Joint High Resolution Climate-Hydrology Simulations for the Middle East and the Upper River Jordan Catchment

Harald Kunstmann¹
Peter Suppan¹, Andreas Heckl¹, Alon Rimmer²

¹ Institute for Meteorology and Climate Research IMK-IFU, Germany
² Kinneret Limnological Laboratory, Israel
Regional Climate Change Middle East and Upper Jordan River

Motivation

• water availability per capita in the Middle East one of the lowest worldwide (150 m³/a)

• distribution of resource freshwater has high conflict potential

• future availability may be further restricted by population pressure and climate change

• hydrological focus: Upper Jordan catchment

⇒ provides 1/3rd of drinking water resources in Israel
Regional Climate Change Middle East and Upper Jordan River

Scientific Challenge

1) Changes in the regional climate can differ significantly from the overall trend of global climate change

2) Region has sharp climatic gradients: subhumid mediterranean ↔ arid climate

3) Resolution of global climate models are too coarse for hydrological impact studies ⇒ Higher resolution information required that account for regional and local geographic features (particularly orography, land use and water bodies)

Approach:
Dynamic downscaling of global climate scenarios
Regional Climate Change Middle East and Upper Jordan River

The Mesoscale Meteorological Model MM5

- Dynamic Downscaling of ECHAM4 with MM5
- 3 nests: 54x54 km², 18x18 km², 6x6 km²
- 26 Vertical Layers, Model Top: 100 mbar
- Coupled OSU-Land-Surface Model
- Time slices: 1961-1990 & 2070-2099
Global Scenarios

- **This study: scenario B2** ("local solutions")
- Increase of CO$_2$: 30%
 - 1990: 350 ppm
 - 2070: 500 ppm
- Focus on time slices
 - 1961-1990 & 2070-2099
Regional Climate Modeling & Hydrological Impact Analysis

Performance of regional climate simulations for hydrological impact analysis

Control simulations (present day climate)

Simulated annual mean precipitation (ECHAM4 + MM5, Δx=18 km, 1961-1990) vs. observed long term annual mean (for selected stations 1961-1990)
Regional Climate Change Middle East and Upper Jordan River

High resolution Control Run

Intermediate results of 6 km runs: mean 1961-1975

Yearly Mean Precipitation 1961-1975

54km 18 km 6 km

… more detailed spatial information: land-sea & orography dependent features
Regional Climate Change Middle East and Upper Jordan River

What are the expected changes in temperature?

Absolute Change of Yearly Mean Temperature Future - Past

- Temperature [°C]
- Longitude (°E)
- Latitude (°N)
- Absolute Change of Yearly Mean Temperature Future - Past

Yearly Mean Temperature

- 1960-89
- 2070-2100

2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0
Regional Climate Change Middle East and Upper Jordan River

What are the expected changes in precipitation?

ECHAM4 & MM5, 18 km, B2, 2070-2099 vs 1961-1990
How does the temporal distribution of precipitation change?

ECHAM4 & MM5, 18 km, B2, Jordan Area North of Dead Sea

Strongly decreased winter, slightly increased absolute late spring precipitation
How do precipitation intensities change?

![Graph showing precipitation intensities]

Tendency towards decrease of precipitation intensity
Regional Climate Change Middle East and Upper Jordan River

How does seasonal precipitation change depend on the region?

For all subregions: Decreased winter, increased spring precipitation
Are drought risks changing? Analysis of effective drought index EDI

Subregion A: shift towards drier conditions & increased drought risks
Regional Climate Change Middle East and Upper Jordan River

Are drought risks changing? Analysis of effective drought index EDI

Subregion A: Increasing drought intensities, but “unchanging” drought durations
How does the expected atmospheric change translate into change of terrestrial hydrology of Upper Jordan Catchment?
Regional Climate Modeling & Hydrological Impact Analysis

Example of joint climate-hydrology simulation for hydrological impact analysis

Eastern Mediterranean/Near East (EM/NE) & Upper Jordan River Catchment

- High resolution dynamical downscaling of global climate scenarios
- Distributed hydrological modeling of surface and subsurface water balance in 90 m resolution

- MM5
- WaSiM

Distributed hydrological modeling

MM5

WaSiM

High resolution dynamical downscaling of global climate scenarios

Distributed hydrological modeling of surface and subsurface water balance in 90 m resolution
Regional Climate Change Middle East and Upper Jordan River

Hydrological Model WaSiM-ETH

Physically based algorithms for vertical water fluxes & groundwater:
- Evapotranspiration: soil and vegetation specific (Monteith)
- Flow through unsaturated zone (Richards)
- Suction head & hydraulic conductivity (van Genuchten)
- 2-dim groundwater model dynamically coupled to unsaturated zone

Conceptual approaches for lateral runoff aggregation
- Traveltime approach folded with linear storage
- Discharge routing: cinematic wave

Setup Upper Jordan River catchment
- spatial resolution: 90x90 m², temporal resolution: daily
- subdivision into 6 sub-catchments
Regional Climate Modeling & Hydrological Impact Analysis

Joint climate-hydrology simulation for hydrological impact analysis

Annual mean temperature

Temperature change [°C]

Upper Jordan River catchment

1961 - 1990

2070 - 2099

11 - 12
12 - 13
13 - 14
14 - 16
16 - 17
17 - 18
18 - 20
20 - 22
22 - 24

3,2 – 3,4
3,4 – 3,5
3,5 – 3,7
3,7 – 3,9
3,9 – 4,1
4,1 – 4,2
4,2 – 4,4
4,4 – 4,5
4,5 – 4,7
Joint climate-hydrology simulation for hydrological impact analysis

Upper Jordan River catchment

Mean annual precipitation

Precipitation change [%]

1961 - 1990

2070 - 2099

-25,0 - -22,7
-22,7 - -20,6
-20,6 - -18,6
-18,6 - -16,5
-16,5 - -14,5
-14,5 - -12,4
-12,4 - -10,4
-10,4 - -8,3
-8,3 - -6,3
Joint climate-hydrology simulation for hydrological impact analysis

Runoff

Groundwater Recharge

Upper Jordan River catchment
Summary & Conclusions

Climate change Jordan River area north of Dead Sea (2070-99 vs. 1961-90):
• Temperature increase of annual mean up to 3.5°C
• Summer temperatures up to 5°C

• Decreasing winter (35%), slightly increasing spring precipitation
• Decrease of precipitation intensities
 ⇒ impact on conditions for reservoir filling?
• Increased drought intensities

Upper Jordan River
• In spite increased spring precipitation, decreased spring runoff recharge
• Significant reduction of snow

⇒ Significantly reduced water availability & increased drought risks!
Thank you for your attention
Eastern Mediterranean/Near East: is in between increasing and decreasing dominant large scale patterns of DJF precipitation change
Regional Climate Scenarios

Population Growth Economic Development Technological Progress

↓

Emission Scenarios
Greenhouse Gas Concentrations

↓

Global Climate Models

↓

Global Climate Scenarios

↓

Downscaling Methods

↓

Regional Climate Scenarios
Joint climate-hydrology simulation for hydrological impact analysis
The Upper Jordan Catchment

Area: 855 km²
- Max. height: 2814 m.a.s.l. (Mount Hermon)
- Min. height: 80 m.a.s.l. (Hula-Valley)

Complex hydrogeology & groundwater/surface water interactions

Precipitation:
- 750 mm/a: in the valleys
- 1200-1500 mm/a: top of Mt. Hermon

Cross-bordering: Lebanon, Syria, Israel, Golan Heights

Restricted and **limited data availability**

6 Gauges: Ayun, Snir, Banyas, Dan, Saar, Yoseph Bridge
Regional Climate Change Middle East and Upper Jordan River

Boundary Conditions for Groundwater Model

Maximum depth of unsaturated zone assumed:
= 100 m
Hydrological Simulations

<table>
<thead>
<tr>
<th>Episode</th>
<th>Gauge</th>
<th>Banyas</th>
<th>Saar</th>
<th>Snir</th>
<th>Ayun</th>
<th>Yoseph Bridge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Validation (1998)</td>
<td>NSE-lin</td>
<td>0.8525</td>
<td>0.4066</td>
<td>0.3839</td>
<td>0.5527</td>
<td>0.7402</td>
</tr>
<tr>
<td></td>
<td>NSE-log</td>
<td>0.7894</td>
<td>0.2997</td>
<td>0.6128</td>
<td>0.4098</td>
<td>0.5502</td>
</tr>
<tr>
<td>Calibration (1997)</td>
<td>NSE-lin</td>
<td>0.7187</td>
<td>0.5938</td>
<td>0.782</td>
<td>0.7311</td>
<td>0.8408</td>
</tr>
<tr>
<td></td>
<td>NSE-log</td>
<td>0.4602</td>
<td>0.5377</td>
<td>0.69</td>
<td>0.3726</td>
<td>0.6472</td>
</tr>
</tbody>
</table>

Gauge Ayun

Gauge Saar
Regional Climate Change Middle East and Upper Jordan River

Joint climate-hydrology simulation for hydrological impact analysis

1961-90

\[Q_{tot} + ET: \quad 737 \text{mm} \quad \Rightarrow \quad 639 \text{ mm (-13\%)} \]
\[Q_{tot}: \quad 375 \text{ mm} \quad \Rightarrow \quad 289 \text{ mm (-23\%)} \]

2070-99

\[Q_{tot} + ET: \quad 737 \text{mm} \quad \Rightarrow \quad 639 \text{ mm (-13\%)} \]
\[Q_{tot}: \quad 375 \text{ mm} \quad \Rightarrow \quad 289 \text{ mm (-23\%)} \]