The Need to Link Disciplines in Climate Change Research at Mountainous Regions

Dr. Rüdiger Grote
Inst. f. Meteorology and Climate Research (IMK-IFU)
Garmisch-Partenkirchen, Germany
Overview

1. Climate Change in European mountainous regions (i.e. the Alps)
2. Climate Change Impacts
3. Possible Responses
4. Research Strategies
5. Final Remarks
Observed Climate Change in European Mountains

- Temperature
- Precipitation

References:
1) Auer et al. 2007 (HISTALP)
2) ProClim Report 2007 (CH2050)
Observed Climate Change in European Mountains

- Temperature
- Precipitation

References:
1) Raible et al. 2006 (CH, Winter)
2) Schmidli & Frei 2005
cit. In Fuhrer et al. 2006
Projected Climate Change in European Mountains to 2100

Multi-model Averages and Assessed Ranges for Surface Warming

Economic

A1 A2

Global Local

B1 B2

Environmental

References:
1) IPCC 2007

Rüdiger Grote (ruediger.grote@imk.fzk.de)
Projected Climate Change in European Mountains to 2100

- Temperature
- Precipitation

Higher locations → Higher temperature increase!
Projected Climate Change in European Mountains to 2100

- Temperature
- Precipitation

References:
1) Beniston, 2006 (Results from the PRUDENCE project, cit. from Workshop presentation, Wengen 2006)

Shift from summer into winter and spring!
Expected Climate Impacts

Climate Change:
Temperature, Precipitation, Wind speed,…

Physical/Chemical Impact:
Glacier Extension, Drought, Runoff, Permafrost, mass flows, fire,…

Biological/Ecological Impact
Growth, Emission, Diseases, Competition, Biodiversity,…

Socio-economic Impact:
Yield, Energy production, Tourism, Health, Land use, Safety,…
Expected Climate Impacts: Physical

- Increasing winter & spring flooding
- Increased summer drought
- Increasing glacier retreat and mass movements
- Probable increase of other hazards

References:
1) Beniston, 2006 (Workshop, Wengen)
2) Häberli, 2006 (Workshop, Wengen)

HIRHAM RCM scenario for the central European Alps

Penrith, 04.09.2007
Expected Climate Impacts: Ecology

- Changed ecology
- Changed growth (increased temperatures and CO₂ but more frequent drought)
- Changed competition
- Disturbed host - parasite interaction
- Increased invasion rate (plants, insects, …)
- Dynamically changing biodiversity

Current climate
Distributions of dominant tree species in the Dischma valley simulated with LandClim for a) current climate conditions (3.2 °C mean annual temperature, 900 mm mean annual precipitation) and b) a climate warming scenario (6.2 °C mean annual temperature, 700 mm mean annual precipitation).

Climate scenario

References:
1) Pretzsch, Grote et al. (in press)
Expected Climate Impacts:

Socio-Economic

- Shorter skiing season
- Less water availability
- Decreased hydropower
- Increased water & energy demand in summer
- Increased damage related costs
- Increased forestry risk
- Changing yield and production (+/-)
- New health risks pattern (ozone, insect related,..)
- Better accessibility

References:
1) OECD 2006
Impacts and Adaptation Responses

Climate Change:
Temperature, Precipitation, Wind speed, …

Physical/Chemical Impact:
Glacier Extension, Drought, Runoff, Permafrost, mass flow, fire, …

Biological/Ecological Impact:
Growth, Emission, Diseases, Competition, Biodiversity,…

Socio-economic Impact:
Yield, Energy production, Tourism, Health, Land use, Safety,…

Adaptation:
- Flood Protection, Water Management, Tourism Strategies,…
- Reforestation, Management, Nature Reserves,…

Feedback:
- Water Use, Stability, Susceptibility,…

Anthropogenic:
- Emission, Economic Boundary Conditions, Demographical Dynamics,…
Responses - Tourism

"It will be important for the ski industry and community as a whole to explore a variety of strategies for adapting to climate change as it plays out over the next few decades."1)

- Expanding snowmaking capabilities
- Explore the use of higher ski terrain
- Market the middle of the season.
- Expand non-snow winter recreation and cultural activities.
- Expand summer tourism activities

References:
1) "Climate Change and Aspen", report 2006
2) "Klimaänderung un mögliche Auswirkungen auf den Wintertourismus in Salzburg", BOKU, 2001
Responses - Water management

"Projected changes in the hydrograph are likely to affect municipal, agricultural, and recreational water users."¹)

- Flood risk prevention
- Controlled flooding
- Flood prediction
- Evacuation plans
- Water saving measures
- Less reliance on hydro power production
- Less cooling capacity for industrial use

References:
1) "Climate Change and Aspen", report 2006
2) OcCC report (Klimaänderung in der Schweiz 2050) 2007
Responses - Agriculture and Forestry

“In the Alpine region, the potential effect of climate change is crop-specific. However, the introduction of new cultivars may provide means by which to maintain or even increase current productivity levels.”

- Simple measures (e.g. early sowing)
- Intensification
- Increased irrigation where appropriate
- Consideration of new species (bioenergy?)
- Fire protection measures
- Pest control

References:
1) Torriani et al. 2007
Responses - Health and others

“Climate change is affecting health not isolated but in combination with other socio-economic and ecological changes.”

• Health control (heat wave related, allergy, insect triggered)
• New building regulations (heat isolation, damage resistance, …)
• …

References:
1) Frank 2006 (from OcCC report (Klimaänderung in der Schweiz 2050) 2007
Research Strategies: Integrated Studies

- Observation and indicator analysis
 - Cryosphere
 - Terrestrial ecosys.
 - Freshwater ecosys.
 - Watershed Hydrology
- Process studies along altitudinal gradients
 - Indicators of ecosys. responses
 - Runoff generation and flowpath dynamics
 - Diversity and ecosys. function

References:
1) modified after Becker & Bugmann 2001 (MRI report)
Research Strategies: Integrated Studies

- Integrated model-based studies
 - coupled ecological, hydrological and land use models
 - regional scale models of land-atmosphere interaction
 - integrated analysis

Quantification of physical and ecological Climate Change impacts

Human Driving Forces

Global Environmental Change

Optimisation of Local/regional Responses: Management

Quantification of integrated Socio-economic impacts

References:
1) modified after Becker & Bugmann 2001 (MRI report)
Research Strategies: Participatory Assessments

Stakeholders and Decision Makers
- public
- special interest groups
- governmental officials
- economic stakeholders

Socio-economic impact assessment
- identification of driving forces
- determination of vulnerability
- quantification of changes and risks

Management responses to reduce vulnerabilities and risks
- risk awareness
- adaptation impact
- cooperation needs
- interest weighting
- adaptation options
- experiences
Research Strategies: Participatory Assessments

Dangers of insufficient participation
- overlooking major interests
- missing ongoing management trends
- under- or overestimation of adaptation potentials

Questions to ask
- What are the demands on science?
- What changes are already experienced?
- How are resources managed today?
- What are the plans for future management?
- What options for adaptation exist?
- How much resources are available for adaptation measures?
Final Remarks:

Assets

- There are loads of regional climate change studies, the most recent large projects being PRUDENCE and ENSEMBLES.

- A number of regional ‘integrated’ assessments had already been carried out (e.g. RegIS for North East England).

- The reality of Climate Change is recognized by stakeholders and decision makers and the demand for advice is growing.
Final Remarks: Deficits

- Regional Climate Change projections still need higher resolution for coupling with regional hydrology and ecological models, particularly in mountainous regions.

- Regional integrated assessments generally miss major linkages and feedbacks between physical and ecological impacts. Adaptation measures are seldom included.

- Cooperation with stakeholders and decision makers on the regional scale is still difficult.
Final Remarks:

Conclusions

➢ Improvement of regional climate change scenarios appropriate for mountainous regions.

➢ Development of coupled (bi-directional linked) multidisciplinary models for hydrological (including snow and glacier dynamics) and bio-geochemical processes and application on the regional scale (e.g. carbon sequestration, nitrogen leaching).

➢ Development of realistic adaptation scenarios in cooperation with stakeholders and decision makers and application with coupled models in an iterative manner.

Thank you for your attention!