

Critical evaluation of CFD codes for interfacial simulation of bubble-train flow in a narrow channel

<u>F. Özkan^{†,‡}, M. Wörner[‡], A. Wenka[§], H.S. Soyhan[¶]</u>

[†]University of Sakarya, Institute of Science and Technology, Sakarya, Turkey [‡]Forschungszentrum Karlsruhe, Institut für Reaktorsicherheit, Karlsruhe, Germany [§]Forschungszentrum Karlsruhe, Institut für Mikroverfahrenstechnik, Karlsruhe, Germany [¶]University of Sakarya, Engineering Faculty, Mechanical Engineering Department, Sakarya, Turkey

GVC Fachauschuss-Sitzung Mehrphasenströmungen, Baden-Baden 7. März 2007

Outline

- Introduction and motivation
- Description of bubble train flow (BTF) test case
 - Governing equations and volume-of-fluid method
 - Computational setup
- Results of code-to-code comparison
 - Contributing codes: CFX, FLUENT, STAR-CD, TURBIT-VOF (in-house code)
- Conclusions

TU Delft Hydrodynamics and Mass Transfer in Three-Phase Monolith Reactors M.T. Kreutzer, J.J. Heiszwolf, T.A. Nijhuis, F. Kapteijn, and J.A. Moulijn

- Evaluate commercial CFD codes for interfacial simulation of gas-liquid flows in small channels
 - STAR-CD 4.0
 - ANSYS CFX 10.0
 - FLUENT 6.2.16
- Perform simulations of bubble-train flow in a square mini-channel were surface tension forces are predominant
- Compare results with those of in-house code TURBIT-VOF which is already verified by experimental data* for BTF of silicon oil and air

Governing Equations

Based on *f* value, mixture density and viscosity and center-of-mass velocity can be defined

$$\mu_m \equiv f \,\mu_L + (1 - f) \,\mu_G$$

$$\rho_m \equiv f \,\rho_L + (1 - f) \,\rho_G$$

$$\mathbf{v}_m \equiv \frac{f \,\rho_L \mathbf{v}_L + (1 - f) \,\rho_G \mathbf{v}_G}{\rho_m}$$

•Continuous liquid volume fraction conversation $\frac{\partial f}{\partial t} + \nabla \cdot f \mathbf{v}_m = 0$

Continuity or mass conservation

 $\nabla \cdot \mathbf{v}_m = \mathbf{0}$

Momentum Equation

$$\frac{\partial}{\partial t} (\rho_m \mathbf{v}_m) + \nabla \cdot \rho_m \mathbf{v}_m \mathbf{v}_m = -\nabla P + \nabla \cdot \mu_m (\nabla \mathbf{v}_m + (\nabla \mathbf{v}_m)^{\mathrm{T}}) + (\rho_m - \rho_L) \mathbf{g} - \mathbf{f}_{\mathrm{pd}} + \mathbf{f}_{\sigma}$$

"VOF-methods" in CFD codes

	TURBIT-VOF	FLUENT	STAR-CD	CFX		0.493	0.493	0.177
Time Integration Scheme	Explicit 3. order Runga-Kutta	1. order Implicit	1.order Implicit	1. order Imp 2. order Imp		1.0 1.0	1.0 1.0	0.925
Mesh Order	Staggered	Co-located	Co-located	Co-located		1.0	1.0	10
Options for Free Surface Problems	VOF, interface capturing by means of -Reconstruct (EPIRA)	VOF, interface capturing by means of -Geo- reconstruct -Donor- acceptor -Euler- Explicit -Implicit	VOF, interface capturing by means of -HRIC -UD high order schemes	Under Homogeneous model concept interface capturing by means of high order schemes		0.493 1.0 1.0 1.0	-0.493 1.0 1.0 1.0	0.177 0.925 1.0 1.0

PLIC = Piecewise Linear Interface Calculation

SLIC = Simple Line Interface Calculation

Problem of difference scheme methods for *f*-equation:

Artificial smearing of interface by numerical diffusion

0.0

0.177

0.493

0.493

0.0

0.177

0.493

0.493

25

Numerical Setup for TURBIT-VOF, CFX and STAR-CD

- Consideration of one unit cell in fixed frame of reference
- Use of periodic boundary conditions at top and bottom
- $L_x = L_y = L_z$ = 2 mm

Numerical setup for FLUENT

- FLUENT does not allow to use VOF method in combination with periodic boundary conditions
- Therefore simulations are performed in <u>moving frame of</u> <u>reference</u>
- Domain: $1 \text{ mm} \times 10 \text{ mm} \times 1 \text{ mm}$
- Downward wall velocity corresponds to terminal bubble velocity of TURBIT-VOF

Test Conditions

Physical properties

- Silicon oil $\rho_L = 957 kg / m^3$ $\mu_L = 0.048 Pa.s$
- **Gas** $\rho_G = 11.7 kg / m^3 \mu_L = 1.85 \times 10^{-5} Pa.s$
- Surface tension $\sigma = 0.02218 N/m$

Gas void fraction
$$\mathcal{E} = \frac{V_{Gas}}{V_{UnitCell}}$$

Case 1: Buoyancy driven flow $(\rho_G - \rho_L)g = 9273.4N/m^3$

High gas void fraction $\varepsilon \approx 33\%$ (H), Low gas void fraction $\varepsilon \approx 30\%$ (L)

 $Ca = \mu_L U_B / \sigma = 0.065$ $Re_B = \rho_L D_h U_B / \sigma = 1.205$

Case 2: Pressure driven flow High gas void fraction $\varepsilon \approx 33\%$ (H) Ca = 0.204 $Re_B = 3.75$

$$(\rho_G - \rho_L)g = 9273.4N / m^3$$

 $\Delta p = -18Pa$

STAR-CD: bubble terminal velocity is almost the same for low and high void fraction CFX: low void fraction results in higher bubble velocity than high void fraction (unphysical)

Grid refinement study for STAR-CD

- Results do slightly depend on mesh size
- Refining the grid results in stronger underestimation of bubble velocity as compared to FLUENT and **TURBIT-VOF**

Grid and time step study for CFX

- Results depend on time step width (for same Δx)
- Results depend on mesh size (for same Δt)

Different VOF methods in FLUENT

• "Geo-reconstruct" scheme is almost independent from Δx und Δt

Different VOF methods in FLUENT

• Only VOF methods with reconstruction result in "bubble train flow"

Conclusions

- VOF methods based on piecewise linear interface reconstruction (PLIC) give consistent results
- Difference scheme methods have deficiencies
 - unphysical results for decrease of gas holdup (CFX,STAR-CD)
 - strong influence time step width (CFX)
 - influence of grid size (CFX, STAR-CD)
 - numerical diffusion may lead to artificial coalescence (all codes)
- For the commercial CFD codes the recommended PLIC reconstruction scheme is only available in FLUENT

For more information see paper in "International Journal for Numerical Methods in Fluids"

(in press, but already available online)

Thanks for your attention...