Automatic Domain Decomposition for a Black-Box PDE Solver

Torsten Adolph and Willi Schönauer

Forschungszentrum Karlsruhe
Institute for Scientific Computing
Karlsruhe, Germany
torsten.adolph@iwr.fzk.de
willi.schoenauer@iwr.fzk.de
http://www.fzk.de/iwr
http://www.rz.uni-karlsruhe.de/rz/docs/FDEM/Literatur

Motivation

Numerical solution of non-linear systems of Partial Differential Equations (PDEs)

- Finite Difference Method (FDM)
- Finite Element Method (FEM)
- Finite Volume Method (FVM)

Finite Difference Element Method (FDEM)

Combination of advantages of FDM and FEM:
FDM on unstructured FEM grid

Objectives

- Elliptic and parabolic non-linear systems of PDEs
- 2-D and 3-D with arbitrary geometry
- Arbitrary non-linear boundary conditions (BCs)
- Subdomains with different PDEs
- Robustness
- Black-box (PDEs/BCs and domain)
- Error estimate
- Order control/Mesh refinement
- Efficient parallelization

Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

Difference formulas of order q on unstructured grid

Polynomial approach of order q (m coefficients)
$2-\mathrm{D}: \mathrm{m}=(\mathrm{q}+1) \cdot(\mathrm{q}+2) / 2$
$3-\mathrm{D}: m=(q+1) \cdot(q+2) \cdot(q+3) / 6$

- 4
- 3
$\bigcirc 0$
- 2
- 1
$5 \stackrel{\bullet}{=} \mathrm{m}-1$
order $\mathbf{q}=\mathbf{2}$

Influence polynomial $\boldsymbol{P}_{q, i}=\left\{\begin{array}{l}1, \text { node } \mathbf{i} \\ 0, \text { other nodes }\end{array} \rightarrow u_{d}, u_{x, d}, u_{y, d}, u_{x x, d}, u_{y y, d}, u_{x y, d}\right.$
Search for nodes in rings (up to order $\mathbf{q}+\Delta \mathbf{q}$) $\rightarrow \mathbf{m}+\mathbf{r}$ nodes
Selection of m appropriate nodes by special algorithm

Discretization error estimate

e.g. for $u_{x}: \quad u_{x}=u_{x, d, q}+\bar{d}_{x, q}=u_{x, d, q+2}+\bar{d}_{x, q+2}$

$$
\rightarrow \quad d_{x, q}=u_{x, d, q+2}-u_{x, d, q}\left\{+\bar{d}_{x, q+2}\right\}
$$

Error equation

$P u \equiv P\left(t, x, y, u, u_{t}, u_{x}, u_{y}, u_{x x}, u_{y y}, u_{x y}\right)$
Linearization by Newton-Raphson
Discretization with error estimates d_{t}, d_{x}, \ldots and linearization in d_{t}, d_{x}, \ldots

$$
\begin{aligned}
\rightarrow \Delta u_{d} & =\Delta u_{P u}+\Delta u_{D_{t}}+\Delta u_{D_{x}}+\Delta u_{D_{y}}+\Delta u_{D_{x y}}= & & \text { (level of solution) } \\
& =Q_{d}^{-1} \cdot\left[(P u)_{d}+D_{t}+\left\{D_{x}+D_{y}+D_{x y}\right\}\right] & & \text { (level of equation) }
\end{aligned}
$$

Only apply Newton correction $\Delta u_{P u}$:
$\rightarrow Q_{d} \cdot \Delta u_{P u}=(P u)_{d}$

Problem: Black-box for PDEs and domain

User input: any system of PDEs any unstructured FEM grid 2-D and 3-D (Sliding) dividing lines

Solution: 1-D DD with overlap

Local mesh refinement

Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

Re-sorting of the nodes

Domain

Difference star:

Proc. 1234

Node numbering (from mesh generator)

Objective
(by re-sorting for x -coordinate)

$\begin{array}{llllll}10 & 1 & 2 & 9 & 11 & 19\end{array}$
\rightarrow only 2 (neighboured) processors involved

Forschungszentrum Karlsruhe

Algorithm for global sorting of the nodes I

- Needs 2.(np-1) steps on np processors
- Step $i \in\{1, \ldots, n p-1\}$:

Sorting until first sorted nodes are received by proc. np

- Step $\mathbf{i} \in\{\mathbf{n p}, \ldots, 2 \cdot(n p-1)\}$:

Sorting, proc. np sends sorted nodes to processors 1 to np-1

- Always send to the right neighbour processor (except for processor np)
- Always receive from the left neighbour processor
- Up to $\mathbf{n p} / 2$ processors active in parallel
- Communication via MPI
- Start with local sorting of the nodes (heapsort)
- Step after receiving nodes: merging (= local sorting)

Algorithm for global sorting of the nodes II

- Formal description of step \mathbf{i} (illustration on next slide)

i odd	merge send receive	$\begin{array}{ll} i p \geq \frac{i+3}{2} \wedge & \text { ip } \leq \min (i, n p) \\ \text { ip } \geq \frac{i+1}{2} \wedge & \text { ip } \leq \min (i, n p) \\ i p \geq \frac{i+3}{2} \wedge & \text { ip } \leq \min (i, n p) \end{array}$ additionally: $i \in\{1, \ldots, n p-1\}: \quad i p=i+1$ $i \in\{n p, \ldots, 2 \cdot(n p-1)\}: \quad i p=i-n p+1$
i even	merge send receive	$\begin{array}{lll} \text { ip } \geq \frac{i}{2}+1 & \wedge & \text { ip } \leq \min (i, n p) \\ \text { ip } \geq \frac{i}{2}+1 & \wedge & \text { ip } \leq \min (i, n p) \\ \text { ip } \geq \frac{i}{2}+2 & \wedge & i p \leq \min (i, n p) \end{array}$ additionally: $\mathbf{i} \in\{1, \ldots, n p-1\}: \quad i p=i+1$ $\mathrm{i} \in\{\mathbf{n p}, \ldots, 2 \cdot(n p-1)\}: \quad i p=i-n p+1$

Illustration of the global re-sorting algorithm

	Step							
Proc.	1	2	3	4	5	6	7	
1								
2	R	M						
3		R	M S R	M S	5			
4			R	M S R	M S R	M		
5				R	M S R	M S R	M	R
6					R	M S R	M	R
7						R	M	R
$\mathrm{np}=8$								R

	Step																	
Proc.	8					10					12			13				4
1		R																
2				R														
3							R											
4									R									
5	M											R						
6	M S	R	M	R	M										R			
7	M	R	M	R	M		R		R	M								R
$\mathrm{np}=8$	M	R	M	R	M		R	M	R	M		R	M		R		M	

Distribution of the elements

Processor that owns leftmost node of an element becomes element owner
\longrightarrow Execution of 2 ring shifts
$1^{\text {st }}$: Determination of owner of leftmost node
$2^{\text {nd }}$: Storing of element numbers on owning processors

Distribution of the boundary/DL/SDL nodes

DL: dividing line
SDL: sliding dividing line

Compare received node numbers of boundary/DL/SDL nodes to node numbers of own nodes
\rightarrow Store matching node numbers in arrays for boundary/DL/SDL nodes
Send non-matching node numbers to right neighbour processor

Forschungszentrum Karlsruhe

 in der Helmholtz-Gemeinschaft
Illustration of 1-D DD (np=4)

Overlap

Computation of the right hand side and of the matrix $\left.Q_{d}\right\}$ local (without communication)
\rightarrow Store necessary nodes and elements of neighbour processors on proc. ip

necessary nodes on proc. ip
ip-1, ip+1: overlap processors of proc. ip

Width of overlap:

Compute mean edge length $\mathbf{h}_{\text {mean }}$
Choose safety factor $a_{\text {overlap }}$
Compute $\mathrm{x}_{\text {overlap, } 1}, \mathrm{x}_{\text {overlap, }} 2$

1. criterion (enough nodes): $\quad x_{\text {overlap, } 1}=0.5 \cdot a_{\text {overlap }} \cdot h_{\text {mean }} \cdot(\sqrt{m(q+\Delta q)-1})$
2. criterion (enough rings): $\quad x_{\text {overlap, } 2}=a_{\text {overlap }} \cdot h_{\text {mean }} \cdot(q+\Delta q)$

Compute $\mathrm{x}_{\text {overlap }}=\max \left(\mathrm{x}_{\text {overlap, }, 1}, \mathrm{x}_{\text {overlap,2 }}\right)$

Illustration of overlap
$x_{\text {left }}=x_{\text {min }}-x_{\text {overlap }}$
$\mathrm{x}_{\text {right }}=\mathrm{x}_{\text {max }}+\mathrm{x}_{\text {overlap }}$

Bandwidth optimization

Summary

- Black-box PDE solver FDEM
(URL: http://www.rz.uni-karlsruhe.de/rz/docs/FDEM/Literatur)
- User input: any PDE system, any domain, 2-D and 3-D
- Global re-sorting algorithm for nodes
- Send elements in ring-shift to owning processors
\rightarrow 1-D DD with overlap
- Computation of linear system of equations purely local
- Efficient parallelization with MPI
- Built-in bandwidth optimizer

This 1-D DD is simple, robust and efficient!

