

http://www.interactive-grid.eu

Introduction to gLite and GridSolve

Marcus Hardt Forschungszentrum Karlsruhe

Marcus.Hardt@iwr.fzk.de

Outline

- Different grid solutions:
 - EDG/gLite
 - Service Oriented Architectures
 - GridSolve
- GridSolve in int.eu.grid
- Demo of a solution
- Scaling considerations

Different grid solutions: EDG/gLite

int.ev.grid

- High Energy Physics community
- Use cases
 - Data Production, Parameter sweeps
 - 10.000s of jobs, creating 100s of TB
 - Analysis on previously stored data
 - 10.000s of jobs, reading 10s of PB
- Current Infrastructure
 - 177 Centers
 - 35.000 CPUs
 - 13 PB Storage
- Interctive grid
 - Interactive extensions
 - MPI extensions
 - Inter-Job Communication across clusters
 - Resources for USCT

Current Infrastructure

- 12 Centers
- 303 CPUs
- 35 TB Disk

Different grid solutions: SOA

Grid Services Toolkit for Process Data Processing

int.eu.grid

Marcus.Hardt@iwr.fzk.de

Different grid solutions: GridSolve

int.eu.grid

- Self Consistent:
 - Resource Management
 - Monitoring

int.eu.qrid

- Data management
- Interface for C, Fortran, Java, Matlab, Mathamatica, ... for remote method invocation (RMI):

result = analysis (x, y);
result = gs call ('analysis', x, y);

"analysis" must be available in object code

Asyncronous calls + "call farming" available

GridSolve on top of int.eu.grid

Demonstration

int.eu.grid

Marcus.Hardt@iwr.fzk.de

Scaling considerations

int.eu.grid

What is a grid?

- CPU <=> Network <=> Data
 - Interconnected by Information Systems
 - Unified authentication + authorisation
 - Accounting
- Added values
 - Know where resources are available
 - Resource Brokerage
 => Send the job to where the data is
 - Data Management
 - When moving data, keep on "old" copy cached
 - Remember where which data is
 - => Replica Management

Beispiele

Physik (CERN):

- 177 Zentren
- 34.286 CPUs
- 13065 TB Speicherplatz
- Google (2006): 450.000 PCs in 3000 Centers worldwide
- Seti@home
 - 415,516 Hosts
 - 26,884 Teams
 - 258 Countries

Interactive European Grid (int.eu.grid):

- 11 Zentren
- 190 CPUs
- 29.6 TB Speicherplatz

int.eu.grid

Focused on

- Compatibility with EGEE
- Interactivity on the grid
- Easy access for the user (friendly user interface)
- MPI on the grid
- My approach:
 - Use gridsolve to connect grid to matlab
 - Matlab is a well known Problem solving Environment

Basic grid middleware

- Globus-2 (old globus)
 - One of the first grid middlewares
 - Basic auth* and monitoring => Single sign on
- EDG/gLite
 - Infrastructure
 - Advanced Tools:
 - AAA
 - Data Management (Replication)
 - Configuration
- EGEE
 - = EDG/gLite
 - + Organisation

Basic grid middleware

- Interactive Grid (I2G)
 - = gLite
 - + MPI support
 - + Interactive extensions
- Gew Globus-4
 - = Globus-2
 - +Webservices based

EDG-Based Grid

Mixing it with EGEE

Cluster

Server

Proxy

- Proxy + Agent
 - Dedicated host with public IP access
 - Currently non-EGEE machine
- User:
 - My laptop with matlab installed
- Servers:
 - edg-job-submit to WNs
- Combining strengths:
 - EGEE: Resources
 - gridsolve: accessibility
 - Matlab: prototyping / development

Agent

Usei

