New retrieval approach to tropospheric NO₂ by synergistic inversion of satellite nadir DOAS soundings and ground-based FTIR measurements

R. Sussmann¹, W. Stremme¹, J.P. Burrows², A. Richter², W. Seiler¹, and M. Rettinger¹ ¹Forschungszentrum Karlsruhe, IMK-IFU, Garmisch-Partenkirchen, Germany ²Universität Bremen, Institut für Umweltphysik +49 8821 183 159, Ralf.Sussmann@imk.fzk.de

Motivation - why another approach to tropospheric NO₂?

- Bovensmann et al., 1999; Richter and Burrows, 2002; Boersma et al., 2004: diff. approaches to separate strat. background: use limb measurements, use reference sector, use CTM assimilaton
- Heland et al., 2002; Petritoli et al., 2004; Boersma et al., 2004: significant errors in trop. NO₂ retrievals
- Lambert et al., 2004: lack of direct measurements of trop. NO₂ column for validation purposes
- Richter; Lambert; Sussmann (ACVE-2, 2004): ground-based DOAS and FTIR disagree as to total NO₂
- Rinsland et al., 2003: possible strong a priori contribution to FTIR retrieval of total NO₂
- Rodgers and Connor, 2003: intercomparison of remote sounding instruments
- Eskes and Boersma, 2003: averaging kernels for DOAS
- ⇒ Sussmann, Stremme, Burrows, Richter, Seiler, Rettinger, ACP, 5, 2657-2677, 2005: Tropospheric NO₂ from combined SCIAMACHY and Zugspitze FTIR retrieval

Forschungszentrum Karlsruhe, IMK-IFU, Garmisch-Partenkirchen

Definitions: Total column averaging kernels (row vectors a^T)

$$col_{ret} = col_a + \boldsymbol{a}^T \cdot (\boldsymbol{x}_{true} - \boldsymbol{x}_a)$$

with $col_a = (111...1) \mathbf{x}_a$,

and neglecting measurement errors and forward model errors

Sussmann, R.: Ground-based Fourier transform spectrometry at the NDSC site Zugspitze: Geophysical products for satellite validation, in *Proceedings of the European Symposium on Atmospheric Measurements from Space*, ESTEC, Noordwijk, The Netherlands, 18-22 Jan 1999, WPP-161, Vol. 2, pp. 661-664, 1999.

Forschungszentrum Karlsruhe, IMK-IFU, Garmisch-Partenkirchen

Two remote sounding instruments: ideal for validation, no synergistic use

Two remote sounding instruments: ideal for validation, no synergistic use

Two remote sounding instruments: ideal for synergistic use, no validation

DOAS sensitivity usually characterized by Air Mass Factor.

First DOAS-Averaging Kernel: Eskes and Boersma, ACP, 3, 2003:

$$\boldsymbol{a}_{i} = \frac{AMF(\boldsymbol{x}_{ref,i}, \boldsymbol{b})}{AMF(\boldsymbol{x}_{ref}, \boldsymbol{b})}$$

i: layer index *x_{ref}*: reference state (e.g., a priori NO₂ profile) *b*: SZA, viewing angle, clouds, albedo, aerosols, …

Have to decide upon NO₂ a priori profile:

DOAS AMF <u>strongly</u> depends on a priori NO₂ profile shape in the troposphere, DOAS AMF does nearly <u>not depend</u> on a priori NO₂ profile in the stratosphere

 \Rightarrow DOAS a priori := US Standard NO₂ profile with VMR = 0 up to 10 km (A. Richter: SCIAMACHY UB1.5 total NO₂ retrieval)

Forschungszentrum Karlsruhe, IMK-IFU, Garmisch-Partenkirchen

Total column averaging kernels: NO₂ a priori profile for FTIR?

Total column averaging kernels: FTIR versus SCIAMACHY

SCIA UB1.5 versus Zugspitze FTIR total columns: Direct comparison

Total NO₂ diurnal increasing rate: Does it change with season?

Matching FTIR to satellite overpasses: Concept of "virtual coincidences"

Satellite Pollution Correction Scheme: (a) Substract fit to daily minima

Forschungszentrum Karlsruhe, IMK-IFU, Garmisch-Partenkirchen

Sat. Pollution Correction Scheme: (b) Cut off at 2*(center of mass) and iterate

Sat. Pollution Correction Scheme: (c) Re-add fit-function (ann. cycle of minima)

"Validation": FTIR virt. coincidence col's versus SCIA poll. corr. 200-km means

Combine FTIR and SCIAMACHY to retrieve tropospheric NO₂: The Idea

60 Our a posteriori retrieval constraint is set up as follows 50 $\boldsymbol{x}_{true} = \lambda_1 \cdot \boldsymbol{x}_a + \boldsymbol{x}_{trop}$ with 40 $\boldsymbol{x}_{trop} = \begin{pmatrix} VMR_{29} \cdot AMF_{29} \\ \vdots \\ VMR_{1} \cdot AMF_{1} \end{pmatrix}$ Altitude [km] $\lambda_1(VMR_a)_i$ 30 20 where **VMR**_{trop} $VMR_{i} = \begin{cases} 0 & \text{if } VMR_{trop} < \lambda_{1}(VMR_{a})_{i} \end{cases}^{10} \\ VMR_{trop} - \lambda_{1}(VMR_{a})_{i} & \text{if } VMR_{trop} \ge \lambda_{1}(VMR_{a})_{i} \end{cases}$ 1E-11 1E-10 1E-09 1E-08 Volume mixing ratio Forschungszentrum Karlsruhe, IMK-IFU, Garmisch-Partenkirchen Sussmann et al.: Trop. NO₂ from combined satellite and FTIR Universität Bremen

Combined a posteriori retrieval of tropospheric NO₂: Constraint

Combined a posteriori retrieval of tropospheric NO₂: The set up

We write two relations for the true column col_{true} , the column retrieved by FTIR col_{FTIR} , and the column retrieved by SCIAMACHY col_{SCIA} , *i.e.*,

$$col_{FTIR} - col_{true} = col_{FTIR} - a_{ideal}^T \cdot x_{true} = a_{FTIR}^T \cdot (x_{true} - x_a) + a_{ideal}^T \cdot x_a - a_{ideal}^T \cdot x_{true}$$

and

$$col_{SCIA} - col_{true} = col_{SCIA} - a_{ideal}^T \cdot x_{true} = a_{SCIA}^T \cdot (x_{true} - x_a) + a_{ideal}^T \cdot x_a - a_{ideal}^T \cdot x_{true}$$

where vectors x are partial columns profiles, and x_a is the a priori profile common to FTIR and SCIA.

We derive a starting value for λ_1 by using

$$col_{FTIR} - col_{true} \left(10 - 100 \ km\right) = 0$$

i.e., we assume that FTIR is a good measure for the true pure stratospheric column. It follows

$$\lambda_1 = \frac{col_{FTIR}}{\boldsymbol{a}_{ideal}^T \cdot \boldsymbol{x}_a}$$

For the given λ_1 we subsequently apply the a posteriori retrieval equation

$$col_{FTIR} - col_{SCIA} = (\boldsymbol{a}_{FTIR} - \boldsymbol{a}_{SCIA})^T [(\lambda_1 - 1)\boldsymbol{x}_a + \boldsymbol{x}_{trop}]$$

which describes the iteration of VMR_{trop} via x_{trop} to match the measured columns difference $col_{FTIR} - col_{SCIA}$.

Forschungszentrum Karlsruhe, IMK-IFU, Garmisch-Partenkirchen

Characterization: Averaging kernels of the combined a-posteriori NO₂ retrieval

Combined a posteriori retrieval: Result for free tropospheric NO₂ column

Forschungszentrum Karlsruhe, IMK-IFU, Garmisch-Partenkirchen

Summary and Outlook

- stratospheric NO₂ diurnal increasing rate does not depend on season
- concept of FTIR "virtual-coincidence column"
- pollution clearing scheme for satellite NO₂ nadir DOAS
- mountain-site FTIR with a priori set to zero in the troposphere is a good measure for the pure stratospheric column
- combined FTIR-satellite DOAS a posteriori retrieval with dofs = 2
- phase of annual cycle of free tropospheric NO_2 is between the phase of boundary layer NO_2 , and stratospheric NO_2

<u>Vision</u>: integrated global NO₂ observing system based on synergistic use of nadir satellites and a set of ground-based FTIRs

Acknowledgments

BMBF/DLR-GCVOS, EC-UFTIR, EC-ACCENT-AT2, ESA-TASTE

Forschungszentrum Karlsruhe, IMK-IFU, Garmisch-Partenkirchen

Appendix 1:

Combined a-posteriori retrieval: Annual cycle of free tropospheric NO₂ column?

Appendix 2:

Different sensitivity to tropospheric pollution: FTIR versus SCIAMACHY

	60 50	— X _{poll} — X _{US}	$\frac{col_{ret}}{col_{true}} = \frac{\mathbf{a}^T (\mathbf{x}_{true} - \mathbf{x}_a) + \mathbf{a}^T_{ideal} \mathbf{x}_a}{col_{true}} \text{with} col_{true} = (1111) \mathbf{x}_{true} = \mathbf{a}^T_{ideal} \mathbf{x}_{true}$							
	- 50			Zugspitze FTIR @ 2.964 km asl.			FTIR @	SCIAMACHY		
[km]	40 -						km asl.			
ude	30 -		Scenario	1	2	3	3	1	2	3
Altii	-		X _{true}	x _{US}	x _{US/2}	X _{poll}	X _{poll}	x _{US}	X _{US/2}	\mathbf{x}_{poll}
	20 -		$\frac{col_{true} (1.077 - 10 km)}{col_{true} (1.077 - 100 km)}$	0.053	0.053	0.955	0.955	0.053	0.053	0.955
	10 - -		$\frac{col_{ret} (1.077 - 100 km)}{col_{true} (1.077 - 100 km)}$	0.950	0.949	0.058	0.078	0.984	0.984	0.570
	0 + 1E-	11 1E-10 1E-09 1E-08 1E-0	$\frac{col_{ret}(1.077 - 100 \text{ km})}{col_{true}(10 - 100 \text{ km})}$	1.003	1.002	1.239	1.656	1.039	1.039	12.54
1		Volume mixing ratio								

Forschungszentrum Karlsruhe, IMK-IFU, Garmisch-Partenkirchen

Appendix 3:

Total NO₂ diurnal increasing rate: Does it change with season?

Forschungszentrum Karlsruhe, IMK-IFU, Garmisch-Partenkirchen

Appendix 4:

Forschungszentrum Karlsruhe, IMK-IFU, Garmisch-Partenkirchen

Appendix 5:

SCIA Cloud Correction Scheme:

	AV _i (n _i)	AV _i (σ _i)	AV _i (σ _i /sqrt(n _i))	 σ of daily means corrected for annual cycle
Zugspitze FTIR	4.6	8.8 %	4.3 %	9.2 %
SCIAMACHY (200 km, poll. corr.)	22	6.8 %	1.9 %	6.5 %

agres with ≈5-10 % individual pixel precision above Pacific (Richter et al., 2004)

Forschungszentrum Karlsruhe, IMK-IFU, Garmisch-Partenkirchen

<u>Appendix 7:</u> Analytic function to fit NO₂ annual cycles

Forschungszentrum Karlsruhe, IMK-IFU, Garmisch-Partenkirchen

