Influence of Ti-dopants in NaAlH₄ on the performance of hydrogen storage applications

Aline LEON

FZK Karlsruhe, Institute for Nanotechnology (INT) Department of Nanostructured Materials

International symposium on Metal -hydrogen systems, Lahaina, October 2006.

H-carrier: sodium alanate, NaAlH₄

Isothermal decomposition kinetics

Different Ti-based precursor

- Importance of the nature of the Ti-based precursor
- Difference in the kinetics and the storage capacity

A. Léon et al., J. Phys. Chem. B, 110 (2006) 1192.

Isothermal decomposition kinetics

✓ Different milling time

But not the storage capacity !!!

A. Léon et al., J. Phys. Chem. B, 110 (2006) 1192.

Open questions

✓ How does the presence of Ti ease the thermal activation process?
✓ What is the relation between the structure and the properties?

✓ Ti at the surface or in the volume?

Key questions to improve the understanding and the efficiency of the material

Microscopic and long-range order analysis

✓ HRTEM combined with EDX

- Homogeneous distribution of Ti with Al and Na
- Al particle in the dehydrogenated state (300 nm)
- No detection of Ti particles (size less than 0.8 nm)

✓ **SR-PXD** (10 mol.% Ti on the basis of $TiCl_3$)

- No change in the unit cell dimensions
- formation of a metastable phase $(Al_{0.85}Ti_{0.15})$ after 3 cycles

A. Léon et al., J. Alloys and Compd. 414 (2006) 190. H. Brinks et al., J. Phys. Chem. B, 109 (2005) 15780.

Local structural-scale probe

To obtain complementary aspects of the crystal structure

XPS & XAS, local structural probe with elemental sensitivity

- Chemical state of the selected atom
- Number, type and distances of neighboring atoms
- Local deviations from the average structure

Surface and bulk

From experiment and theory,...

From the Ti side,...

Ti at the surface or in the volume?

Evolution of the atomic concentration of Ti from XPS

<u>TiCl, doped NaAlH</u>		<u>Ti colloid doped NaAlH</u> ,		
(bm2)	2.8 at.% (± 10%)	(bm2)	3.4 at.% (± 10%)	
(bm30)	0.6	(bm30)	3.0	
(bm60)	0.5	(bm60)	2.3	
(bm180)	0.4	(bm180)	1.3	
(a1d)	0.3	(a1d)	1.7	
(a1a)	0.4	(a1a)	0.8	
(a8a)	0.4	(a8a)	0.5	
(a9d)	0.4	(a9d)	0.6	

- No matter of the nature of the precursor
 - Ti does not remain at the surface upon milling or cycling
 - Ti tends to a constant value of 0.5 at.% after cycling
 - Ti concentration affects the kinetics but not the capacity

Chemical state of Ti

From XPS (binding energy) & XANES (edge position)

<u>TiCl, doped NaAlH,</u>

Before milling: Ti³⁺

After milling: Ti⁰

Ti colloid doped NaAlH,

Before milling: > Ti⁰

After milling: > Ti⁰

After cycling: **Ti**⁰

After cycling: Ti⁰

No matter of the nature of the precursor Ti is in the metallic state after several cycles

A. Léon et al., J. Phys. Chem. B, 110 (2006) 1192.

TiCl₃ doped Na-alanate

- during milling: strong distortion of the local order
- first cycle under H₂: distorted hcp structure
- eight cycles under H₂: formation of a Ti-Al inter-metallic

✓ Ti colloid doped Na-alanate

- during milling: no change in the local structure
- first cycle under H₂: stripping off the oxygen atoms of THF from the Ti metallic core
- eight cycles under H₂: formation of Ti-Al inter-metallic

A. Léon et al., J. Phys. Chem. B, 110 (2006) 1192.

\succ Nature of the Ti-Al intermetallic

- Significant difference in the fine structure
- Lack of long-range order
- Significant reduction of the Ti coordination number
- Relaxation to a single distance

Ti-Al intermetallic is not TiAl₃ bulk phase

4 Ti at 3.85 Å

> Nature of the Ti-Al intermetallic

Formation of Ti-Al cluster upon cycling under H₂

A. Soldatov, M. Fichtner, A. Léon, submitted

From the Al side,...

Surface characteristics

Evolution of the atomic concentration of Al from XPS

<u>TiCl, doped NaAlH</u>		lH ₄	<u>Ti colloid doped Na-alanate</u>			
	Al ³⁺	Al ⁰		Al ³⁺	Al ⁰	
(bm2)	18.1	3.4	(bm2)	13.5		
(bm30)	20.1	4.6	(bm30)	16.3		
bm180)	20.2	1	.4 (bm180)	14	.3	
(a1d)	12.6	3.4	(a1d)	7.4	5.4	
(a1a)	14.4	2.1	(a1a)	15.4	1.0	
(a8a)	13.8	2.2	(a8a)	9.3	1.9	
(a9d)	11.1	4.8	(a9d)	6.6	5.6	

- Concentration of Al^o evolves with the phase transformations
- Presence of metallic Al at the surface after the absorption
- Electronic state of Al (2p) undergoes changes with cycling
- Al₂O₃ is below the detection limit

A. Léon et al., J. Phys. Chem. B, submitted

Novel Al_xTi_(1-x) nanocomposite

Knowledge transfer to design a novel material Fundamental studies

- Avoid the reduction of Ti particles and go directly to the steady state
- Avoid the consumption of a significant Al fraction during doping and the formation of bimetallic entities (cycling)

To gain stability

in the kinetics and the reversible storage

capacity*

Design of the novel material

- Ti should be bound to an element preventing the shift to the metallic state
- Use of one of the decomposition product to synthesize a new Ti containing phase

*H. Brinks et al., J. Phys. Chem. B, 110 (2006) 2740. N. Eigen et al., J. Alloys and compd., (2006)

- Isothermal decomposition kinetics
 - \checkmark Cycling under H_2

 $NaH + Al_{x}Ti_{(1-x)} \rightarrow Ti$ -doped $NaAlH_{4}$ $P_{H2} = 100 \text{ bar}, T = 100 \text{ °C}$

• Kinetics is improving with increasing number of cycles

• Reversible storage capacity is stable around 4 wt.% H₂

M. Fichtner et al., patent DE 10 2005 037 772.6

> XAS investigations

Summary as concerns Ti,...

XPS analysis

- Ti is depleted at the surface (XPS, SIMS, and SNMS)
- Ti is in the metallic state after several cycles no matter of the nature of the precursor
- TiAl₃ alloy, TiO₂, TiH₂ are not present at the surface
- Electronic state of Ti $(2p_{3/2})$ line is less sensitive to the reversible reaction under hydrogen

XAS analysis

- XANES confirms the chemical state obtained from XPS
- Formation of a Ti-Al cluster after several cycles no matter of the nature of the precursor
- Local structure around Ti is not the TiAl₃ bulk phase

 \succ

XPS analysis

- Al concentration at the surface evolves with the reaction
- Al₂O₃ is not present at the surface
- Electronic state of Al(2p) line is sensitive to the reversible reaction under hydrogen

XANES analysis

- XANES confirms the higher valence state of Al in NaAlH₄
- Local structure around Al evolves with the presence of Ti
- Presence of molecular-scale inhomogeneities in the average structure of NaAlH_4

Summary and conclusion,...

Multidisciplinary approach on nanoscale H₂ storage material

- Gain knowledge on the ongoing transformation processes around Ti
- Synthesize a novel $Al_{\rm x} Ti_{\scriptscriptstyle (1-{\rm x})}$ nanocomposite as starting material for $NaAlH_4$
- Stabilize the kinetics and the reversible hydrogen storage capacity upon cycling
- Kinetics comparable to the TiCl₃ doped NaAlH₄
- Efficiency of the novel material to be improved (by varying key parameters like annealing temperature,...)

Mechanism involved and identity of the effective catalyst (to be determined,...)

Acknowledgement ✓ INT Group • Dr. Maximilian Fichtner • Dr. Christoph Frommen • Stephan Wetterauer ✓ INE Group • Dr. Jörg Rothe

• Dr. Dieter Schild

✓ DAФNE Group

- Dr. Antonella Balerna
- Dr. A. Soldatov

HELMHOLTZ GEMEINSCHAFT *EU-IP "StorHy" Hydrogen Storage for Automotive Application Contract No. 502667*

Beam-time allotment ANKA, Forschungszentrum Karlsruhe DAΦNE, Frascati