
 Marcus.Hardt@iwr.fzk.de

http://www.interactive-grid.eu

 Marcus.Hardt@iwr.fzk.de

LFC Explained

LFC: Logical File Catalog

Logical file management
Replica management
File Access

 Marcus.Hardt@iwr.fzk.de

Overview

LFC: Logical File Catalog:

● Map LFN <=> GUID <=> SURL

• SURL: Actual storage URL (gsiftp://fzk.de/file.txt)

• LFN: Logical File Name (lfn:/grid/iusct/file.txt)

• GUID: Globally Unique ID (guid:9cd7ceb1-2b77-4b73-9262-
43b9f3ecc46c)

● Manage Access

● Organise LFNs in a directory structure

One - #(VOs) LFC servers per grid

 Marcus.Hardt@iwr.fzk.de

LFC Commands

The ususal stuff
● lfc-chgrp
● lfc-chmod
● lfc-chown
● lfc-ln
● lfc-ls
● lfc-mkdir
● lfc-rename
● lfc-rm

And a lot more...
● lfc-setcomment
● lfc-delcomment

● lfc-enterusrmap
● lfc-entergrpmap
● lfc-[modify|rm]*map

● lfc-setacl
● lfc-getacl

● lfc-ping

 Marcus.Hardt@iwr.fzk.de

Replica Management (LCG-RM)

LCG Replica Manager:

● Intermediate layer between

• Data storage (SURLs)

• Logical files (LFNs)

Features:

● Copy local file to grid storage (create GUID + SURL)

● Register new files with LFC (create GUID+LFN)

● Replicate files to other SEs and keep track (new SURL)

Commands:

● lcg-aa
● lcg-cp
● lcg-cr
● lcg-del

● lcg-fetch
● lcg-gt
● lcg-la
● lcg-lg

● lcg-lr
● lcg-ra
● lcg-rep
● lcg-uf

 Marcus.Hardt@iwr.fzk.de

 Marcus.Hardt@iwr.fzk.de

Grid File Access Library (GFAL)

GFAL Features:

● POSIX like file access:

● gfal_open

● gfal_read

● gfal_write

● gfal_lseek

● gfal_close

● and more (gfal_access, gfal_chmod, gfal_closedir, gfal_creat, gfal_mkdir,

gfal_opendir, gfal_readdir, gfal_rename, gfal_rmdir, gfal_stat, gfal_unlink)

● sdf

lcg-* tools are implemented, using GFAL

 Marcus.Hardt@iwr.fzk.de

 Marcus.Hardt@iwr.fzk.de

GridSolve

“Client – Agent – Server” architicture:
● User connects the client to agent
● Servers (many) report abilities to agent
● Agent tells client which server to use next

 Marcus.Hardt@iwr.fzk.de

Why did we choose gridsolve

User Interface

API-style

● Interface for C, Fortran, Matlab, for remote method
invocation (RMI):
 result = analysis (x, y);
 result = gs_call ('analysis', x, y);

“analysis”

● is a C, or Fortran function

● IDL code generator compiles a “problem”

● Problems are deployed on servers

Asyncronous calls + “call farming” available

 Marcus.Hardt@iwr.fzk.de

GridSolve on top of int.eu.grid

● Submission of Servers via
Migrating Desktop

• 1-200 times

● Agent on outside host
● Connectivity provided

by a proxy host
● Startup of local Client

Environment also via MD:
• Client and Matlab
• Connect to agent
• Connect (via proxy)

to resources

● Example
• Fractal calculation

● Resolution => Data

● # Iterations => CPU

● # Resources => Distribution

 Marcus.Hardt@iwr.fzk.de

Next Steps

Deployment of user functions

● Deployment requires re-linking agains GS sources

● Deployment requires resubmission of all jobs

● Java is popular but unsupported

Implementation of a useful algorithm
● Current Demonstration not sexy enough for scientists
● MPI might be beneficial (depending on algorithm)

Data Handling
● Get access to data at the servers
● Currently considering GFAL + GridSolve

Security
● Considering use of EGEE's security enhanced DICOM

 (Digital Imaging and Communications in Medicine)

 Marcus.Hardt@iwr.fzk.de

Demonstration

 Marcus.Hardt@iwr.fzk.de

Backup Slides

