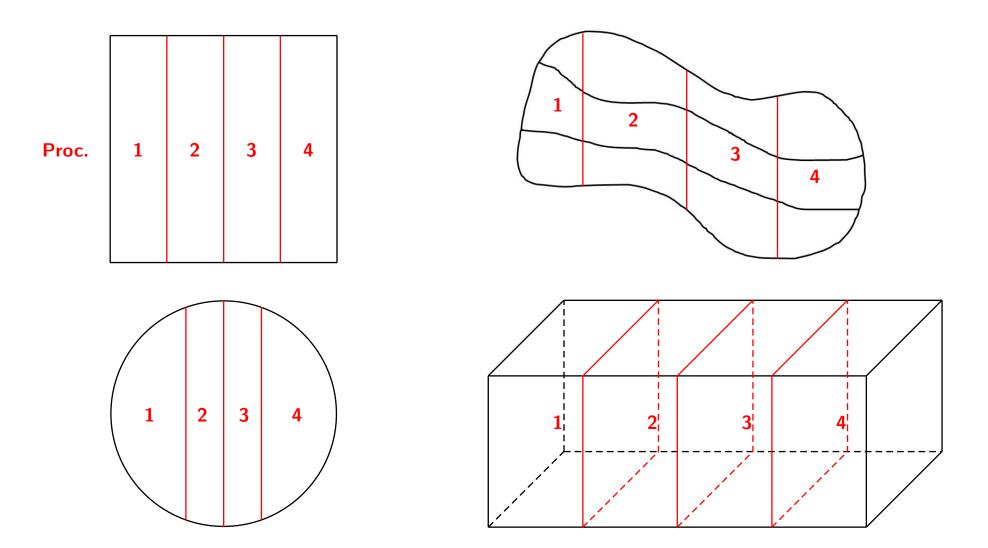


DL: dividing line SDL: sliding dividing line

Compare received node numbers of boundary/DL/SDL nodes to node numbers of own nodes

 \rightarrow Store matching node numbers in arrays for boundary/DL/SDL nodes Send non-matching node numbers to right neighbour processor

Illustration of 1-D DD (np=4)



Overlap

Computation of the right hand side iggree local (without communication) and of the matrix $oldsymbol{Q}_d$

 \rightarrow Store necessary nodes and elements of neighbour processors on proc. ip

Proc.	ip-1	ір	ip+1						
	overlap	own	overlap						
necessary nodes on proc. ip									

ip-1, ip+1: overlap processors of proc. ip

Width of overlap:

Compute mean edge length h_{mean}

Choose safety factor a_{overlap}

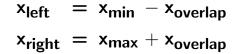
Compute x_{overlap,1}, x_{overlap,2}

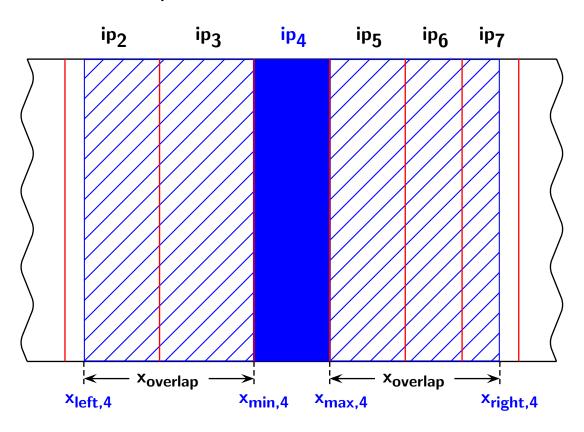
1. criterion (enough nodes): $x_{overlap,1} = 0.5 \cdot a_{overlap} \cdot h_{mean} \cdot (\sqrt{m(q+\Delta q)-1})$

2. criterion (enough rings): $x_{overlap,2} = a_{overlap} \cdot h_{mean} \cdot (q + \Delta q)$

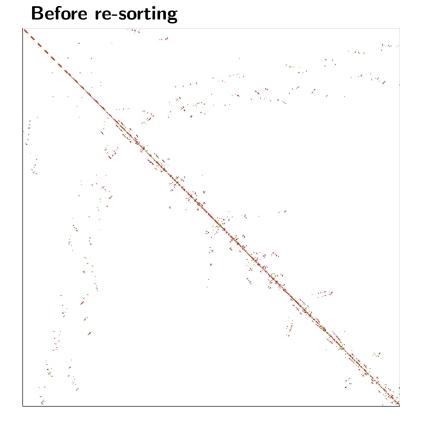
Compute $x_{overlap} = max(x_{overlap,1}, x_{overlap,2})$

Illustration of overlap

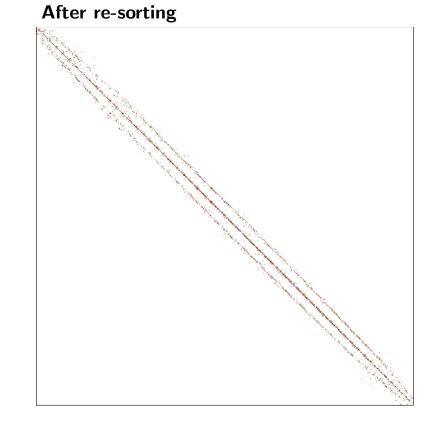




Bandwidth optimization



Bandwidth:	Full	2253
	Before re-sorting	2154
	After re-sorting	185
	With SSP BO	112



SSP: own improved Cuthill-McKee

Summary

- Black-box PDE solver FDEM (URL: http://www.rz.uni-karlsruhe.de/rz/docs/FDEM/Literatur)
- User input: any PDE system, any domain, 2-D and 3-D
- Global re-sorting algorithm for nodes
- Send elements in ring-shift to owning processors
- \rightarrow 1-D DD with overlap
 - Computation of linear system of equations purely local
 - Efficient parallelization with MPI
 - Built-in bandwidth optimizer

This 1-D DD is simple, robust and efficient!