

**GLOWA-Jordan River Project** 

### Coupled Regional Climate-Hydrology Simulations for the Near East and the Upper Jordan Catchment

#### Harald Kunstmann, Peter Suppan, Andreas Heckl

Forschungszentrum Karlsruhe Institute for Meteorology and Climate Research (IMK-IFU) Garmisch-Partenkirchen, Germany

In cooperation with **Pinhas Alpert & Team**, Tel Aviv University, Israel **Alon Rimmer**, Kinneret Limnological Laboratory, Israel



### **GLOWA-Jordan River Project**

#### **Research questions**

1) Is high resolution regional climate modelling able to reproduce the sharp transition of climate zones and the spatial and temporal climatic variability in the Jordan River Basin?

2) What is the expected future climate change and what is its effect on water availability, particularly the Upper Jordan catchment?

3) What are the uncertainties of results with respect to the different driving scenarios (i.e. unknown future emissions)?





#### Why Worrying about temperature increases?

### Physical background:

- 1) warm air masses can carry more moisture
- 2) increased temperatures yield increased potential evapotranspiration
- 3) increase of latent heat  $\Rightarrow$  increase of energy content in atmosphere
- Consequence: Intensification of water cycle increased atmospheric humidity, increased precipitation amounts
- Changes in seasonality, regional distribution and intensities
  - large regional differences possible
  - small large scale changes can yield large regional impacts
- Socioeconomic implications through changing 1) drought risks
  2) flooding risks









**Emission scenarios** 



for Climate

Research

### **Projected Changes in Annual Precipitation for the 2050s**



 $\Rightarrow$  Resolution too coarse for regional impact analysis





ECHAM4

Change in precipitation

#### HadCM3



How does global warming and greenhouse gas emissions impact regional climate in the Eastern Mediterranean/Near East?

#### **Problem:**

- Changes in the regional climate can differ significantly from the overall trend of global climate change
- Region has sharp climatic gradients: subhumid mediterranean ↔ arid climate
- Resolution of global climate models are much too coarse for hydrological impact studies
  - ⇒ High resolution information required that account for regional and local geographic features (particularly orography, land use and water bodies)

#### **Solution: Dynamic downscaling of global climate scenarios**







- This study: scenario B2
  ("local solutions")
- Increase of CO<sub>2</sub>: 30%

1990: 350 ppm

2070: 500 ppm

Focus on time slices
 1961-1990 & 2070-2099





Soil Discretization

#### The Mesoscale Meteorological Model MM5



- Dynamic Downscaling of ECHAM4 with MM5
- 3 nests: 54x54 km<sup>2</sup>, 18x18 km<sup>2</sup>, 6x6 km<sup>2</sup>
- 26 Vertical Layers, Model Top: 100 mbar (ca. 17 km)
- Coupled OSU-Land-Surface Model
- Time slices: 1961-1990 & 2070-2099





### **Regional Climate Modeling**



... accounts for soil-vegetation-atmosphere feedbacks



### Note

#### Basic differences between SVAT-based hydrological models and "traditional" hydrological models

### • SVAT-Hydro Models (designed for atmospheric feedback purposes):

full energy balance (soil heat & sensible heat fluxes)

2-way interaction with PBL

### • "Traditional"-Hydro models (designed for pure hydrol. applications):

lateral water fluxes, surface runoff routing

deeper soils considered

finer vertical & horizontal resolutions

often groundwater interaction

often extensions for reactive flow & transport, erosion, etc.

but: depending on specific model choice



### **Necessity of High Resolutions**





### **Regional Climate Modeling**

### Explicit dynamical downscaling of global climate scenarios

#### **Intermediate results**

- Two nesting steps (grid size of 54, 18km)
- 25 vertical levels
- CT & B2 scenario ECHAM4 data
- 2x30 years time slices (1961-1990 & 2070-2099)

#### **Current status**

- 60 y simulations
- •~30000 CPUh
- ~5 TByte disc space

#### **Next Steps**

- Finishing 6 km
- Additional scenario A2
- Alternative GCM (HadCM3)
- Alternatively: transient run







Simulated annual mean precipitation (ECHAM4, 18 km<sup>2</sup>, 1961-1990) vs. observed long term annual mean (for selected stations 1961-1990)



# How accurate does the downscaled Control Run reproduce observed precipitation?



**Mean Annual Precipitation** 





⇒ Tendency to underestimate high precipitation in winter





⇒ Bias in MAM: Underestimation









 $\Rightarrow$  Bias in SON: Overestimation of precipitation



#### What are the expected changes in temperature?



Change in annual mean temperature

Change in temporal distribution, averaged over domain 2



#### What are the expected changes in precipitation?



ECHAM4 & MM5, 18 km, B2, 2070-2099 vs 1961-1990



#### How does the temporal distribution of precipitation change?



ECHAM4 & MM5, 18 km, B2, Jordan Area North of Dead Sea

Strongly decreased winter, slightly increased absolute spring precipitation



#### How does seasonal precipitation change depend on the region?



🗖 Area A 🗖 Area B 🗖 Area C 📕 Area D

For all subregions: Decreased winter, increased spring precipitation



#### How do precipitation intensities change?





#### How does precipitation intensity change depend on the region?





#### How does precipitation intensity change depend on the region?





#### How does precipitation intensity change depend on the region?





#### How does seasonal precipitation change depend on the region?





#### What do we expect from the High Resolution Simulations with 6 km?

First results of 6 km runs: mean 1961 + 1962



... more detailed spatial information: land-sea & orography dependent features



### How does the expected atmospheric change

### translate into change of terrestrial hydrology

### of Upper Jordan Catchment?





### **Towards Coupled Modeling**

What is the Impact of Expected Atmospheric Change on Terrestrial Water Availability in the UJC?





#### **The Upper Jordan Catchment**



#### Area: 855 km<sup>2</sup>

Max. height: 2814 m.a.s.l. (Mount Hermon) Min. height: 80 m.a.s.l. (Hula-Valley)

#### Complex hydrogeology &

groundwater/surface water interactions

#### **Precipitation:**

750 mm/a: in the valleys

1200-1500 mm/a: top of Mt. Hermon

Cross-bordering: Lebanon, Syria, Israel,

**Golan Heights** 

Restricted and limited data availability

6 Gauges: Ayun, Snir, Banyas, Dan, Saar, Yoseph Bridge



### The Distributed Hydrological Model WaSiM

- Physically based algorithms for most process descriptions
- Spatial model resolution for UJC:  $\Delta x^2$ =90x90 m<sup>2</sup>
- Flow trough unsaturated zone (Richards, 1931), ∆z=0.5m, 200 layers (!)
- Evapotranspiration: soil and vegetation specific (Monteith, 1975; Brutsaert, 1982)
- Snow accumulation & -melt
- Discharge routing: cinematic wave
- 2-dim groundwater model dynamically coupled to unsaturated zone



#### **DEM from SRTM Satellite Mission (90m)**



**Subcatchments** 



#### **Meteorological Observation Data**





#### **Spatial Data**



Land use





**Boundary Conditions for Groundwater Model** 





#### **Model Performance**

$$NSE = 1 - \frac{\sum_{i} \varepsilon_{i}^{2}}{\sum_{i} (x_{i} - \overline{x})^{2}} = 1 - \frac{\sum_{i} (y_{i} - x_{i})^{2}}{\sum_{i} x_{i}^{2} - \frac{1}{n} \left(\sum_{i} x_{i}\right)^{2}}$$

Nash Sutcliff Efficiency (-∞ < NSE < 1)



#### **Parameter Estimation – Inverse Modeling**





### **Parameter Estimation – Inverse Modeling**

| Parameter            |                                 |                               | Banyas   | Saar     | Snir     | Ayun     | Yosef-<br>Bridge |  |  |
|----------------------|---------------------------------|-------------------------------|----------|----------|----------|----------|------------------|--|--|
| Soil model           | k <sub>d</sub>                  | Start value                   | 50       | 30       | 100      | 50       | 150              |  |  |
|                      |                                 | End value                     | 200      | 30       | 50       | 35       | 150              |  |  |
|                      | k <sub>i</sub>                  | Start value                   | 2000     | 350      | 150      | 400      | 200              |  |  |
|                      |                                 | End value                     | 2000     | 350      | 1000     | 50       | 500              |  |  |
|                      | d <sub>r</sub>                  | Start value                   | 20       | 40       | 1        | 0.75     | 1.5              |  |  |
|                      |                                 | End value                     | 10       | 35       | 1.1      | 12       | 0.001            |  |  |
| Groundwater<br>Model | k <sub>x</sub> / k <sub>y</sub> | Start value                   | 5.00E-06 | 7.50E-07 | 1.00E-06 | 6.00E-07 | 5.00E-08         |  |  |
|                      |                                 | End value                     | 5.00E-06 | 6.00E-06 | 2.50E-06 | 1E-0.5   | 5.00E-08         |  |  |
| Snow model           | T <sub>r/s</sub>                |                               | 1        |          |          |          |                  |  |  |
|                      | T <sub>trans</sub>              | Start value<br>=<br>End value | 2        |          |          |          |                  |  |  |
|                      | Τ <sub>ο</sub>                  |                               | 0.8      |          |          |          |                  |  |  |
|                      | <b>c</b> <sub>1</sub>           |                               | 0.001    |          |          |          |                  |  |  |
|                      | <b>c</b> <sub>2</sub>           |                               | 0.001    |          |          |          |                  |  |  |



#### **Model Performance**

$$NSE = 1 - \frac{\sum_{i} \varepsilon_{i}^{2}}{\sum_{i} (x_{i} - \overline{x})^{2}} = 1 - \frac{\sum_{i} (y_{i} - x_{i})^{2}}{\sum_{i} x_{i}^{2} - \frac{1}{n} \left(\sum_{i} x_{i}\right)^{2}}$$

Nash Sutcliff Efficiency (-∞ < NSE < 1)

| Zeitraum              | Pegel   | Banyas | Saar   | Snir   | Ayun   | Yoseph<br>Bridge |
|-----------------------|---------|--------|--------|--------|--------|------------------|
| Validation<br>(1998)  | NSE-lin | 0.8525 | 0.4066 | 0.3839 | 0.5527 | 0.7402           |
|                       | NSE-log | 0.7894 | 0.2997 | 0.6128 | 0.4098 | 0.5502           |
| Calibration<br>(1997) | NSE-lin | 0.7187 | 0.5938 | 0.782  | 0.7311 | 0.8408           |
|                       | NSE-log | 0.4602 | 0.5377 | 0.69   | 0.3726 | 0.6472           |



#### How accurate does the hydrological model reproduce observed discharge?





#### How accurate does the hydrological model reproduce observed discharge?





#### **Selected Results**



Snow storage







#### Passed from MM5:

- Precipitation (IDW & regression)
- Temperature (IDW & regression)
- Wind speed
- Rel. humidity
- Global radiation





### **Results Upper Jordan Catchment**

#### How does expected regional atmospheric change translate into the UJC?





### **Results Upper Jordan Catchment**

#### How does expected regional atmospheric change translate into the UJC?





#### What is the impact of expected climate change on river discharge in the UJC?







Different signs of precipitation change and runoff change Amplified change for groundwater recharge



### **Results Upper Jordan Catchment**

Snow water



#### Significant reduction of snow water equivalent!



#### Impact of expected climate change on water balance in the UJC





Performance of regional climate simulations (18 km):

- Reasonable agreement in mean annual precipitation
- But bias: overestimation in SON, underestimation in MAM

Jordan River area north of Dead Sea:

- Temperature increase of annual mean up to 3.5°C
- Summer temperatures up to 5°C
- Decreasing winter (35%!), increasing spring precipitation
- Decrease of precipitation intensities
  - $\Rightarrow$  impact on conditions for reservoir filling!

Upper Jordan River

- First results joint climate-hydrology simulations UJC
- In spite increased spring precipitation, decreased spring runoff & recharge!
- Significant reduction of snow

#### $\Rightarrow$ Significantly reduced water availability!



### Thank you for your attention

... and greetings from Garmisch-Partenkirchen