

Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

Modelling BVOC emissions from Holm oak considering integrated impacts of leaf microclimate and drought

Rüdiger Grote¹, Anne-Violette Lavoir², Serge Rambal², Michael Staudt²

Institute for Meteorology and Climate Research (IMK-IFU) Kreuzeckbahnstr. 19, Garmisch-Partenkirchen, Germany ruediger.grote@imk.fzk.de 2 Centre d'Ecologie Fonctionelle et Evolutive -CNRS, 1919 Route de Mende 34293 Montpellier CEDEX 5, France

ntroduction	Isopre	n resp	onse –	to dr		
leasurements Iodelling	Days from water- ing	Moisture content (%)	Isoprene emission rate (µg C dm ⁻² h ⁻¹)	Net photo- synthetic rate (mg CO ₂ dm ⁻² h ⁻¹)	Transpi- ration rate (mg H ₂ O dm ⁻² h ⁻¹)	Leaf conduc- tance (cm s ⁻¹)
		76	14.0	4.80	398	0.093
	2	53	13.9	3.97	373	0.079
	3	36	14.9	1.22	224	0.024
	4	26	14.0	0.09	131	0.008
	5	24	7.0 -	-0.26	97	0.005
lione	SI	D 5.37 SC	GD 1.53 SD	1.54 SGI	D 1.31 SGD	2.24

Tingey et al. 1981 (Quercus virginiana)

Introduction

Measurements

Modelling

Conclusions

Isoprenoid emission response to drought

Brilli et al. 2007 (Populus alba)

Introduction

Measurements

- The site Modelling

Conclusions

Holm Oak site at Puechabon

Introduction

Measurements - The experiment Modelling

Conclusions

Holm Oak site at Puechabon

app. 30% less water input + irrigated field plants

IMK-IFU

Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft The Modelling Framework MoBiLE Introduction Measurements Modelling vegetation development canopy air ľ egetation - Modelling C- & Nchemistry, Data framework balance -climate Module -air chemistry soupler soil -initials physics C- & N-(canopy & balance biosphere Conclusions soil) water balance

Introduction

Measurements

Modelling - Evaluation

Conclusions

Grote et al. 2006

Greenhouse 2002 / 2003: Photosynthesis

Montpellier, 03.10.2007

Montpellier, 03.10.2007

Introduction

Measurements

Modelling

Evaluation
(2 photosynthesis models)

Conclusions

Montpellier 2006: Photosynthesis (well watered)

Montpellier 2006: Monoterpene Emission (well watered)

ade –1

age 0

- - - - age + 1

foliage

Grote 2007

Montpellier, 03.10.2007

	Forscl in der
Introduction	
Measurements	1. E
Modelling	2. S
	a 3. T H
Conclusions	a

Some points to remember:

- mission is insensitive to soil drought
- ntil photosynthesis is practically zero Substrate limitation might explain most f the decreased emission rates under rought rought
- 'he overall arought related decrease in Iolm aak monoterpene emission for the Car 2006 has been estimated to be pp. 44%!

