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Atmosphere – Biosphere Exchange
Why is it relevant ?

From: Sarmiento and Gruber, 2002 (Phys. Today)

For Example: CO2



(from Sarmiento and Gruber, 2002)

CO2,Atm Accumulation = CO2 Source - Land & Ocean Sinks

Background: Global Carbon Budget



Discussion: Which part of the atmosphere is 
influenced by the biosphere?

Layering of the Atmosphere:

from Oke (1997)

The Planetary Boundary Layer (PBL)



Discussion: Which part of the atmosphere is 
influenced by the biosphere?

Layering of the Atmosphere:

from Oke (1997)

The Surface Layer (SL)



Discussion: Which part of the atmosphere is 
influenced by the biosphere?

Layering of the Atmosphere:

from Oke (1997)

The Roughness Sublayer



Discussion: Which part of the atmosphere is 
influenced by the biosphere?

Layering of the Atmosphere:

from Oke (1997)

The Leaf Boundary Layer (LBL)



Discussion: Which part of the atmosphere is 
influenced by the biosphere?

Layering of the Atmosphere:

from Oke (1997)

The Stomatal Cavity



Plant-Environment Interaction: CO2

Scale of Approach

CO2

Macroscopic Approach
0.1 mm

Microscopic Approach

• ecosystem exchange
• transport
• 102 - 103 m
• hourly – multi-year

• intercellular exchange
• transformation, chemical pathways
• 10-5 – 10-2 m
• seconds – hourly

everything in between



Biosphere-Atmosphere Exchange:

We can’t cover everything all of the time … 

• in-situ observations:
(chambers, flux towers)

• aircraft observations:
(fluxes, concentrations)

• modeling:
(leaf …. region)

cover almost nothing
but most of the time

cover almost everything
but hardly ever

only pretend to
cover everything
all of the time



FLUXNET
Integrating Worldwide 
CO2 Flux Measurements
(currently ~ 300 stations)

Indiana
MMSF~Flux

Michigan
UMBS~Flux

AmeriFlux Network



Eddy-Covariance: Closed Path System
UMBS~Flux Tower: Instrumentation
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Eddy-Covariance: ' 'w c = cov(wt,ct)
Lagged E-C:  cov(wt,ct-τ)
• τ: determined so that covariance

is maximized
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Fluxes are determined in post-
processing of 10 Hz data-stream 
(> 1GByte/week)



Turbulent Flux: the correlation of eddies

Sonic Anemometer
• measures transit time of 

ultrasonic pulse →
depends on air velocity

• fast sampling rate (~10-60 
Hz)

• three velocity components
• sonic temperature
• at ≥ 10 Hz: resolves most 

fluctuations in turbulence
•

ultrasonic
pulse

Scalar Concentration
• sample-air intake
• synchronized analysis 

with sonic signals
•

′= +w w w

′= +C C C

′ ′= +wC wC w C

eddy covariance



w C′ ′ Eddy Covariance -- Turbulent Flux
Common situation: vertical gradient in 3-D turbulent motion
Two possibilities:
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w C′ ′ Eddy Covariance -- Turbulent Flux



w C′ ′ Eddy Covariance -- Turbulent Flux



Period

Year DayD’s

N
or

m
al

iz
ed

 P
ow

er
 D

en
si

ty

Turbulent Time Series: Averaging Period?
“spectral gap” ~ 10 min – 1 h

TurbulenceMean Flow



MMSF~Flux (Indiana)
Energy and Carbon Fluxes: 

Annual “Fingerprints” of Variability

Schmid et al. 2000 (Agric. For. Meteorol. 103, 355-373)



Hourly Fluxes of CO2 over 8 Years (MMSF)
NEE: Net Ecosystem Exchange = Respiration - Assimilation
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30 tons C ha-1 = 3 kg C m-2

Cumulative Exchange of CO2 over 9 Years (MMSF)
NEE: Net Ecosystem Exchange = Respiration - Assimilation
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Examine CO2 Conservation Equation!
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What do we want?    

Are fluxes capturing the right processes ?

NEE !

What do we have?    FC (+ storage)!

Potential problems:
• location, shape of the box
• “leaking” out of the box



Micrometeorological Flux Measurements: 
at what scale?

Schmid 2002 (Agric. For. Meteorol. 113, 159-184)

Flux Footprint

Sensor
CO2

Source



CO2

The Flux Footprint:
• What Part of the Ecosystem does the 

Flux Sensor ‘see’  ?
• Is that Part Representative of the 

Ecosystem? (answer varies over time)
• If yes: use data; if not: reject data

e.g.: Schmid (2002, Ag. For. Met., 113, 159-184 )



Schmid 1994 (Boundary-Layer Meteorol., 67, 293-318)

Flux Footprint = spatial filter, “field of view”

(convolution of the source distribution, QS, with the footprint, f )

      ffs sQF d Q


       x x x x x

sensor

Inputs:
• zm
• z0
• h

• u*
• σw
• σv



500 m

1000 m
Location and shape of the box ...



500 m

1000 m
Location and shape of the box ...
... is variable (see footprint)

Is the tower optimally located ?
What kind of location bias can we expect ?

Footprint is different for flux 
and storage (concentration)!



Hourly
Footprints
2001:
YD 217-
YD 225

Aug 5 –
Aug 13



Hourly
Footprints
2001:
YD 217-
YD 225

Aug 5 –
Aug 13

8-Day Flux Footprint Composite







Mead rain-fed: land use

 

  

 



Problem: 
Biosphere-Atmosphere Exchange 
Measurements in “Difficult Conditions”

“Difficult Conditions” ???
⇒ deviations from micrometeorological ideal:

• flat terrain
• homogeneous fetch
• low, homogeneous 

vegetation (if any)
• stationarity
• well-developed 

turbulence (MOST)

• topography
• patchy land-cover
• deep, multy-layer  

vegetation canopy 
• instationarity
• weak turbulence; free 

convection



Heterogeneous
Scalar Field
(∆LAI, ∆Bowen-Ratio)

Heterogeneous
Flow/Turbulence
(disturbance, forest 
edges)

Difficult Conditions: Patchy Land Cover



Tall Trees

Difficult Conditions: Deep Canopies

Multi-Layer Understorey



Large Scale 
Topography

Small Scale, 
Gentle 
Topography

Difficult Conditions: Topography



46 m tower:
•Located on ridge-top

Gully tower:
•30 ft tower
•~350 m downstream, ~30 m 
elevation drop from main 
tower

Advection and Gully Flows
in Complex Forested Terrain
N.J. Froelich, H.P. Schmid
Indiana University

Problem with Nighttime Fluxes in Topography?

1 km

Tower

gully tower

horizontal
divergence
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from the ground 
(CO2) is advected 
away, before 
affecting the flux on 
the tower.

Is respired CO2 at night “leaking” out of the box, 
without a trace detectable by the flux sensor?



4

1

7

H
ei

gh
t (

m
)

Δ
T 

(ºC
)

T a
v 
(ºC

)

0

20

360

180

0

W
in

d 
D

ire
ct

io
n

254 255 256 257Day of Year

Thermotopographic Flow – Leaf-On

 Night «─» Up-gully flow with lapse conditions
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 Night «─» Down-gully flow with inversion conditions
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Flow Patterns: Leaf-On Nighttime
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Wishes
(for Bio-Atmo Measurements in „Difficult Conditions“):

• 3-D distribution of trace-gas „clouds“
• CO2, H2O, CH4, VOC, stable isotopes
• Over box 10 m – 100 m a side
• Tomography?

• Simultaneous „fast“ multi-species trace-gas 
measurements (~10 Hz)

• CO2, H2O, CH4, VOC, stable isotopes
• VOC‘s: low PPT precision
• Continuous operation (days, months, years)

• High-resolution (~100 m), short rang (~103 m) 
scanning Doppler-LIDAR

• thermal structure, velocity, trace-gas (CO2, H2O, ?)



Requirements
(for Bio-Atmo Measurements in „Difficult Conditions“):

• Fast measurements (~10 Hz, 0.1 s „grab samples“)

• Sensor path, or gas intake small

• Analyzer separated from intake or open-path

• Weather proof (wind, precipitation, Δ-temperature, radiation)

• „Portable“

• Low power consumption (battery/solar power)
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