# Natural Sources SNAP 11: Update of Achievements

Contribution to the TFEIP Expert Panel "Agriculture and Nature"



by
Rainer Steinbrecher
Co-chair



Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

Institut für Meteorologie und Klimaforschung Atmosphärische Umweltforschung





## The NatAir Project



**Co-ordinators:** 

Rainer Friedrich: rf@ier.uni-stuttgart.de

Jochen Theloke: jt@ier.uni-stuttgart.de

• http://natair.ier.uni-stuttgart.de

Improving and applying
methods for the
calculation of natural and
biogenic
emissions and assessment
of impacts to the air

quality





## Participating Institutions



























### Sources and Pollutants

| Sources                                | Pollutants                                                                |
|----------------------------------------|---------------------------------------------------------------------------|
| Vegetation, esp. Forests               | NMVOC                                                                     |
| Biomass burning and forest fires (new) | NO <sub>x</sub> , PM, CO, CO <sub>2</sub> , CH <sub>4</sub> , OC, EC, VOC |
| NO from soils                          | NO                                                                        |
| Pollen (New)                           | РМ                                                                        |
| Wild animals                           | CH <sub>4</sub> , NH <sub>3</sub>                                         |
| Anoxic soil processes (wetlands)       | CH <sub>4</sub>                                                           |
| Natural seepage of gas storage         | CH <sub>4</sub> , NMVOC                                                   |
| Wind blown dust (incl. Saharan) (new)  | РМ                                                                        |
| Volcanoes                              | SO <sub>x</sub> , NO <sub>x</sub> , PM, HF, HCI, HNO <sub>3</sub>         |
| Lightning                              | NO <sub>x</sub>                                                           |
| Sea, Coastal zones (New)               | PM, DMS                                                                   |





## Contributions for the GB-Update

- > Improved methodologies
- > Improved emission factors
- New source categories
- ➤ New data bases



Gridded output using GIS platforms





## **Summary Project Status**

- First drafts available
- Second drafts of all source categories will not be ready before April 2007.
- Decision on delivery of final draft versions for review depends on publishing date of the new structure for the GB







#### Status Forest VOC

Rainer Steinbrecher and Gerhard Smiatek (IMK-IFU)

- First draft available
- New methodology
- New emission factors
- New land use data base





## Forest VOC: Methodology



## Forest VOC: Emission Factors

Chemical speciation

#### VOC SPLIT

- Isoprene
- Monoterpenes: α-Pinene β-Pinene, d-Limonene, α-Terpinene, γ-Terpinene, Camphene, Δ³-Carene, Myrcene, Cymene, Trans-β-Ocimene, cis-β-Ocimene, α-Phellandrene, α-Fenchene, β-Phellandrene, Sabinene, 1,8-Cineol, Tricyclene, α-Thujene Linalool
- Sesquiterpenes
- Other VOC: Methanol, Formaldehyde, Formic acid, Ethanol, Acetaldehyde, Acetone, Acetic acid





### Forest VOC: Land use

Plant species, LAI distribution maps

#### LEAF AREA INDEX









#### Status Soil NO Emissions

Magda Kahl and Klaus Butterbach-Bahl (IMK-IFU)

- First draft available
- New methodology
- New soil data base
- New land use data base
- New fertilzer application data base





## Soil NO: Methodology



#### Soil NO: Data Bases



#### Status: Volcanos

Domenico Gaudioso (APAT)

- First draft available
- New compounds
- New emission factors
- New data base





## Volcanos: Compounds

- More detailed information on SO<sub>2</sub>/HCl and HCl/HF ratios for Mount Etna.
- HNO<sub>3</sub>/SO<sub>2</sub> ratios for Villarrica, Masaya, Etna and Lascar from recent literature.
- Particle size distribution and flux estimates from the summit of Mount Etna in October 1997
  - mean effective radius: 0.83 μm (0.35<r<1.6 μm)
  - total aerosol mass flux: 4.5-8.0 kg/s
  - sulphate flux: 0.5-0.8 kg/s,
  - SO<sub>2</sub> flux: 10 kg/s.





#### Volcanos: Data Base

- Data from all sub-aerial volcanoes located in the whole geographical area of Europe (erupted at least once since 1st January 1964).
- Volcanoes have been differentiated between arc and nonarc volcanoes.

Non-arc volcano: volcano on a hot spot or rift zone - erupts more frequently, total number is smaller

Arc volcano: volcano at a subduction zone - eruptions are more violent





## Status: Gas Seeps, Mud Vulcanos

Guiseppe Etiope (INGV)

- First draft available
- New source
- Updated methodology
- New data base





#### Mud Vulcano eruptions

Dashgil (Azerbaijan)

 $0.15 \text{ m}^3 = 0.1 \text{ kg}$  - 1 eruption every 5 minutes = 1.2 kg/h  $\approx 10 \text{ t/y}$ 

70 cm



## Status: Marine Aerosol and DMS Chris Dore (AEA)

- First draft available
- New methodology
- New data base





## Marine Aerosol: Methodology

#### The Gong et al. Model

- Sea salt aerosol generation through the action of wind
- Vertical transport (turbulence and convection)
- Dry Deposition and gravitational settling
- Wet removal processes (in & below cloud scavenging)
- No aerosol chemistry
- Model considers only marine boundary layer, not long range transport.

## DMS: Methodology

#### The Liss & Merlivat Model

#### F ~ K<sub>w</sub>C<sub>Water</sub>

- Piston velocity defined for three regimes of wind speed at 10 m height (U<sub>10</sub>):
- Smooth surface regime (0-3.6 m s<sup>-1</sup>)
- Rough surface regime (3.6-13 m s<sup>-1</sup>)
- Breaking wave regime (>13 m s<sup>-1</sup>).





#### Marine Aerosol and DMS: Data Bases

- Wind speed in 10 m hight a.s.l
- Sea surface temeprature
- DMS concentrations





## Status: Lightning

Jochen Theloke (IER)

- First draft available
- New methodology
- New emission factors
- New data base





## Lightning: Methodology

- NO emissions for lightning flashes in study area
- Number of cloud-to-ground (CG) flashes recorded
- Efficiency of the CG network
- Emission factor for NO for each CG lightning flash
- Latitude of the study area in degrees
- Emission factor for NO for each inter-/intra cloud (IC) lightning flash





## Lightning: Data Bases

Lightning density data for Europe from the EUCLID network with a resolution of 24 x 24 km for the months July and August 2003







## Status: Humans, Pets and Wild Animals

Ernst Gebetsroither (Systems Research)

- First draft available
- Updated emission factors
- New data base





#### **Natural Sources**

## Humans, Pets and Wild Animals







#### Status: Wind Blown Dust

Marek Korcz (IETU)

- First draft available
- New methodology
- New emission factors
- New data base





#### Wind Blown Dust

#### **Emission calculation**

```
E \text{ (mass/unit area)} = \left\{ \text{land area, m}^2 \right\} \times \left\{ \left[ \text{spike emission rate, g m}^{-2} \right] + \right.
```

[(duration of wind event, h)  $\times$  (emission factor, g m<sup>-2</sup> h<sup>-1</sup>)]

#### **Vertical emission = E \*ALFA**

ALFA (unit less factor) dependent on:

- -soil texture group
- -wind friction velocity
- -applied ALFA ~1\*10-4, adjusted for the Netherlands inventory (~40 +- 20 Mg calculated 64 Mg)





# Status: Primary Biological Aerosol Particles

Wilfried Winiwarter (Systems Research)

- First draft available
- New methodology
- New emission factors
- New data base





## Primary Biological Aerosol Particles

#### Determine emission flux ("source term")

Compare PBAP to other conservative compound (TRAC)

$$\frac{c_{\mathit{PBAP}}}{c_{\mathit{TRAC}}} = \frac{E_{\mathit{PBAP}}}{E_{\mathit{TRAC}}} \qquad \text{or} \qquad E_{\mathit{PBAP}} = \frac{E_{\mathit{TRAC}}}{c_{\mathit{TRAC}}}$$

- "Tracers":
  - Levoglucosan
  - Primary particles





## Status: Wetlands

Sanna Saarnio (JOY)

- First draft available
- New methodology
- New emission factors
- New data base





## Wetlands

#### LPJ model estimations

\*process-orientated model (moisture, temperature, vegetation vs. CH<sub>4</sub> production, oxidation and transport)

\*include following wetland categories:

#### Corine CLC90

Inland marshes, Peat bogs, Salt marshes, Salines, Intertidal flats GLC2000 (global legend)

Tree Cover, regularly flooded, fresh water (& brackish)

Tree Cover, regularly flooded, saline water, (daily variation of water level)

Regularly flooded Shrub and/or Herbaceous Cover

## Status: Forest Fires

Guenther Seufert (JRC)

- First draft available
- New methodology
- New emission factors
- New data base





## **Forest Fires**

#### Methodology

$$CO_2 = \sum_f A_f \times B_v \times C \times E_f$$
 $B_f$ 
burned area (m²)
fuel load (g m²)

 $C$ 
burning efficiency (g g¹)
 $E_f$ 
emission coefficient for  $CO_2$ 

Emissions can also be estimated for (CO2), carbon monoxide (CO), methane (CH4), 2.5-micron particulate matter (PM2.5), 10- micron particulate matter (PM10), total particulate matter (PM), non-methane hydrocarbon (NMHC), volatile organic compounds (VOC), nitric oxide (NOX), organic carbon (OC), and elemental carbon (EC).

fuel class





#### Thanks'

## Let's look forward to completing the update!



