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Blasenströmung in kleinen Kanälen

• Technische Anwendungen

– Monolith-Reaktor mit

katalytischen Wänden

– Mikro-Kanal Netzwerk (MIT)

– Mikro-Blasensäule (IMM)

• Vorteile

– Gute Durchmischung der 

Flüssigkeit

– Reduzierte axiale Dispersion

– Effiziente Stoffübertragung 

über die Phasengrenzfläche

300m  100 m

50m  50 m

Quadr.

Kanäle

1−5 mm
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Motivation

• Experimentelle Untersuchungen der 

Strömungsvorgänge gestalten sich aufgrund der 

kleinen Kanalabmessungen schwierig und liefern 

häufig nur integrale Daten

• Ziel:

Einblick in lokale Strömungsphänomene durch  

direkte numerische Simulation der Strömung zweier 

nicht mischbarer Fluide in einem einzelnen Kanal 
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• Zwei nicht mischbare Fluide

• Phasengrenzfläche ist unendlich dünn

• Oberflächenspannung ist konstant

• Inkompressible Newton‘sche Fluide mit 

konstanter Viskosität

Annahmen 
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Dimensionslose Grundgleichungen 

in Ein-Feld-Formulierung
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10*Doktorarbeit W. Sabisch

Rechenprogramm TURBIT-VOF

• Eigenentwicklung von FZK/IRS*

• Diskretisierung im Raum

– Finite-Volumen Formulierung

– Strukturiertes, kartesisches, versetztes Gitter

– Zentrale Differenzen-Approximationen 2. Ordnung

• Lösungsstrategie

– Projektionsmethode

– Lösung der Druck-Poisson-Gleichung mit CG-Verfahren 

– Explizites Runge-Kutta Zeitintegrationsverfahren 3. Ordnung

• Lösung der f-Gleichung mit Volume-of-Fluid Methode
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• fi,j.k = Volumenfraktion von Phase 1 in einer 

Gitterzelle (0  fi,j,k  1)

• In Zellen mit 0 < f i,j,k < 1 wird die 

Phasengrenzfläche lokal als Ebene angenähert

• Position und Orientierung der Ebene wird aus 

Verteilung von f in Nachbarzellen „rekonstruiert“

• „Geometrische“ Berechnung der konvektiven 

Flüsse von f

• Vorteil: sehr gute Massenerhaltung der Phasen

Volume-of-Fluid Methode (VOF) 

u
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13uc = "unit cell"

• Blasen im Minikanal sind lang 

gestreckt und füllen nahezu den 

ganzen Querschnitt aus 

(Taylor-Blasen)

• Die Blasen haben identische Form

und bewegen sich mit gleicher 

Geschwindigkeit durch den Kanal

• Die Strömung wird vollständig 

beschrieben durch eine Einheitszelle

der Länge Luc bestehend aus 

Blase und „Slug“ der Flüssigkeit

Charakterisierung der Strömung

Luc



14* Thulasidas, Abraham, Cerro, Chem. Eng. Science 50 (1995) 183-199

• Quadratischer vertikaler Kanal

– Querschnittsfläche: 2 mm  2 mm (W = 2 mm)

• Luftblasen in Silikonöl

– Silikonöl unterschiedlicher Viskosität

– Breiter Bereich der Kapillar-Zahl CaB ≡ LUB/

• Aufprägung des Volumenstroms von Luft und Öl

• Länge der Einheitszelle (Luc), Gasanteil in der 

Einheitszelle () und Druckverlust stellen sich ein

Experiment von Thulasidas et al.*
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• Betrachtung einer Einheitszelle (eine Blase, ein Slug)

• Einfluss der vor- und nacheilenden Blasen wird durch 

periodische Randbedingungen abgebildet

– Aufspaltung des Druckes 

• Die Strömung wird angetrieben vom Auftrieb und einem 

vorgegeben axialen Druckgradienten

– Volumenstrom von Gas und Flüssigkeit stellen sich ein 

• Der Gasgehalt der Einheitszelle und deren Länge wird zu 

Beginn der Simulation vorgegeben

– Untersuchung des Einflusses von Luc / W 

Abbildung im Rechenprogramm 
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• Lx = Lz = W = 2 mm

• Gasgehalt in der 

Einheitszelle in allen 

Simulationen:  = 33%

• Alle Simulationen 

starten aus 

Ruhezustand

• Lref = 2 mm

• Uref = 2,64 cm/s

• tref = Lref / Uref = 0,757 s
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• Stoffwerte im Experiment von Thulasidas et al.

• Simulationen für  Luc / W = 1

Numerische Vorstudien

L G L G 

957 kg/m3 1,17 kg/m3 0,048 Pa s 1,8410-5 Pa s 0,022 N/m

Fall G [kg/m3] G [m Pa s] Gitter t / tref [-]

A1 1,17 0,0184 48  48  48 2,5  10-6

A2 11,7 0,184   48  48  48 2,5  10-5

A3 11,7 0,184 64  64  64 1,0  10-5

G und G sind um Faktor 10 höher als bei Luft
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Mittlere Geschwindigkeiten
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Fall Luc / W Gebiet [-] Gitter

A2 1 1  1  1 48  48  48

B 1,125 1  1,125  1 48  54  48

C 1,25 1  1,25  1 48  60  48

D 1,375 1  1,375  1 48  66  48

E 1,5 1  1,5  1 48  72  48

F 1,625 1  1,625  1 48  78  48

G 1,75 1  1,75  1 48  84  48

H 2 1  2  1 48  96  48

Simulationen für verschiedene Werte von Luc
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Fall A3
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Blasenform und Bahnen von 

virtuellen Partikeln für Fall A3 

DraufsichtSeitenansichtSeitenansicht

• Blase ist rotationssymmetrisch

• Ein großer Wirbel in der Blase

• Geringe Strömung in Umfangsrichtung innerhalb der Blase   



23* In y-Richtung ist nur jeder 8. Vektor dargestellt

Blasenform und Geschwindigkeitsfeld

für verschiedene Werte von Luc

Geschwindigkeitsfeld in vertikaler Mittelebene*

Rechte Hälfte: mit Blase mitbewegtes Bezugssystem 

Linke Hälfte: ortsfestes Bezugssystem



24* Thulasidas, Abraham, Cerro, Chem. Eng. Science 50 (1995) 183-199

Vergleich mit dem Experiment*

Fall Luc/W CaB DB / W UB/Jges (UB–Jges)/Jges

A 1 0,204 0,81 1,80 0,445

C 1,25 0,207 0,84 1,75 0,430

E 1,5 0,215 0,85 1,75 0,430

G 1,75 0,238 0,85 1,78 0,438

H 2 0,253 0,85 1,8 0,445

Experimentelle Daten* als Funktion der Kapillar-Zahl CaB ≡ LUB/

0,2 − 0,25 0,82 − 0,86 1,68 − 1,84 0,435−0,475

  

Dimensionsloser Blasendurchmesser Relativgeschw.Dimensionsloses UB



25Thulasidas, Abraham, Cerro, Chem. Eng. Science 50 (1995) 183-199

Dimensionsloser Blasendurchmesser
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26* Thulasidas, Abraham, Cerro, Chem. Eng. Science 50 (1995) 183-199

Blasendurchmesser über Diagonale*

Blasenquerschnitt 

ist nicht kreisförmig

Blasenquerschnitt

ist kreisförmigDB / W DB

DB W 

CaB ≡ 1UB/ Verringerung von

CaB um Faktor 5



27* Ghidersa et al. Chem. Eng. J. 101 (2004) 285-294

Einfluss der Kapillar-Zahl*

obere Reihe: CaB = 0,205; untere Reihe: CaB= 0,043
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29* Doktorarbeit von A. Onea

• Methodische Erweiterung von TURBIT-VOF

– Transportgleichung für eine/mehrere chemische Spezies

– Annahmen:

• keine Rückwirkung auf die Hydrodynamik

• Konzentrationen an der Phasengrenzfläche sind im Gleichgewicht

• Numerische Problematik

– Konzentration an Phasen-

grenzfläche ist i.A. unstetig

– Transformation von c in 

ein stetiges Feld 

mit Hilfe der Henry-Zahl H

Stofftransport und chemische Reaktion*

c
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1D

2D

● TURBIT-VOF;  —— analytische Lösung (Crank, 1994) für 1D und numerische Lsg. von (Bothe et al., 2004) für 2D

H = 5 H = 0,5

H = 5 H = 0,5

Line A

Line B

X

YZ

Fluid 2

Fluid 1

x

y

z
Fluid 2Fluid 1

C  = 10C  = 00

Line A

Validierung für diffusiven Stoffübergang  
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• Betrachtung eines artifiziellen Systems

– Hydrodynamik: Gasphase = Luft, Flüssigphase = Silikonöl

– Stofftransport: O2 in Wasser, DG = 19,16 10-6 m2/s

– Realistischer Wert für Diffusivität DL in Flüssigkeit bewirkt 

• sehr dünne Konzentrationsgrenzschicht auf der Flüssigkeitsseite der 

Phasengrenzfläche, die numerisch nicht aufgelöst werden kann

• sehr langsame Transportvorgänge und damit hohe Rechenzeiten

• Diffusivität DL wird um ca. den Faktor 30 000 erhöht

– Betrachtung von zwei verschiedenen Werten der Henry-Zahl

• H = 0,03 (Wert von O2 in Wasser)

• H = 3      (Wert von Methylchlorid CH3Cl in Wasser)

Stoffübergang in Taylor-Strömung  

kHmg [m/s] kHtg [1/s] H DL [m
2/s] DG [m2/s] ReB Sc

50 1500 0,03 and 3 62,2410-6 19,1610-6 10 0,8



32* Doktorarbeit A. Onea

Stoffübertragung einer chemischen 

Spezies von der Blase in die Flüssigkeit*

0,01st  H = 0,03

Normierte Konzentration

in der Gasphase im 

Gleichgewichtszustand ( )
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Einfluss der Länge der Einheitszelle

G. Berčić, A.Pintar - CES, 52, 3709, 1997

H = 0,03

H = 3

( )

eq

G

0

G

1

1 1/ 1

c

c H
=

+  −

Konzentration 
in vertikaler 
Mittelebene

• Der Flüssigkeitsfilm ist 

gesättigt

• Der Stofftransport 

erfolgt hauptsächlich 

über Spitze und Boden 

der Blase in Überein-

stimmung mit exp. 

Ergebnissen von 

Bercic & Pintar (1997)

c

c

Normierte Konzentration
in der Gasphase im 
Gleichgewichtszustand
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Homogene Reaktion

H = 3

H = 0,03

Einfluss von Luc auf Reaktion 1. Ordnung
Homogen   - Heterogen

Da = 96 Da = 1606

H = 0,03

H = 3

c

c

c

c
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• TURBIT-VOF ist beschränkt auf Einzelkanal mit 

rechteckigem Querschnitt und kartesisches Gitter 

• Komplexere Untersuchungen für mehrere Kanäle, die 

über Ein- und Austrittsplenum gekoppelt sind, erfordern 

den Einsatz kommerzieller CFD-Programme

• Ziel: Bewertung der VOF-Methoden in den 

kommerziellen Codes CFX, FLUENT und STAR-CD 

und Vergleich mit TURBIT-VOF Ergebnissen

Bewertung von kommerziellen 

Rechenprogrammen
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• TURBIT-VOF

– Rekonstruktion der Phasengrenzfläche und lokale Approximation 

als Ebene (PLIC = piecewise linear interface calculation)

• CFX 10.0 und STAR-CD 4.0

– Keine Rekonstruktion der Phasengrenzfläche sondern Lösung der 

f-Gleichung mit Differenzenverfahren

• FLUENT 6.2

– Lösung der f-Gleichung mit Differenzenverfahren, oder

– Rekonstruktion der Phasengrenzfläche mit

• PLIC = piecewise linear interface calculation, oder 

• SLIC = simple line interface calculation

VOF-Methoden in den Codes
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VOF-SLICVOF-PLIC

• FLUENT: Donor-acceptor

• Problem von Differenzenverfahren für f-Gleichung: 

Verschmierung der Grenzfläche 

durch numerische Diffusion

• FLUENT: Geo-reconstruct

• TURBIT-VOF
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Setup für den Code-Vergleich

x

 y

z

g

L  xL  z

Ly

Bottom: periodic b.c. 
Side walls: 
no slip b.c. 

Top: periodic b.c. 

Flow

TURBIT-VOF, CFX, STAR-CD:

Ortsfestes System

FLUENT: mitbewegtes System



40Özkan et al., Int. J. Num. Meth. Fluids 2007 (im Druck)
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Ergebnisse für „buoyancy driven flow“

TURBIT-VOF STAR-CD

CFXFLUENT

a) b)

c) d)
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  TURBIT-VOF (TBH64F)
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Studie zum Einfluss des Gasgehalts

0,00 0,01 0,02 0,03

0,00

0,01

0,02

0,03

U
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U
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B
 ,U
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 [
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]

t [s]

  TURBIT-VOF    33%  (TBH48F)

  TURBIT-VOF    30%  (TBL48F)

  STAR-CD    33%        (SBH48F)

  STAR-CD    30%        (SBL48F)

  CFX    34%                 (CBH48Q-T) 

  CFX    31%                 (CBL48Q-T)

• Da die Strömung 

durch den Auftrieb 

angetrieben ist, sollte 

verringern des 

Gasgehalts  eine 

Verringerung von UB

und UL bewirken

• Dies ist bei 

STAR-CD und CFX 

nicht der Fall
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Gitterstudie für STAR-CD

• Ergebnisse sind  

nicht Gitter-

unabhängig

• Gitterverfeinerung 

bewirkt 

Verschlechterung 

der Ergebnisse 

(weitere Abnahme 

von UB )
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Gitter- und Zeitschrittstudie für CFX

• Ergebnisse 

hängen von 

Zeitschrittweite ab  

(für gleiches x)

• Ergebnisse 

hängen von 

Maschenweite ab 

(für gleiches t)
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  h* = 1/48, t* = 1      (CBHQ48)

  h* = 1/48, t* = 10    (CBHQ48Q-T)

  h* = 1/64, t* = 1      (CBH64Q) 

  h* = 1/64, t* = 10    (CBH64Q-T)

U
L

CFX
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Vergleich der VOF-Methoden in FLUENT

• Für „Geo-reconstruct“ sind Ergebnisse nahezu unabhängig von x und t
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  CFX  h* =1 / 64  (CPH64Q)

  CFX  h* =1 / 48  (CPH48Q-T)

  FLUENT             (FPH64Q-T-G)
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Vergleich verschiedener 

Differenzenverfahren für STAR-CD

• Entscheidend ist 

das Differenzen-

Verfahren für die  

f-Gleichung 

( höhere Ordnung 

ist zwingend)

• Differenzen-

Verfahren für die 

Impulsgleichung 

ist weniger wichtig 
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Vergleich der VOF-Methoden in FLUENT

• Nur VOF-Methoden mit Rekonstruktion ergeben „bubble-train flow“
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Zusammenfassung Zusammenfassung

• Direkte numerische Simulation von Taylor-Blasen

– Quadratischer vertikaler Mini-Kanal (2 mm  2 mm)

– Untersuchung des Einflusses der Länge der Einheitszelle 

– Gute Übereinstimmung mit experimentellen Daten aus Literatur

– Großer Einfluss der Kapillar-Zahl auf Blasenform und Strömung 

in der Blase und im Flüssigkeits-Slug

• Untersuchung von Stofftransport ohne/mit chemischer 

Reaktion 1. Ordnung für ein artifizielles System

• Bewertung der VOF-Methoden von kommerziellen CFD-

Codes für die Gas-Flüssig-Strömungen in kleinen Kanälen

– Nur VOF-Methoden mit Rekonstruktion der Phasengrenzfläche 

liefern konsistente Ergebnisse  
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Ausblick auf aktuelle Arbeiten

• Detaillierte Verifikation von TURBIT-VOF

– Experimente der TU Dresden (Arbeitsgr. Prof. Lange)

– 1 mm  1 mm Kanal

– Drei verschiedene Stoff-Paarungen

– Weiterer Bereich der Kapillar-Zahl

• Blasenform nicht mehr rotationssymmetrisch

• Stabilität der Strömung

– Unter welchen Bedingungen ergibt sich stabiler 

„bubble-train flow“ bzw. wann tritt Koaleszenz auf
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Ausblick auf das  mittelfristige Ziel

● Detaillierte Simulation der 

Hydrodynamik von 

Blasenströmungen mit 

Stofftransport mehrerer 

Spezies und optionaler 

einfacher chemischer 

Reaktion mit 

Wärmetönung und des 

entsprechenden 

Wärmetransports inklusive 

Rückkopplung auf die 

Hydrodynamik


