Airport air pollution monitoring: Achievements in the past, limits of the present, challenges for the future

Klaus Schäfer, Carsten Jahn, Selina Utzig, Edgar Flores-Jardines, Herbert Hoffmann, Gregor Schürmann, Stefan Emeis IMK-IFU, Forschungszentrum Karlsruhe GmbH, Garmisch-Partenkirchen Peter Sturm, Bernhard Lechner, Michael Bacher Institut für Verbrennungskraftmaschinen und Thermodynamik, Technische Universität Graz, Graz

Veronika Groma, Szabina Török

Health and Environmental Physics, KFKI Atomic Energy Research Institute, Budapest, Hungary

Background Problems and solutions Achievements in the past Limits of the present Challenges for the future

ECATS, Spring School & Research Colloquium, 13 March 2007, MMU Manchester

Motivation

For the execution of the European Air Quality Framework Directive 96/62/EC and its daughter directives it is required from the EU member states to submit 12-monthly air pollution maps that show the spatial distribution of air pollutants

- for the member state in total,
- for conurbations with more than 250.000 inhabitants and
- for micro environments as, e.g., city districts subject to high pollutant concentrations: spatial resolution of 200 m²

Background

Airport air quality studies need: emission inventories, meteorological observations, chemistry-transport-deposition modelling (dry and wet deposition) and (depending from questions) indoor air quality study, odour observation

Aircraft exhaust emissions: ICAO database is used What are the real emissions of aircraft? Which other compounds are emitted?

Which other emission sources exist?

Background

Chemistry-transport-deposition modelling requires validation: validation strategies, data (requirements?)

Health effects must be defined

- Which pollutants are relevant?
- Which health effects are not explained?

Quantification of climate change effect

What is the public interest (regulations, health care (human, animals), odour)?

Problems

Interaction between exhaust plume and ambient air (physics, chemistry) is not well understood but important for the application of small-scale chemistry-transport models to investigate airport air quality

Dependencies of air quality: Contribution of air pollutants from outside the airport, influences of emissions, influences of weather

Operation ability of air pollution modelling: data requirements, forecasting

Solutions

Monitoring at optimum sites of relevant parameters

Intensive campaigns to answer dedicated questions

Fusion of different data pools

Co-operation of different disciplines

Achievements in the past

In situ techniques for CO_2 , NO, NO₂, CO, UHC and smoke number during certification of new aircraft engines

Recommended by regulations of the ICAO

ICAO data base on this basis for LTO cycle (7, 30, 85, 100 % maximum thrust)

Achievements in the past

Emissions of in-service aircraft under some typical engine conditions at airports were investigated

Non-intrusive measurement methods for CO, CO_2 , NO, NO_2 , N_2O , CH_4 , H_2O , and some VOC were used: FTIR, DOAS

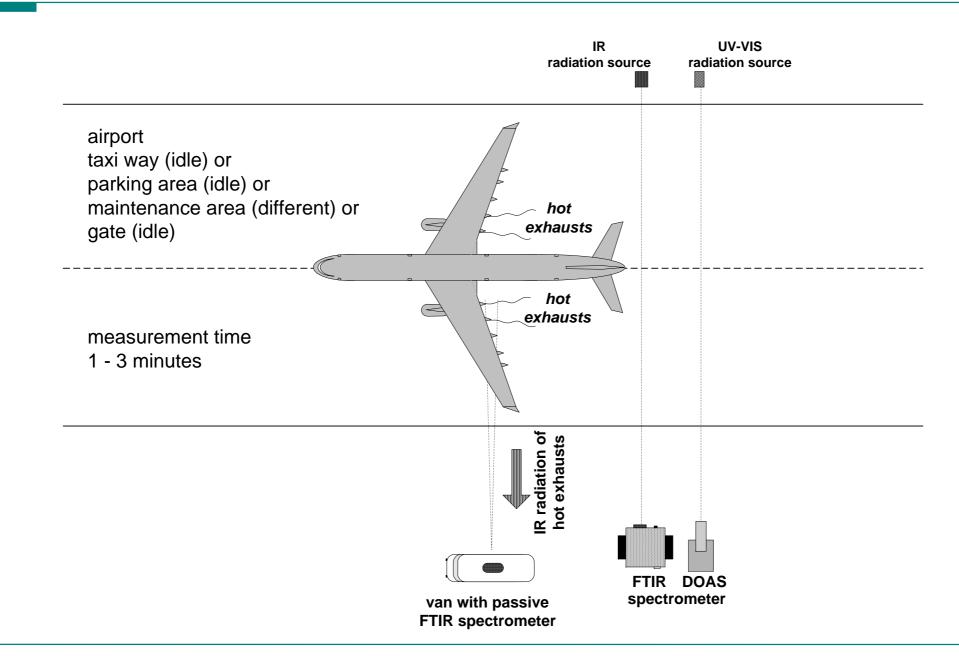
No installations nearby or behind the aircraft Normal airport operation remains unimpaired **Measurement tasks**

Non-intrusive methods for measurements of concentrations and emission indices:

FTIR emission spectrometry at the engine nozzle exit (CO, NO,

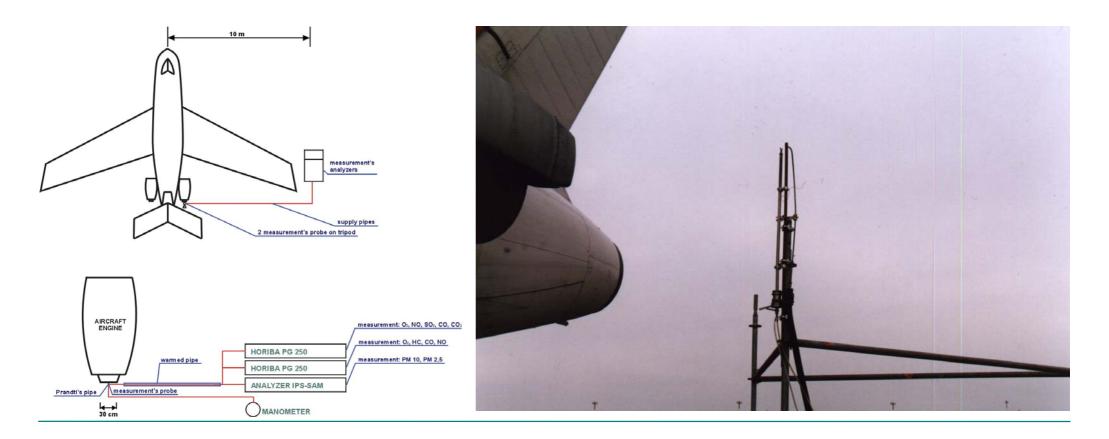
CO₂; NO₂ below detection limit), passive

FTIR absorption spectrometry (CO, CO₂) behind the aircraft

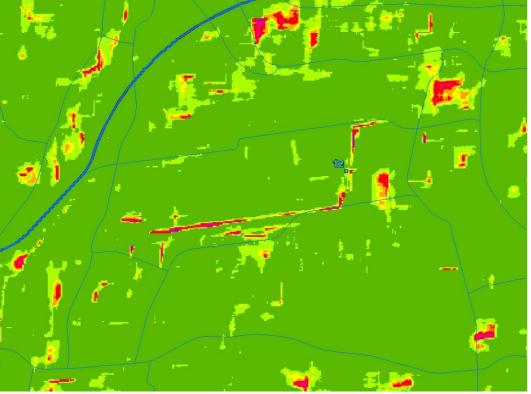

Differential Optical Absorption Spectroscopy (DOAS) behind the aircraft (NO, NO₂; no CO, CO₂)

Passive measurement mode (FTIR emission spectrometry):

- maximum distance 250 m, perpendicular to the exhaust plume
- telescope diameter 15 cm diameter, field of view 3 mrad
- difference to concentrations measured by certified intrusive systems in test rigs $\pm 30~\%$
- detection limits: CO₂ 0.1 %, CO 5 ppm and NO 8 ppm (exhaust diameter 60 cm, distance about 30 m)


Open-path measurement methods (FTIR absorption spectrometry and DOAS)

- path-length 80 500 m
- beam diameter 10 15 cm
- accurate within 5 10 %



Airport air pollution in situ measurements

In situ measurements inside the exhaust plumes according to ICAO requirements at the airport Wroclaw by PPW "Czyste Powietrze" in frame of the ARTEMIS project: TU 154 M, JAK 40

Satellite observations

Satellite images

Optical depth interpretation

Determination of spatial distribution of PM concentrations near the ground by means of the ICAROS NET platform

Spatial resolution up to 10 m x 10 m

Airport air pollution campaign

Zuerich July 2004

Airport air pollution campaign Zuerich July 2004 Results

Emission apportionment:

Emission rates for NO on the taxiway 4.4 up to 146 mg/s, parking places 1.6 up to 357 mg/s

CO emission rates for taxiing aircrafts 0.4 up to 7.5 g/s, parking places 0.01 up to 0.35 g/s

 NO_2 on the taxiway 13 mg/s up to 90 mg/s, parking places 0.25 mg/s up to 113 mg/s

Aircraft emission indices from passive (CO, NO) and open-path measurements (CO, NO, NO_2)

Airport air pollution campaign Zuerich July 2004 Results

Particle and trace gas load:

Abundance of iron- and aluminium-rich particles was much higher than in usual suburban aerosol samples of large agglomerations

Following the definitions the air quality is good

But during periods of high air traffic at the apron area the air quality is moderate only

Airport air pollution campaign Zuerich July 2004 Results

VOC inside the exhaust plumes:

Compounds which were not found in all background samples are some Butene, Pentene, and Hexene

Reactive C2–C3 alkenes were found in significant amounts in the exhaust of an engine compared to ambient levels

Also, isoprene, a VOC commonly associated with biogenic emissions, was found in the exhaust, however it was not detected in refuelling emissions

The benzene to toluene ratio was used to discriminate exhaust from refuelling emission:

In refuelling emissions the ratio was well below 1

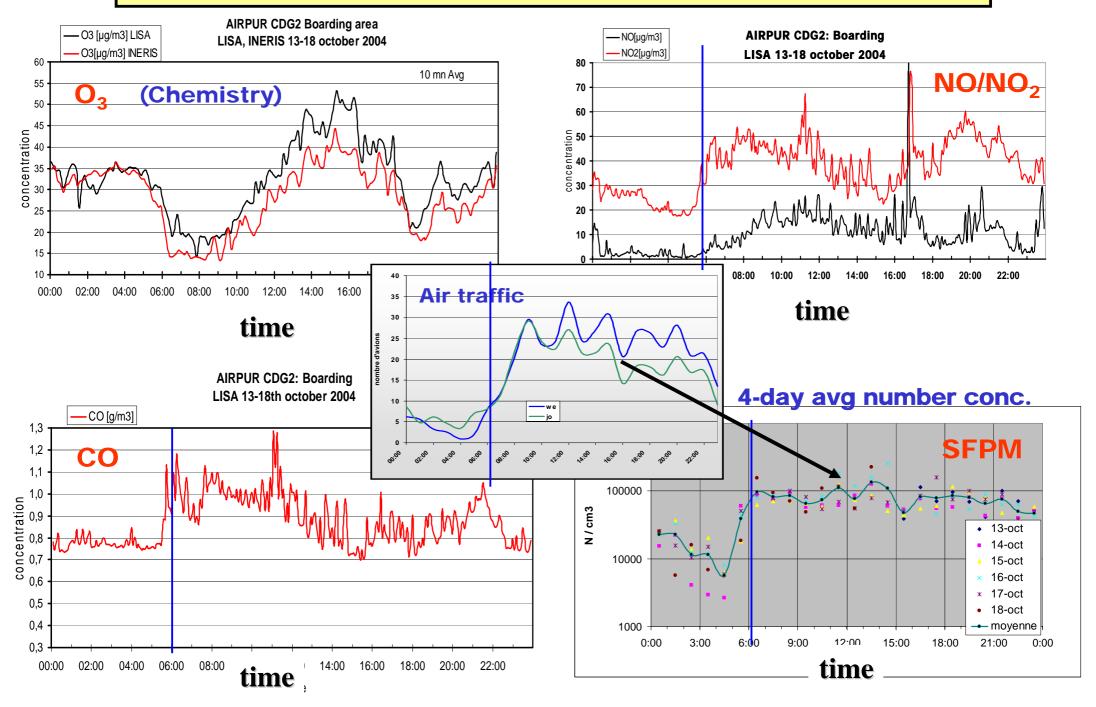
For exhaust this ratio was usually about 1.7

Airport air pollution campaign

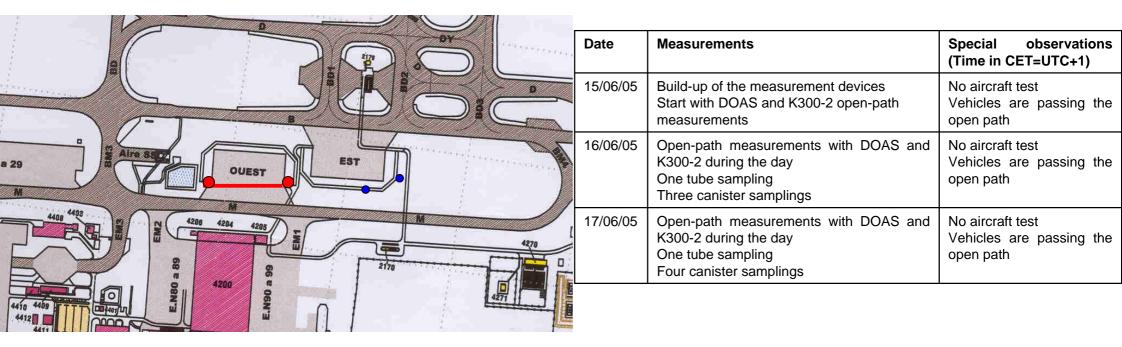
Zuerich Methodology and Results published:

Schürmann, G., Schäfer, K., Jahn, C., Hoffmann, H., Bauerfeind, M., Fleuti, E., Rappenglück, B.: The impact of NO_x , CO and VOC emissions on the air quality of the airport Zurich. Atmospheric Environment 41 (2007), 103-118, doi:10.1016/j.atmosenv.2006.07.030.

Results


All kind of emissions on the airport Budapest show very high temporal variability

The traffic itself on the airport is highly variable


Aircraft emissions seem to be the most important around Terminal 2

Freight and car park emissions reach similar emission levels

Parking and gate (4 days)

Site 7

Position 7

Date	Measurements	-	observations CET=UTC+1)
06/10/04	Build-up of the measurement devices First measurements with the K300-1 (Passive mode) Begin of DOAS measurements Problems with K300-2		
07/10/04	Measurement with K300-1 and DOAS Ongoing problems with K300-2		
08/10/04	No measurement during the take-off test with the K300-1 due to bad position of aircraft Preparation of change of position	07:20 09:10	Begin take-off test End take-off test

Site 5

	Date	Measurements	Special observations (Time in CET=UTC+1)
E Vo Vo	20/06/05	Build-up of the measurement devices Start of measurements with K300-2 and DOAS	Aircraft are passing paths
	21/06/05	Measurements with K300-2 and DOAS during day and following night	Aircraft are passing paths
	22/06/05	 Measurements with K300-2 and DOAS during day and following night One tube sampling 	Aircraft are passing paths
AVAIR 1990 ZONE DE 1231	23/06/05	Measurements with K300-2 and DOAS during day	Aircraft are passing paths
SERVICE (24/06/05	Measurements with K300-2 and DOAS during day	Aircraft are passing paths

Position 5

Date	Measurements	Special observations (Time in CET=UTC+1)
11/10/04	Build-up of the measurement devices Begin of measurements with K300-2 and DOAS No measurements with K300-1, because no airplane did stop in front of the measurement device	
12/10/04	No measurements with K300-1, because no airplane did stop in front of the measurement device	
13/10/04	No measurements with K300-1, because no airplane did stop in front of the measurement device Change of position	

Site 1

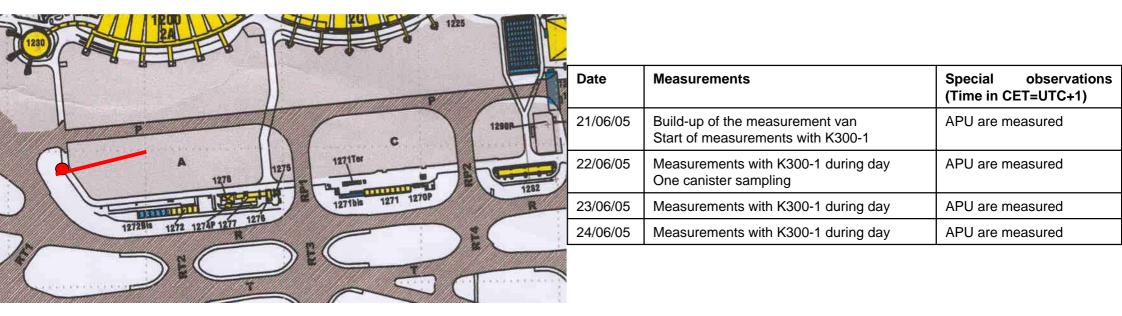
Site	Date	Measurements	Special observations (Time
	27/06/05	Build-up of the measurement devices K300-2, DOAS and measurement van	in CET=UTC+1)
	28/06/05	Start of measurements with K300-2 and DOAS Start of measurements with K300-1 (passive and open-path)	Vehicles are passing the open paths
	29/06/05	Measurements with K300-2, DOAS and K300-1	Vehicles are passing the open paths
	30/06/05	Measurements with K300-2, DOAS and K300-1	Vehicles are passing the open paths
	01/07/05	Measurements with K300-2, DOAS and K300-1 One tube sampling	Vehicles are passing the open paths
	02/07/05	Continuous measurements with DOAS	
	03/07/05	Continuous measurements with DOAS	
	04/07/05	Continuous measurements with DOAS	

Position 1

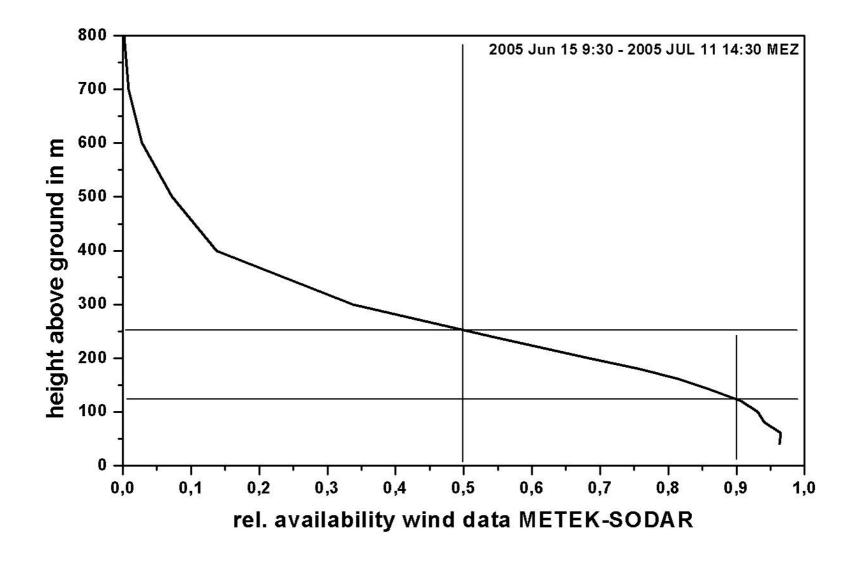
Date	Measurements	Special observations (Time in CET=UTC+1)	
14/10/04	Begin of measurements with all devices	13:05Pushback of HS-TGO (Boeing 747)13:12D-ABXM (Boeing 737) comes in14:04D-ABXM is leaving	
15/10/04	Preparation of change of position	14:12 D-ACHK is leaving	

Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft			
Site 4	Date	Measurements	Special observations (Time in CET=UTC+1)
	04/07/05	Build-up of the measurement devices K300- 2, DOAS and measurement van	
	05/07/05	Start of continuous measurements with DOAS Start of measurements with K300-2 Two tube samplings One canister sampling	Aircraft are passing open paths at new taxi way
	06/07/05	Start of measurements with K300-1 Measurements with K300-2 and DOAS One tube sampling	Aircraft are passing open paths at new taxi way Some measurements with K300-1 during traffic jams in front on the runways
	07/07/05	Measurements with K300-2, DOAS and K300-1 Two tube samplings One canister sampling	Aircraft are passing open paths at new taxi way Some measurements with K300-1 during traffic jams in front on the runways
	08/07/05	Measurements with K300-2, DOAS and K300-1	Aircraft are passing open paths at new taxi way Some measurements with K300-1 during traffic jams in front on the runways
	09/07/05	Continuous measurements with DOAS	
	10/07/05	Continuous measurements with DOAS	
	11/07/05	Measurements with K300-2 and DOAS	No aircraft

Position 4

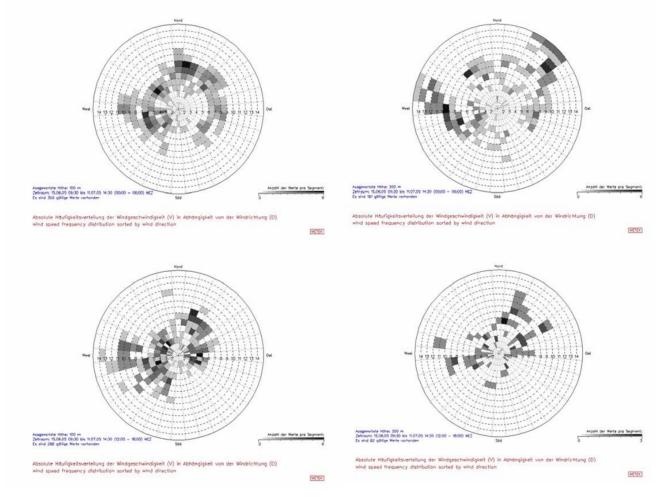

Date	Measurements	Special observations (Time in CET=UTC+1)
18/10/04	Build up of measurement devices Begin of measurements with all devices	Some measurements with K300-1 during traffic jam in front on the runways
19/10/04	Measurements with K300-2 and DOAS No measurement with K300-1 End of measurements	No traffic jam due to wrong wind direction. Therefore no K300-1 measurements

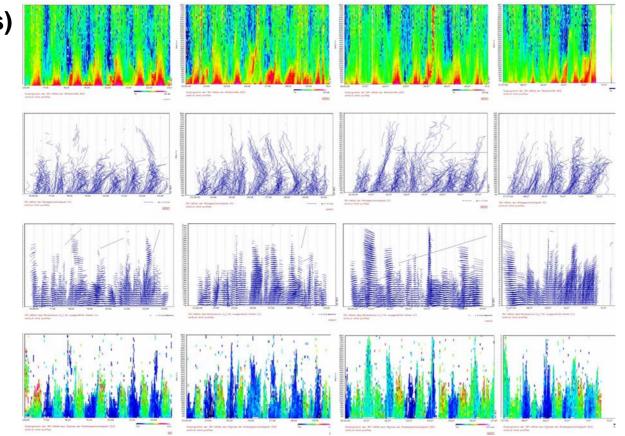
Site 2



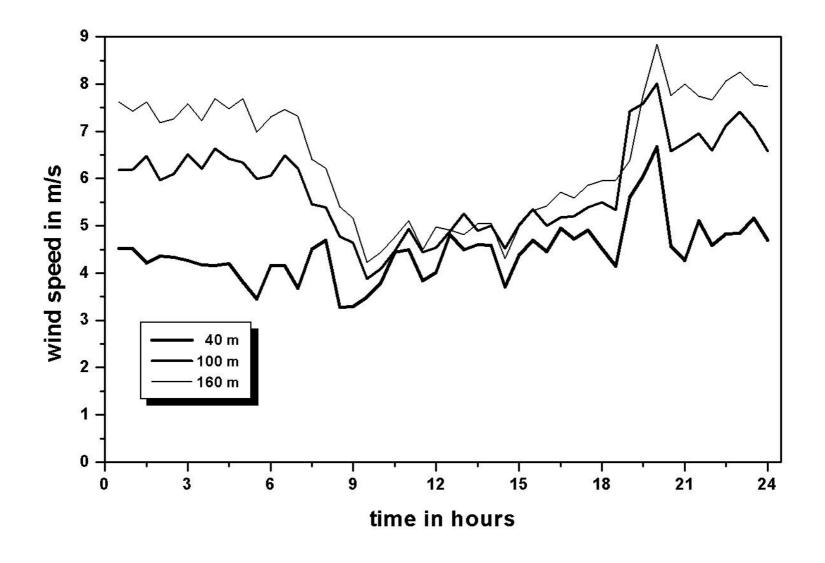
Measurement task

- Altitude profiles of turbulence and wind were measure by the
- METEK DSD3x7 mono-static Doppler SODAR
- Working with three antennas, each including seven sound
- transducers, mounted on a trailer
- One averaged vertical profile every 30 minutes has been
- stored
- Vertical resolution of the data is 20 m, the minimum height of
- the data is 40 m and the maximum height is 800 m above

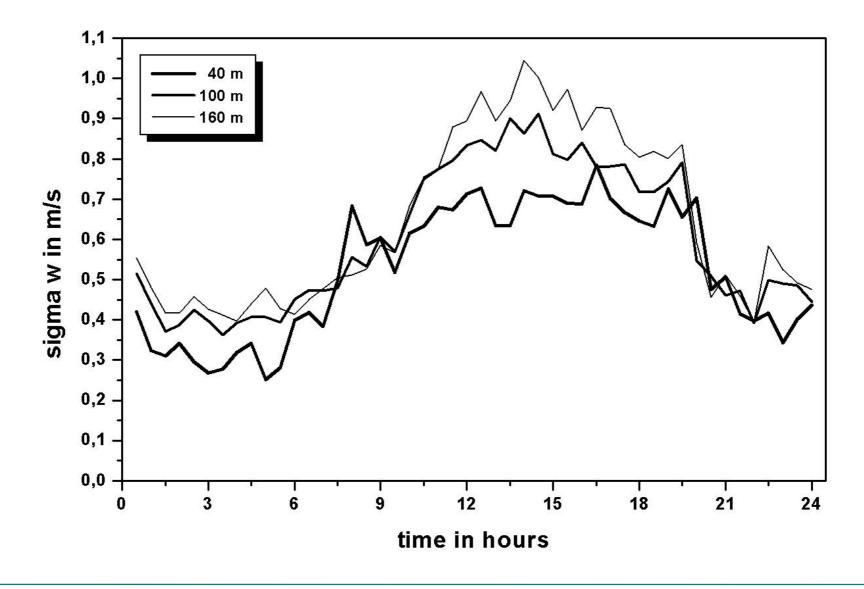

ground

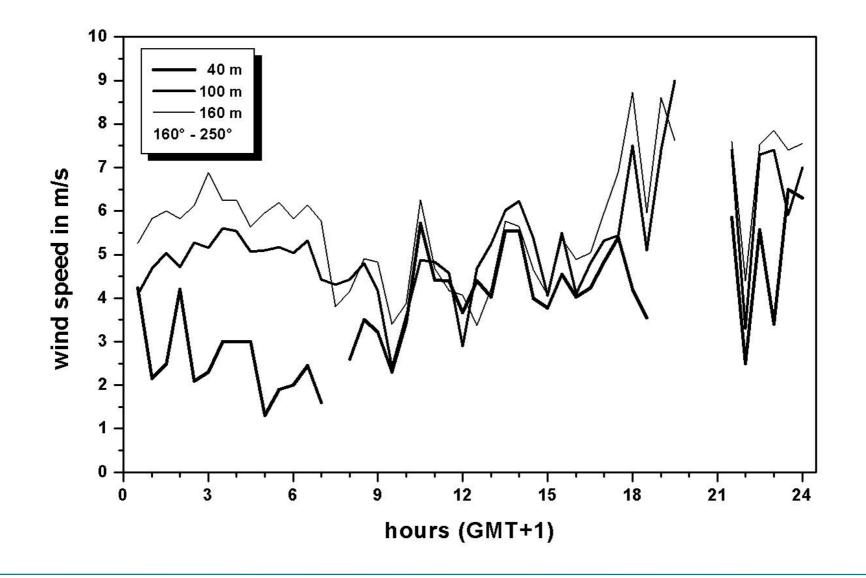

Wind speed resolving wind roses for 100 m (left) and 300 m (right) above ground for

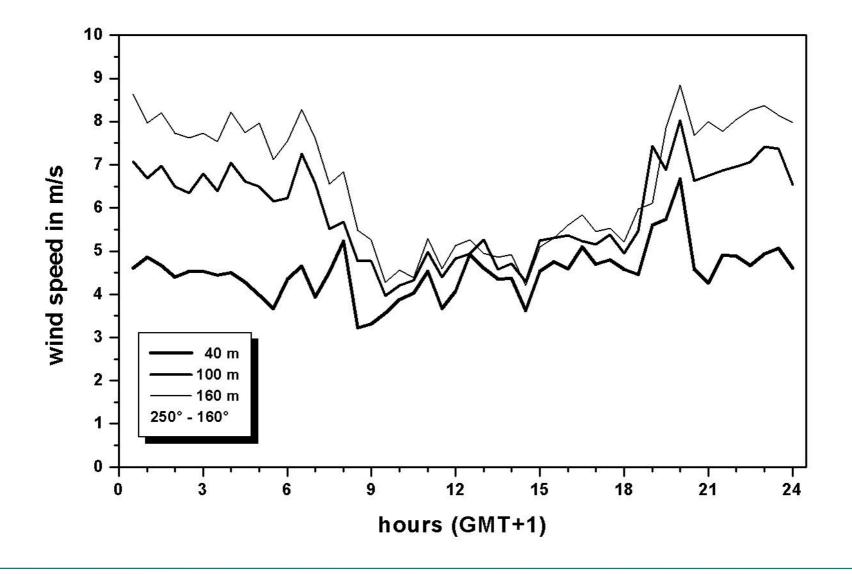
night-time (0 to 6 hours GMT+1, top) and daytime (12 to 18 hours) bottom

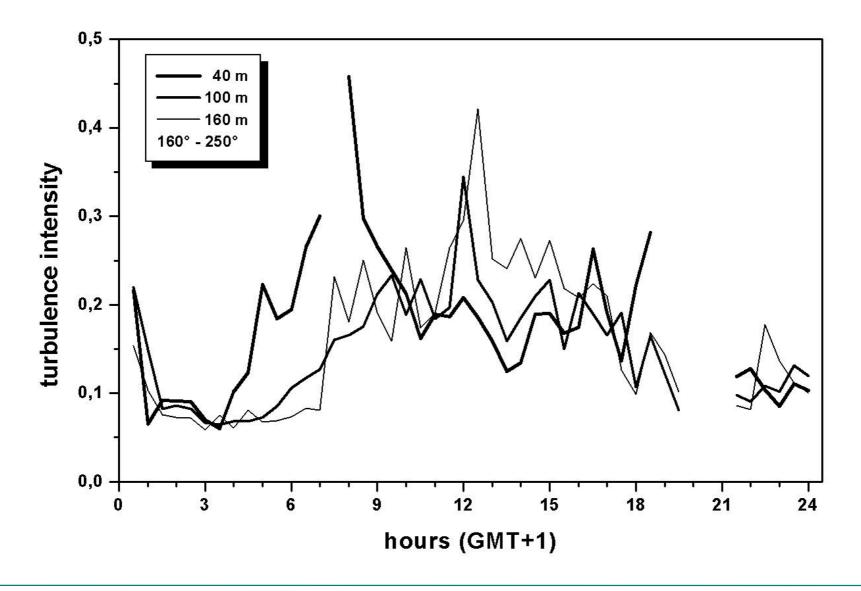


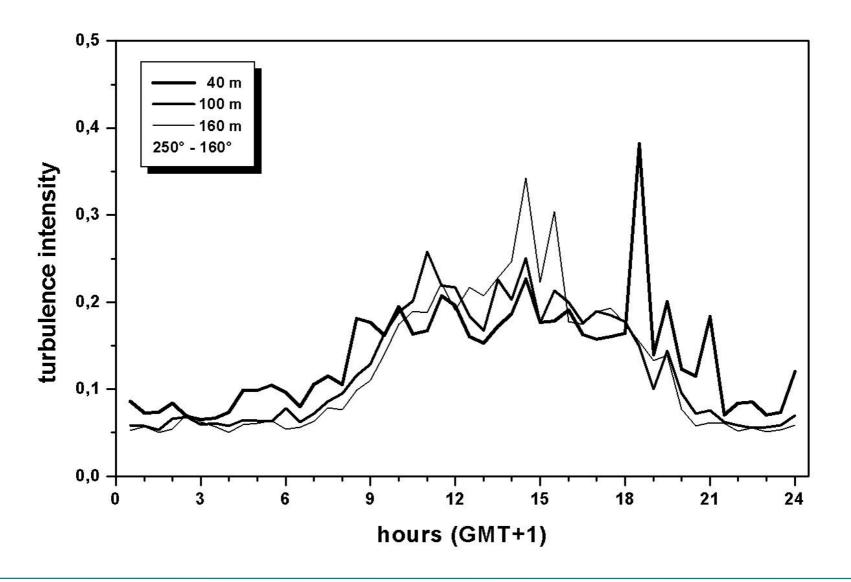
Upper row: acoustic backscatter intensity in dB (black: 70 dB, purple: 125 dB) second row: vertical wind speed profiles in m/s, third row: horizontal wind vectors in m/s (length of arrow: wind speed, direction of arrow: wind direction) bottom row: standard deviation of vertical wind component (σ w) in m/s (black: 0 m/s,


purple: 2 m/s)


Mean daily courses


Mean daily courses


Mean daily courses of wind speed for the airport sector


Mean daily courses of wind speed for wind sector

Mean daily courses of turbulence intensity for the airport sector

Mean daily courses of turbulence intensity for wind sector

Summary

- Emission indices from passive FTIR spectrometry
- Correlations between the CO, NO and CO₂ measurement results in ambient air
- Emissions of single aircraft can be detected in the measured temporal high resolution data from FTIR absorption spectrometry and DOAS
- High NO_x concentrations (> 100 μ g/m³) at position 1 during some hours daily
- Concentration NO higher than NO₂ at 19 October from 12:00 until 14:00
- Daily maximum of NO and NO_2 around 06:00 and 20:00

Date	Duration	Time	CO (max)	CO2 (max)	EI(CO)	number of aircraft	Time	NO2, NO (max)	EI(NOx)
			FTIR	FTIR				DOAS	
			[µg/m³]	[mg/m³]	[g/kg]			[µg/m³]	[g/kg]
12/10/2004	10:16-10:33	10:24	1038.6	783.1	28	7			
12/10/2004	11:00-11:23	11:20	1029.3	751.7	16.9	18			
12/10/2004	11:42-11:56	11:50	626.4	709.3	14.2	10			
12/10/2004	12:38-12:52	12:49	779.0	722.2	34.1	11			
12/10/2004	13:25-13:44	13:36	815.1	707.4	18.1	6	13:35	93.4 NO2	7.5
12/10/2004	14:26-14:43	14:35	762.7	735.1	12.1				
12/10/2004	17:26-17:43	17:40	742.9	768.0	5.4		17:42	64.0 NO2	1.5
13/10/2004	08:22-08:30	08:28	739.4	788.7	12.7				
13/10/2004	08:33-08:55	08:44	812.7	812.7	9	7	08:43	74.3 NO2	2.6
13/10/2004	08:55-09:07	09:01	753.4	764.7	5	9	09:02	87.2 NO2	2
13/10/2004	09:07-09:15	09:12	818.2	818.2	8.5	4			
13/10/2004	09:42-09:51	09:48	931.5	746.2	19.1	10	09:49	98.2 NO2	4
14/10/2004	12:36-12:56	12:45	603.2	807.1	7.7				
14/10/2004	12:59-13:07	13:04	914.1	788.7	5	1 B747, ignition			
14/10/2004	13:07-13:13	13:10	1234.3	845.9	14.4	1 B747, idle			
14/10/2004	13:52-14:02	14:00	557.8	766.5	13.1	1 B737, ignition			
15/10/2004	12:55-13:04	13:01	893.1	792.4	16		13:02	54.4 NO	1.2
15/10/2004	13:04-13:12	13:09	776.7	775.7	4		13:08	81.9 NO2	2.7
15/10/2004	14:02-14:13	14:10	767.3	738.8	68	1 CRJ 200, ignition			
18/10/2004	15:19-15:30	15:27	2782.9	881.0	32	1 B747, idle	15:24	192 NO2	5.5
18/10/2004	15:30-15:41	15:36	1665.1	901.3	6.9	1 B747, idle	15:37	153 NO2	1.8
19/10/2004	09:28-09:39	09:36	1234.3	864.4	23.3		09:36	105 NO2	2.5
19/10/2004	10:07-10:15	10:12	894.3	796.1	20.5	1 B737, idle	10:12	42.4 NO	1.5
19/10/2004	10:18-10:29	10:24	1420.6	821.9	7.9		10:24	42.0 NO	1.0
19/10/2004	10:54-11:05	11:02	844.2	794.2	27.1		11:03	49.4 NO	3.9
19/10/2004	11:27-11:36	11:33	1071.2	781.3	56.4		11:31	79.6 NO2	3.3

Airport Mexico City

Set up of the measurements

Forschungszentrum Karlsruhe

in der Helmholtz-Gemeinschaft

Airport air pollution measurements

Spicer, C.W. et al., 1985, 1992, 1994: VOC Moussiopoulos, N. et al., 1997: new Athens airport air quality Stedman, J.R. et al., 1997: NOx and NO2 Umweltplanung, Arbeits- und Umweltschutz, 1998: VOC Popp, P.J. et al., 1999: NO Fries, 2003: VOC Pison, I., Menut, L, 2004: ozone over Paris area. Yu, K.N. et al., 2004: large urban airports local air quality Free University Berlin, Status of the Current Level of Development and Understanding in the Field of Modelling Pollutant Dispersion at Airports, 2004 Unal, A. et al., 2005: Atlanta International Airport air quality Kottmeier, C. et al., 2005: SODAR, RASS, Doppler-LIDAR Herndon, S.C. et al, 2004, 2006: NO and NO2, VOC. Carslaw, M., 2006: air pollution at London-Heathrow Raper, D.W. et al. 2006: airport air quality A strategy towards sustainable development of UK aviation, 2006

Fourth ROSE Field Trial

siralimited

partners with industry

Further LIDAR measurements

Activities of Spectrasyne: VOC, benzene and NO mass emissions and concentrations

Airport Duesseldorf: NO₂ concentration distribution

Activities in the US by DoT Report available

Limits of the present

Emissions of in-service aircraft under all typical engine conditions at airports are not known Take-off main gap Limits of the present

VOC composition of aircraft exhausts

Size distribution and composition of aerosols in different parts of the aircraft exhaust plume

Necessary are measurements in the initial and aging plume

Detection of important compounds as e.g. HONO

Challenges for the future

Co-operation: ECATS

Good management because experiences from complex airport campaigns are available

Further research funding: EC FP 7

new techniques, new methodologies, more

compounds, further campaigns

Acknowledgements

Measurements at airport Frankfurt/Main, London-Heathrow and Vienna were undertaken within the frame of the EC funded projects AEROJET 2 (BRPR CT-98-0618) and ARTEMIS (1999-RD.10429) as well as at airport Munich with funding by Deutsche Lufthansa AG and airport Paris CDG with funding by ONERA

A fruitful co-operation with the airport authorities of Frankfurt/Main, London-Heathrow, Vienna, Munich, Zuerich, Paris CDG and Budapest as well as Deutsche Lufthansa AG, British Airways, Austrian Airlines Group and SWISS supported this work

Without this co-operation no reliable investigations would have been possible