Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

M.Stüber¹, U.Albers¹, C.Ziebert¹, M.Rinke¹, J.Halbritter¹, S.Ulrich¹ M.Lattemann², U.Helmersson², E.Lewin³, U.Jansson³ ¹ Forschungszentrum Karlsruhe GmbH, Inst. Materials Research I (Germany) ² Linköping University, IFM Material Physics (Sweden)

3 Unnsala University Department of Materials Chemistry (Sweden)

Linköpings universitet

The correlation between the constitution, microstructural evolution and properties of non-reactively magnetron-sputtered TiC/a-C nanocomposite coatings – a review

Preparation and characterisation of TiC/a-C nanocomposite coatings

Nanostructured carbon-based composite coatings

Combinatorial materials science approach (segmented target) Non-reactively DC magnetron-sputtering process Correlation of constitution, microstructure and properties EPMA, XRD, TEM, HRTEM, AFM, XPS, Raman spectroscopy Vickers hardness & Young's modulus (nanoindentation) Unlubricated sliding wear behaviour (pin-on-disk testing)

Constitution, microstructure and properties of TiC/a-C nanocomposite coatings

	Pos. 1	Pos. 3	Pos. 4	Pos. 6	Growth Phenomena in Nanocrystalline Carbide/Amorphous Carbon Composites	
		0 V			Observation of a third carbon bonding state in XPS analyses in TiC/a-C nanocomposite coatings features of Raman position sample position 800	
at% Ti	32.2	33.4	31.6	23.7	1 C 1s C-C, C_xHy TiC Binding energies of C1s lines Spectra and properties? 6 700 0.8 TiC-C 70/30 0.8 0.8 Binding energies of C1s lines 1 C1s 700 5 600	
at% C	66.9	65.9	68.0	75.4	Arrow of the second)
Ti:C	0.48	0.51	0.47	0.31	1 <td></td>	
		300 V			0.2 ion beam sputtered 0.2 0.2 0	
ot% Ti	31 5	32.7	30.5	23.8	292 290 288 286 284 282 280 288 286 284 282 280 Binding Energy (eV) Binding Energy (eV) 200 400 600 400 4	

Chemical composition (EPMA)

X-Ray Photoelectron Spectroscopy Raman Spectroscopy (514.5 nm, 3 mW)

AFM – Surface Topography

Conclusions and future research needs

Microstructure, surface topography and properties of nano-structured carbon-based composite coatings determined by:

(I) nanocrystalline TiC phase formation,

(II) amorphous carbon grain boundary or matrix formation,(III) interaction of TiC and a-C with ions (subplantation vs. re-sputtering)

Wear rate coating Wear rate counterpart - Friction coefficient

Pin-on-disk (100Cr6, 10 N) – 300 V bias