$\begin{array}{c} \mbox{Compilation of a N_2O emission inventory from} \\ \mbox{tropical rainforest soils} \end{array}$

Using a detailed biogeochemical model to scale from site to global scales

Christian Werner, Ralf Kiese and Klaus Butterbach-Bahl

Institute for Meteorology and Climate Research Atmospheric Environmental Research (IMK-IFU) Research Center Karlsruhe GmbH Germany

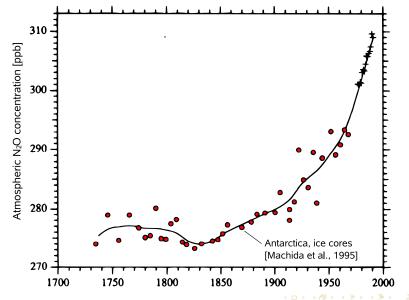
October 18, 2007

Table of content

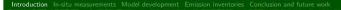
Introduction

- In-situ measurements
- 3 Model development
- 4 Emission inventories
- 5 Conclusion and future work

Table of content

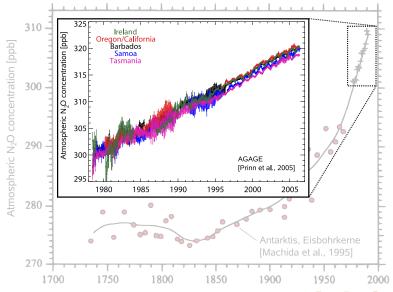


Introduction

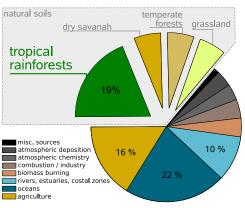

- In-situ measurements
- 3 Model development
- Emission inventories
- 5) Conclusion and future work

Introduction In-situ measurements Model development Emission inventories Conclusion and future work

Atmospheric concentration of N₂O



Christian Werner, Ralf Kiese and Klaus Butterbach-Bahl — Compilation of a N2O emission inventory from tropical rainforest soils


Atmospheric concentration of N_2O

Christian Werner, Ralf Kiese and Klaus Butterbach-Bahl — Compilation of a N2O emission inventory from tropical rainforest soils

Sources of N₂O

- Tropical rainforest soils biggest terrestrial source
- Large uncertainty of total soil N₂O source strength $(3.3 9.0 \text{ Tg yr}^{-1})$

[Data: Lee et al., 1997; IPCC 2007]

Introduction In-situ measurements Model development Emission inventories Conclusion and future work

Existing N_2O emission measurements

- No daily measurements (exception: Australia)
- Environmental parameter and weather data often missing or unsufficient
- Need for concise datasets of high temporal resolution

Inventory methodologies

Bottom-up (I): empirical up-scaling

- + simple methodology, very common (IPCC standard procedure)
- too simple?, no temporal variability, no process-interactions, very dependant on datasets

Inventory methodologies

Bottom-up (I): empirical up-scaling

- + simple methodology, very common (IPCC standard procedure)
- too simple?, no temporal variability, no process-interactions, very dependant on datasets

Top-down: inverse modelling

- + global scale, estimate of total landsurface exchange
- spatial resolution, no single sources, verification

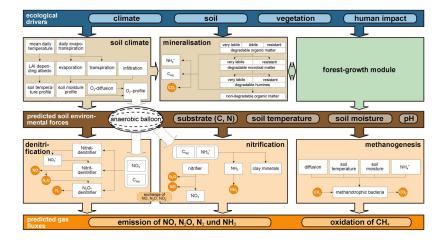
Inventory methodologies

Bottom-up (I): empirical up-scaling

- + simple methodology, very common (IPCC standard procedure)
- too simple?, no temporal variability, no process-interactions, very dependant on datasets

Top-down: inverse modelling

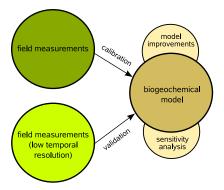
- + global scale, estimate of total landsurface exchange
- spatial resolution, no single sources, verification

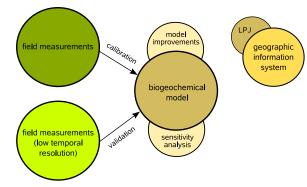

Bottom-up (II): biogeochemical modelling

- + explicit spatial units, realistic process functioning, temporal resolution
- high complexity of models, need for detailed measurements and GIS data

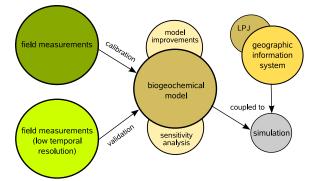
Introduction In-situ measurements Model development Emission inventories Conclusion and future work

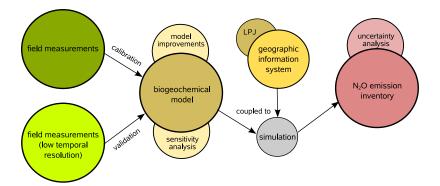
ForestDNDC


イロン 不同 とくほう 不良 ううへつ



イロン イロン イヨン イヨン 三連




(日) (四) (王) (王) (王)

イロン 不得入 イヨン イヨン 二三

Christian Werner, Ralf Kiese and Klaus Butterbach-Bahl — Compilation of a N2O emission inventory from tropical rainforest soils

(日)(周)(日)(日)(日)(日)

Table of content

In-situ measurements

Field measurements

Christian Werner, Ralf Kiese and Klaus Butterbach-Bahl — Compilation of a N2O emission inventory from tropical rainforest soils

11/32

イロン イロン イヨン イヨン 三連

Field measurements

Kakamega Forest, Kenya 2004

- relict of former equatorial Guinea-Congo rainforest
- 1500m a.s.l, loamy soils, deeply weathered
- 20.4°C mean annual temperature
- 1530mm mean annual precipitation

Field measurements

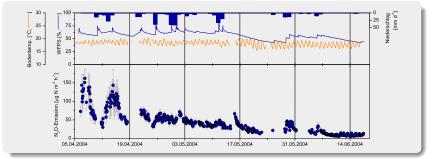
Kakamega Forest, Kenya 2004

- relict of former equatorial Guinea-Congo rainforest
- 1500m a.s.l, loamy soils, deeply weathered
- 20.4°C mean annual temperature
- 1530mm mean annual precipitation

Xishuangbanna, SW-China 2005

- seasonal tropical rainforest
- 770m a.s.l., sandy soils, gravel
- 21.8°C mean annual temperature
- 1493mm mean annual precipitation (strongly seasonal)

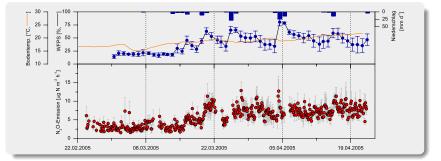
Detection of N₂O emissions from soils


Methodology

- Fully-automated detection of N₂O, CH₄ and CO₂ (*static chamber method*)
- Simultanuous recording of environmental factors (WFPS, soil temp.)
- Quantification of spatial heterogenity by manual measurements on other sites

Kakamega Forest, Kenya

Site characteristics


- Carbon rich soils
- Measurements at start of wet season

Emission characteristics

- Significant emission pulses
- Decline of N₂O emissions even when WFPS remains high

Xishuangbanna, SW-China

Site characteristics

- Nutrient-poor site
- Measurements in dry-wet transition (severe drought before)

Emission characteristics

- Very low emission level
- Low emission dynamic

Dominant controls

Short-term dynamics of N₂O emission

- WFPS is dominant control at both sites
- $\bullet~\mbox{WFPS}$ controls emission timing but not the integrative N_2O emission sum
- Soil temperature is of secondary importance for emission variability (small daily temperature amplitude in tropics)

Dominant controls

Short-term dynamics of N₂O emission

- WFPS is dominant control at both sites
- $\bullet~\mbox{WFPS}$ controls emission timing but not the integrative N_2O emission sum
- Soil temperature is of secondary importance for emission variability (small daily temperature amplitude in tropics)

Mid-term dynamics of N₂O emission

- $\bullet\,$ Amount and availability of substrate important for N_2O emission strength
- Physicochemical properties control general emission potential

Table of content

Introduction

3 Model development

4 Emission inventories

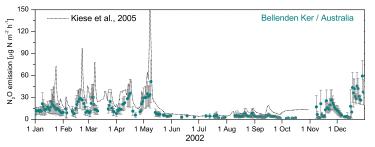
ForestDNDC-tropica

Based on ForestDNDC-tropica [Kiese et al., 2005], PnET-N-DNDC [Stange et al., 2000]:

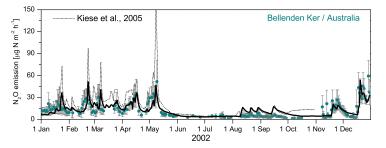
- Reworked vertical soil carbon profile
- Implementation of new pedotransfer functions
- Reworked model initialization (vegetation, biomass)
- Adaptation of model code for cluster environment
- Restructuring and recalibration (Site-parallel Bayesian Calibration) of model

10-

Bayesian Calibration

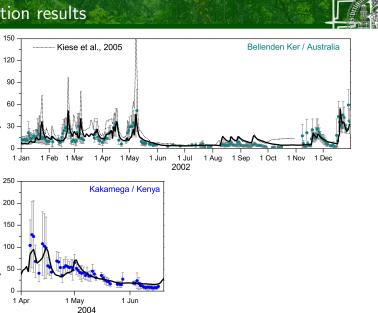


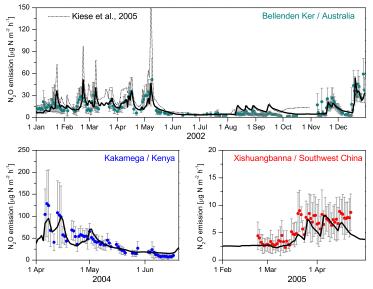
- Re-calibration of model internal parameters (pV)
- Metropolis Hastings random walk


$$\Theta' = \Theta_t + \epsilon$$
 (1)

$$\beta = \frac{p(D|\Theta')p(\Theta')}{p(D|\Theta_t)p(\Theta_t)} \quad (2)$$

 also enables to calculate parameter uncertainty of pV





 $\rm N_{2}O$ emission [µg N m 2 h 1

 N_2O emission [µg N m⁻² h⁻¹]

Christian Werner, Ralf Kiese and Klaus Butterbach-Bahl - Compilation of a N2O emission inventory from tropical rainforest soils

Model validation

	Field site	Source	20
Calibra	ation		
1	Bellenden Ker (AU)	Kiese et al. (2003)	í16- ⊢@́ŕ—
2	Kakamega (KE)	This study	<u> </u>
3	Xishuangbanna (CN)	This study	
			, p , b , b , b , b , b , b , b , b , b
Valida	tion		
4	Bellenden Ker (AU)	Kiese et al. (2003)	i i i i i i i i i i i i i i i i i i i
5,6	Kauri Creek (AU)	Breuer et al. (2000)	₩ 8-]
		Kiese & Butterbach-Bahl (2002)	
7,8	Massey Creek (AU)	Breuer et al. (2000)	
9	Lake Echeam (AU)	Breuer et al. (2000)	
10	La Selva (CR)	Keller & Reiners (1994)	- <u>9</u> 1 <u>9</u> 1
11	Guacimo (CR)	Liu et al. (2000)	히 전환
12	Central Rondônia (BR)	Neill et al. (1995)	
13	Jambi Province (ID)	lshizuka et al. (2002)	0 4 8 12 16 20
14	Wuasa (ID)	Purbopuspito et al. (2006)	0 4 6 12 16 20
15	Pará (BR)	Verchot et al. (1999)	Gemessene N ₂ O-Emission [g N ha ⁻¹ d ⁻¹]

Data integration (I)

Problem: Initialization of vegetation

Modell-internal initialization developed for Australian rainforests and not applicable to global scale as such

(ロト (四) (ヨ) (ヨ) 三字

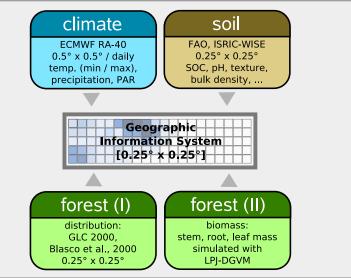
Data integration (I)

Problem: Initialization of vegetation

Modell-internal initialization developed for Australian rainforests and not applicable to global scale as such

Solution: Simulation of local vegetation conditions

The Lund-Potsdam-Jena Dynamic Global Vegetation Model


- Simulation of potential vegetation
- 1000 year spin-up simulation
- explicit output of leaf, steam and root mass

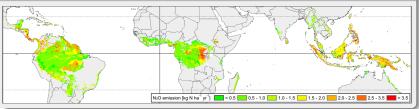
Introduction In-situ measurements Model development Emission inventories Conclusion and future work

Data integration (II)

Development of a Geographic Information System

Christian Werner, Ralf Kiese and Klaus Butterbach-Bahl - Compilation of a N2O emission inventory from tropical rainforest soils

Table of content



Introduction

- In-situ measurements
- 3 Model development
- 4 Emission inventories
- 5 Conclusion and future work

N_2O emission inventory

Mean annual N₂O emission (1991–2000)

- $\bullet\,$ Mean annual global source strength: 1.3 \pm 0.3 Tg N yr^{-1}
- Pronounced spatial variability (climatic and edaphic effects)

Problem

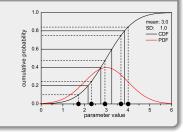
Parameters of GIS are based on mean values which can be the result of broad parameter distributions in some soil groups

Problem

Parameters of GIS are based on mean values which can be the result of broad parameter distributions in some soil groups

Solution: The Latin Hypercube Sampling methodology

- Parameters: soil, biomass
- Acknowledgement of local climate conditions by grid replicates
- Combinations: $1000 \times 200 \times 5 = 10^6$
- Advanced Monte-Carlo approach (distribution functions)

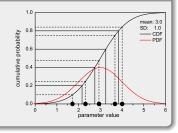


Problem

Parameters of GIS are based on mean values which can be the result of broad parameter distributions in some soil groups

Solution: The Latin Hypercube Sampling methodology

- Parameters: soil, biomass
- Acknowledgement of local climate conditions by grid replicates
- Combinations: $1000 \times 200 \times 5 = 10^6$
- Advanced Monte-Carlo approach (distribution functions)



Problem

Parameters of GIS are based on mean values which can be the result of broad parameter distributions in some soil groups

Solution: The Latin Hypercube Sampling methodology

- Parameters: soil, biomass
- Acknowledgement of local climate conditions by grid replicates
- Combinations: $1000 \times 200 \times 5 = 10^6$
- Advanced Monte-Carlo approach (distribution functions)

Uncertainty range

Data-induced uncertainty: 0.9 - 2.4 Tg N

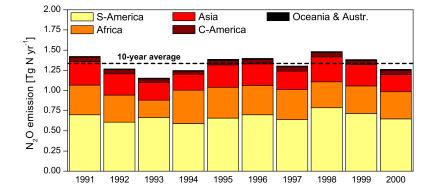
Comparison of N₂O inventory results

-	A DEPARTMENT
	E S

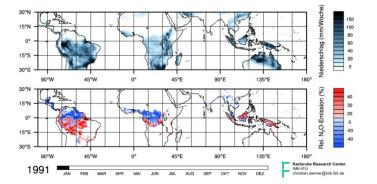
	N ₂ O source strength		Area	
	[Tg N yr ⁻¹]		[10 ⁶ km ²]	
Empirical up-scaling				
Matson und Vitousek (1990)	1.8	(2.4)	14.8	
Breuer et al. (2000)	2.6	(3.6)	14.9	
Stehfest und Bouwman (2006)	1.5	(1.2)	8.5	

Christian Werner, Ralf Kiese and Klaus Butterbach-Bahl - Compilation of a N2O emission inventory from tropical rainforest soils

Comparison of N₂O inventory results


	TIDICAL SI	2
The		Ģ
		7

	N ₂ O source strength [Tg N yr ⁻¹]		Area [10 ⁶ km ²]
<i>Empirical up-scaling</i> Matson und Vitousek (1990) Breuer et al. (2000) Stehfest und Bouwman (2006)	1.8 2.6 1.5	(2.4) (3.6) (1.2)	14.8 14.9 8.5
<i>Model-based up-scaling</i> Bouwman et al. (1995) Potter et al. (1996) Melillo et al. (2001)	1.5 1.3	(2.3) (1.3) (2.4)	16.8 10.2 5.4
This study	1.3		10.9


Christian Werner, Ralf Kiese and Klaus Butterbach-Bahl — Compilation of a N2O emission inventory from tropical rainforest soils

Introduction In-situ measurements Model development Emission inventories Conclusion and future work

Inter-annual variability of N₂O emissions

Introduction In-situ measurements Model development Emission inventories Conclusion and future work Seasonal variability of N_2O emissions

Table of content

Introduction

- In-situ measurements
- 3 Model development
- 4 Emission inventories
- 5 Conclusion and future work

Results

Summary

- Acquisition of detailed N₂O emission datasets for model calibration
- Model improvements (ForestDNDC-tropica) and first-time application for global tropical rainforests
- $\bullet\,$ Compilation of N_2O emission inventories for the years 1991-2000 in daily resolution
- Uncertainty assessment for inventories

Results

Summary

- Acquisition of detailed N_2O emission datasets for model calibration
- Model improvements (ForestDNDC-tropica) and first-time application for global tropical rainforests
- $\bullet\,$ Compilation of N_2O emission inventories for the years 1991-2000 in daily resolution
- Uncertainty assessment for inventories

Using a $\ensuremath{\mathsf{GIS}}\xspace$ coupled modelling approach for up-scaling it was shown that

- tropical rainforest soil emit 1.3 Tg N yr $^{-1}$
- N_2O emissions vary substantially at the spatial scale
- N₂O emissions occur with inter- und intra-annual variability
- $\bullet~N_2O$ emissions are controlled by precipitation at the global scale

Outlook

Future work

- Verification of inverse models
- \bullet Compilation of more N_2O emission datasets with high precision
- Improvements to model parametrization (e.g., tropical savannah biome)
- Simulation of Global Change effects
- Coupled modelling (e.g., for future climate change)

Thank you.

Christian Werner christian.werner@imk.fzk.de

Christian Werner, Ralf Kiese and Klaus Butterbach-Bahl - Compilation of a N2O emission inventory from tropical rainforest soils

32/32