GAW-WCC-VOC/CCQM-GAWG-VOC Workshop

IMK-IFU Garmisch-Partenkirchen, July 03/04, 2006

Contact: Rainer Steinbrecher

Institut für Meteorologie und Klimaforschung Atmosphärische Umweltforschung

The GAW World Calibration Centre for VOC and Central Calibration Laboratories (CCLs)

with

Rainer Steinbrecher and Colleagues

GAW-WCC-VOC/CCQM-GAWG-VOC Workshop, IMK-IFU, Garmisch-Partenkirchen July 03/04 2006

The Summary

- Hydrocarbons in the atmosphere contribute significantly to regional and global air quality, oxidizing power as well as climate change.
- The GAW-WCC-VOC aims to guarantee a worldwide comparison of reported complex VOC data sets.
- This is achieved by round-robin exercises, station audits as well as training programs.
- A first round-robin exercise and first audits are promising but also highlight problems.
- The future GAW-VOC concept.

The WCC-VOC

◆ The GAW-WCC-VOC is hosted by the Forschungszentrum Karlsruhe, IMK-IFU (Garmisch-Partenkirchen, Germany):

It ensures GAW-Network wide quality assured data sets

by

- conducting worldwide round-robin exercises and audits for GAW stations and
- training of GAW stations staff (GAW-TEC).

The WCC-VOC

- Example of a Round-Robin inter-comparison exercise:
 - 9 different stations/laboratories using off-line as well as on-line techniques
 - in 7 countries (Brazil, Canada (2 labs), Czech Republic, Finland, Germany (2 labs; 3 instruments), Ireland, and Slovakia)
 - representing GAW, EMEP, CAPMoN and LBA programs

The Procedure

- Standard gas canisters provided by the WCC-VOC with 73 VOCs in N₂ prepared and certified by NCAR, Boulder, with 16 VOCs NIST-traceable.
- ◆ The participating laboratories were expected to identify and quantify as many compounds of the WCC-VOC standard canister as possible based on their routine identification and calibration methods.
- A standard questionnaire for air sampling,
 Analytical system and method, reporting results
 was circulated for completing

Current Data Quality Objectives

alkanes and alkynes: uncertainty: 10% (accuracy)

repeatability: 5% (precision)

alkenes: uncertainty: 20%

repeatability: 20%

aromatics: uncertainty: 15%

repeatability: 10%

The Results: Repeatability (Precision)

green: NIST-traceable VOC		Participants								
VOC	Α	В	С	D	E	F	G	Н	I	J
ethane	4.6	1.0	1.2	0.2			0.3	2.8	0.3	
ethylene	4.5	2.7	0.6	0.8			2.5	2.5	0.4	
acetylene	4.7	0.3		12.7				2.6	0.6	
propane	3.8	0.2	2.1	0.5	3.9	2.2	0.9	3.0	0.2	
propylene	3.9	0.7	2.2	0.3	6.4	2.0	23.4	3.1	1.4	
i-butane	4.0	0.6	3.8	0.8	4.6	2.4	0.3	2.3	0.6	4.4
n-butane	5.3	0.3	1.9	0.1	7.1	2.5	0.3	2.0	0.6	
1-butene	5.2	36.9	2.4	0.2					1.6	
t-2-butene	4.7	2.7	2.6	0.6		2.0			3.0	1.8
i-butene			2.1	5.8				2.9	2.8	
c-2-butene			1.8	1.4		2.6		2.6	4.7	5.2
i-pentane			2.1	0.6	4.0		0.3	2.4		3.2
n-pentane			2.4	0.2		1.8	1.2			
isoprene	1.9	21.5	2.4	0.5	4.4	2.8	1.1	1.3	0.8	7.6
t-2-pentene	12.6	3.7	2.7	0.5		11.7	2.2	8.2	3.1	45.4
c-2-pentene	2.9	1.3	2.8	0.3		2.6	0.7	3.7	4.0	8.3
2-me pentane			2.9			3.3	2.7			
3-me-pentane			4.4	0.3		3.0	8.1			3.0
n-hexane	9.8	3.3	4.3	0.3	6.6	2.7	1.2	4.6	5.2	2.6
benzene	1.4	1.1	1.9	0.9		3.2	2.3	3.8	1.6	
cyclohexane	3.4		_			3.4		3.3		
n-heptane	3.8		5.1	1.2	4.1	2.9	1.0		0.9	3.1
toluene	4.7	7.0	7.7	3.9	7.6	2.9		3.6		3.0
et-benzene			3.8	5.6	5.6	3.0		1.1	3.1	4.6
m,p-xylene			3.3	5.5	5.1	3.2		2.2	3.7	3.7
o-xylene		1.8	3.6		6.8	3.1		7.4		
1,3,5 trime-benzene			4.6			4.9				10.8
1,2,4 trime-benzene			2.5			5.3				14.5

Results that did not meet the DQOs are shown in red

Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

Institut für Meteorologie und Klimaforschung Atmosphärische Umweltforschung Umwelt Bundes Amt

Results of the first GAW-VOC Round-Robin exercise:

Deviation [%] from the WCC-VOC reference values (Accuracy)

green: NIST-traceable VOC	oc Participants									
voc	Α	В	С	D	E	F	G	Н	1	J
ethane	3.8	-64.2	-3.4	-1.2			-2.1	-4.4	-1.1	
ethylene	5.2	-73.5	5.2	7.3			-16.5	-7.5	-2.3	
acetylene	-13.8	-54.7		4.0				-22.4	-25.1	
propane	9.6	1.0	-0.1	2.1	-27.6	-3.0	-2.7	-9.1	-1.0	
propylene	8.0	-1.9	5.4	11.5	-66.0	2.3	-15.7	-2.3	1.1	
i-butane	9.4	81.5	8.4	11.0	-33.7	-10.1	1.8	-4.3	2.5	8.1
n-butane	6.7	78.8	-0.2	5.7	-30.6	-9.0	-2.6	-3.5	-0.7	
1-butene	4.2	137.3	6.4	11.2					3.2	
t-2-butene	3.4	47.0	7.5	9.2		-18.1			-2.8	12.7
i-butene	6.9		2.7	10.3				2.3	-3.8	
c-2-butene	-2.4		1.8	4.3		-7.6	_	-12.7	-7.4	3.2
i-pentane	-14.3		-2.3	5.2	-42.9		-5.8	-12.1		-2.5
n-pentane	-26.3		-1.5	3.7		-0.2	-0.6			
isoprene	5.5	-98.0	-6.2	-17.0	-78.8	-16.7	-2.5	5.2	1.4	-1.2
t-2-pentene	-52.2	-22.9	92.3	6.6		-6.8	-4.0	-29.3	-11.6	23.8
c-2-pentene	-20.8	19.8	3.6	-0.6	_	-6.4	-1.7	-12.2	-5.4	1.0
2-me pentane			5.9			-17.2	1.2			
3-me-pentane			0.7	13.3		-7.9	-4.6			2.3
n-hexane	-27.3	236.6	-3.0	4.3	-40.8	-11.5	0.2	-30.7	-12.8	-0.6
benzene	6.3	208.2	-5.5	2.9	_	0.5	-0.4	-14.7	-5.2	
cyclohexane	51.4			_		-22.7				
n-heptane	5.1		-6.5	4.3	-45.0	6.7	3.5		-1.4	-0.5
toluene	27.2	-79.8	-5.1	10.1	-22.2	16.6	_	-6.5		10.1
et-benzene			1.1	-3.0	75.5	1.1		-21.1	3.0	5.3
m,p-xylene	_		4.1	-2.4	34.0	-14.3		-16.3	7.4	0.4
o-xylene		1529.6	5.1		228.2	-22.9		-28.5		
1,3,5 trime-benzene			-29.0			-90.8				-16.6
1,2,4 trime-benzene			30.0			-82.4				0.8

Results that did not meet the DQOs are shown in red

Results of the first GAW-VOC Round-Robin exercise:

Compound ranking according precision and accuracy

VOC	X [%]	Y [%]	voc	X [%]	Y [%]	voc	X [%]	Y [%]
propane	80.0	88.9	i-butane	60.0	60.0	t-2-pentene	40.0	44.4
c-2-pentene	80.0	88.9	n-butane	60.0	66.7	n-hexane	40.0	40.0
isoprene	80.0	80.0	i-butene	50.0	100.0	2-me pentane	20.0	66.7
c-2-butene	70.0	100.0	et-benzene	50.0	71.4	o-xylene	10.0	20.0
benzene	70.0	87.5	m,p-xylene	50.0	71.4	acetylene	0.0	0.0
propylene	70.0	77.8	n-pentane	40.0	80.0	cyclohexane	0.0	0.0
ethylene	60.0	85.7	3-me-pentane	40.0	80.0	1,3,5 trime-benzene	0.0	0.0
t-2-butene	60.0	85.7	1-butene	40.0	80.0	1,2,4 trime-benzene	0.0	0.0
ethane	60.0	85.7	i-pentane	40.0	57.1			
n-heptane	60.0	75.0	toluene	40.0	50.0			

X: related to all participants; Y: related to all participants who identified this specific VOC NIST traceable compounds are listed in green

Institut für Meteorologie und Klimaforschung Atmosphärische Umweltforschung

Audits

Initating the audit

- establishing contact with the auditee

Conducting document review

 reviewing relevant analytical system, documents and determing their adequacy with respect to audit criteria

Preparing the on-site audit activities

- preparing the audit plan
- preparing work documents

Conducting on-site audit activities

- conducting opening meeting
- communication during audit
- roles of and responsibilites of operators and observers
- collecting and verifiying information
- generating audit findings
- preparin gaudit conclusions
- conducitng closing meeting

Preparing, approving and distributing the audit report

- preparing the audit report
- approving and distributing the audit report

Completing the audit

Adopted from ISO19004

Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

Institut für Meteorologie und Klimaforschung Atmosphärische Umweltforschung Umwelt Bundes Amt

Audits

- Pallas 1
- Arambepe →
- Starina →

Starina, Slovakia

Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

Institut für Meteorologie und Klimaforschung Atmosphärische Umweltforschung Umwelt Bundes Amt @

GAW-TEC VOC

- Atmospheric Chemistry and VOC
- VOC and Gas-Chromatography
- QA/QC and GAW-VOC
- Data reporting and GAW

Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

Conclusions

- The results obtained in the audits and inter-comparisons are promising, however, still accurate determination of VOC at low concentration levels remains a challenge.
- It appears imperative to strengthen harmonization procedures.

nstitut für Meteorologie und Klimaforschung

Atmosphärische Umweltforschung

The Future GAW-VOC Concept

- QA/QC procedures with less VOC on a more rigorous time schedule basis, possibly including exchange of canisters for concurrent air sampling.
- Update SOPs for sampling procedures according new requirements.
- Update training in GAWTEC courses focussing on new compounds ensuring a continuously sound data quality

The Future GAW-VOC Reference Standard

		Compound	Accuracy	Precision	
Co	ompound	Ethane	10%	5%	
	,	Propane	10%	5%	
Ethane	Acetone	Acetylene	10%	5%	
		Isoprene	15%	15%	
Propane	DMS	Formaldehyde	15%	15%	
		Monoterpenes	15%	15% 15%	
Acetylene	Benzene	Acetonitrile	15%		
Isoprene	Toluene	Methanol	15%	15%	
		Ethanol	15%	15%	
Formaldehyde	Iso-Butane	Acetone	15%	15%	
Monoterpenes	n-Butane	Dimethylsulfide (DMS)	15%	15%	
Worldterpenes	11-Dutaile	Benzene	15%	10%	
Acetonitrile	Iso-Pentane	Toluene	15%	10%	
		Iso-/n-Butane	10%	5%	
Methanol	n-Pentane	Iso-/n-Pentane	10%	5%	
Ethanol					
Landino		mixing ratio < 0.1 ppb	<u>+</u> 10 ppt	<u>+</u> 10 ppt	

The Future GAW-VOC Central Calibration Laboratory CCL

The basic concept for the traceability of standards is the relation to a CCL-calibrated gas mixtures (Scale) to which all laboratory and transfer standards of the WCC will be related.

The GAW-SAG "Reactive Gases" and the Subgroup VOC would appreciate if the CCQM Gas Analysis Working Group will host the GAW-VOC Scale

Institut für Meteorologie und Klimaforschung Atmosphärische Umweltforschung

WMO

GAW-VOC

say

Thanks for your attention

