

Numerische Untersuchung von Taylor-Blasen in einem quadratischen Minikanal: Hydrodynamik und Stofftransport

Dr.-Ing. Martin Wörner

Forschungszentrum Karlsruhe, Institut für Reaktorsicherheit (zukünftig: Institut für Kern- und Energietechnik)

Seminarvortrag am Institut für Technische Chemie und Polymerchemie Universität Karlsruhe, 25. Januar 2008

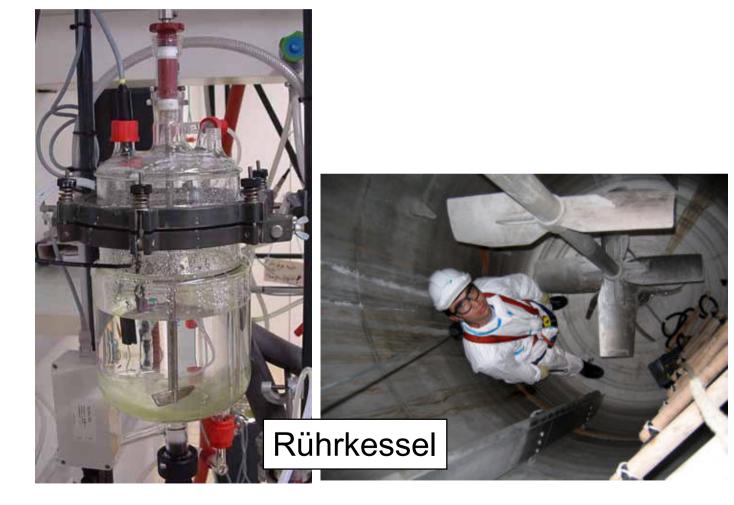
Forschungszentrum Karlsruhe

Gliederung

Numerische Simulation von Taylor-Blasen im Minikanal

- **Einleitung und Motivation**
- **Numerisches Verfahren**
 - Grundgleichungen
 - Rechenprogramm TURBIT-VOF
- Ergebnisse
 - Beschreibung des physikalischen Problems
 - Hydrodynamik und Validierung
 - Stofftransport mit und ohne chemische Reaktion
 - Verweilzeitverteilung der Flüssigphase
- Zusammenfassung und Ausblick

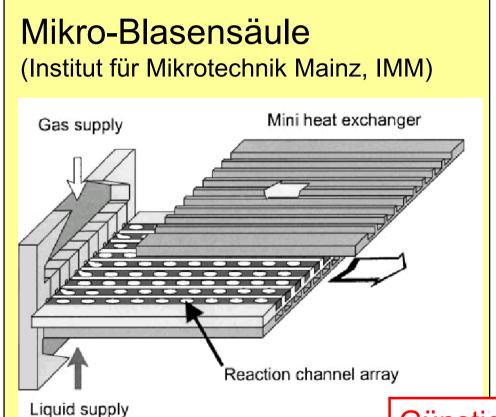
Konventionelle Mehrphasen-Reaktoren



Nachteile der konventionellen Reaktoren

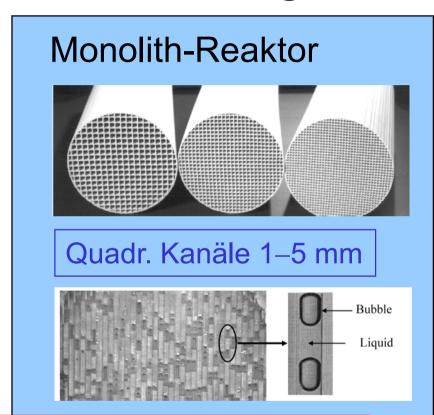
- Häufig chargenweiser Betrieb
- Keine Abstimmung auf die chemische Reaktion im Detail möglich
- Ungleichmäßige Vermischung der Reaktionspartner und ungleichmäßige Temperaturverteilung
- Probleme beim Scale-up vom Labor- und Pilotmaßstab auf die Produktionsgröße
- Folgen
 - Eingeschränkte Produktqualität
 - Bildung unerwünschter Nebenprodukte
 - Übermäßiger Energieverbrauch

Prozessintensivierung durch Miniaturisierung



Kanäle: $300 \mu m \times 100 \mu m$

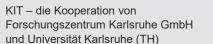
 $50\mu m \times 50 \mu m$



Günstigste Strömungsform in beiden Apparaten ist die Taylor-Strömung oder "bubble train flow (BTF)"

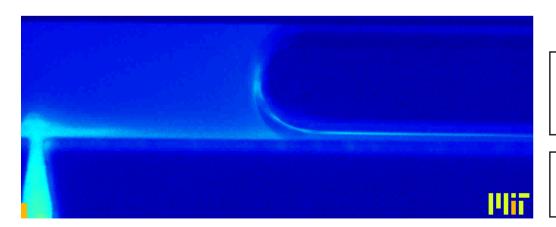
HELMHOLTZ

GEMEINSCHAFT



- Vorteile der Taylor-Strömung in kleinen Kanälen
 - Großes Verhältnis Phasengrenzfläche zu Volumen
 - ⇒ effiziente Stoffübertragung
 - Segmentierung der Flüssigkeit
 ⇒ reduzierte axiale Dispersion

- Gute Durchmischung der Flüssigkeit
- Wandnormaler konvektiver Transport bei laminarer Strömung



Kanalquerschnitt: $400 \ \mu m \times 280 \ \mu m$

Film von Günther et al. Langmuir 21 (2005) 1547-1555

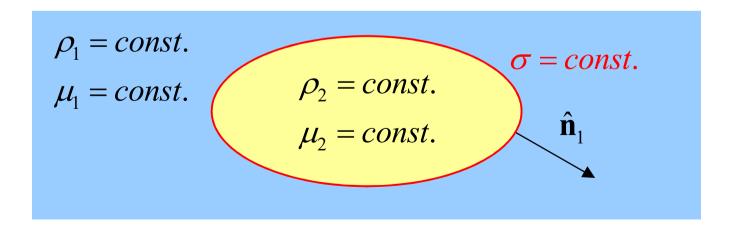
- Vorteile der miniaturisierten Apparate
 - Kontinuierlicher Betrieb
 - "Numbering-up" statt "scale-up"
 - Abstimmung auf optimale hydrodynamische und thermische Bedingungen der konkreten Reaktion erscheint möglich ⇒
 - Verbesserte Ausbeute
 - Weniger Nebenprodukte
 - Gleichmäßigere Produktqualität
 - Notwendig ist <u>Verständnis der lokalen, instantanen Phänomene</u>
- Ziel unserer Arbeiten:
 - Einblick in lokale Strömungsphänomene durch detaillierte numerische Simulation der Strömung im Einzel-Kanal

Gliederung

- **Einleitung und Motivation**
- **Numerisches Verfahren**
 - Grundgleichungen
 - Rechenprogramm TURBIT-VOF
- Ergebnisse
 - Abbildung des physikalischen Problems
 - Hydrodynamik und Validierung
 - Stofftransport mit und ohne chemische Reaktion
 - Verweilzeitverteilung
- Zusammenfassung und Ausblick

Numerisches Verfahren - Annahmen

- Beschreibung im Rahmen der Kontinuumsmechanik
- Betrachtung von zwei Fluiden mit folgenden Eigenschaften
 - Nicht mischbar, kein Phasenübergang
 - Inkompressibel
 - Newton'sches Stoffgesetz mit konstanter Viskosität
 - Phasengrenzfläche ist unendlich dünn
 - Oberflächenspannung ist konstant



Grundgleichungen

$$\frac{\partial \rho_{1}^{*}}{\partial t^{*}} + \nabla^{*} \cdot \rho_{1}^{*} \mathbf{v}_{1}^{*} = 0$$

$$\frac{\partial \left(\rho_{1}^{*} \mathbf{v}_{1}^{*}\right)}{\partial t^{*}} + \nabla^{*} \cdot \left(\rho_{1}^{*} \mathbf{v}_{1}^{*} \mathbf{v}_{1}^{*}\right) = -\nabla^{*} p_{1}^{*} + \nabla^{*} \cdot \mu_{1}^{*} \left(\nabla^{*} \mathbf{v}_{1}^{*} + \left(\nabla^{*} \mathbf{v}_{1}^{*}\right)^{\mathsf{T}}\right) + \rho_{1}^{*} \mathbf{g}^{*}$$

$$\mathbf{x}^{*} \in \Omega_{1} \left(t^{*}\right)$$

$$\frac{\partial \rho_2^*}{\partial t^*} + \nabla^* \cdot \rho_2^* \mathbf{v}_2^* = 0$$

$$\frac{\partial \left(\rho_2^* \mathbf{v}_2^*\right)}{\partial t^*} + \nabla^* \cdot \left(\rho_2^* \mathbf{v}_2^* \mathbf{v}_2^*\right) = -\nabla^* p_2^* + \nabla^* \cdot \mu_2^* \left(\nabla^* \mathbf{v}_2^* + \left(\nabla^* \mathbf{v}_2^*\right)^\mathsf{T}\right) + \rho_2^* \mathbf{g}^*$$

$$\mathbf{x}^* \in \Omega_2 \left(t^*\right)$$

$$\mathbf{v}_{1}^{*} = \mathbf{v}_{2}^{*} = \mathbf{v}_{i}^{*}, \quad \left(p_{1}^{*} - p_{2}^{*} + H^{*}\sigma^{*}\right)\hat{\mathbf{n}}_{1} = \left(\mathbb{T}_{1}^{*} - \mathbb{T}_{2}^{*}\right)\cdot\hat{\mathbf{n}}_{1}, \quad \mathbf{x}^{*} \in S_{i}\left(t^{*}\right)$$
 Grenzfläche

$$\Omega_2(t^*) S_i(t^*) X_1 = 1 X_1 = 0$$

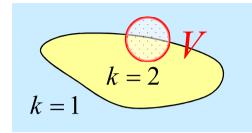
 X_1 = Indikatorfunktion von Phase 1 (Flüssigkeit) $X_2 = 1 - X_1$

(dimensionsbehaftete Größen sind durch * gekennzeichnet)

Grundgleichungen

Mittelung über Volumen V:

$$\alpha_k \equiv \frac{1}{V} \iiint_V X_k dV = \frac{V_k}{V}, \quad \overline{\mathbf{v}_k^*}^{V_k} = \frac{1}{V_k} \iiint_V X_k \mathbf{v}_k^* dV, \quad k = 1, 2$$



Volumengemittelte Grundgleichungen in Ein-Feld-Formulierung

$$\frac{\partial \alpha_{1}}{\partial t^{*}} + \nabla^{*} \cdot \alpha_{1} \mathbf{v}_{m}^{*} = \nabla^{*} \cdot \alpha_{1} \alpha_{2} \frac{\rho_{2}^{*}}{\rho_{m}^{*}} \mathbf{v}_{r}^{*}$$

$$\frac{\partial \alpha_{1}}{\partial t^{*}} + \nabla^{*} \cdot \alpha_{1} \mathbf{v}_{m}^{*} = \nabla^{*} \cdot \alpha_{1} \alpha_{2} \frac{\rho_{2}^{*}}{\rho_{m}^{*}} \mathbf{v}_{r}^{*}$$

$$\nabla^{*} \cdot \mathbf{v}_{m}^{*} = -\nabla^{*} \cdot \frac{\alpha_{1} \alpha_{2} \left(\rho_{1}^{*} - \rho_{2}^{*}\right)}{\rho_{m}^{*}} \mathbf{v}_{r}^{*}$$

$$\left| \frac{\partial \rho_{\mathbf{m}}^* \mathbf{v}_{\mathbf{m}}^*}{\partial t^*} + \nabla^* \cdot \left(\rho_{\mathbf{m}}^* \mathbf{v}_{\mathbf{m}}^* \mathbf{v}_{\mathbf{m}}^* + \mathbb{D}_{\mathbf{i}}^* \right) = -\nabla^* p_{\mathbf{m}}^* + \nabla^* \cdot \left[\mu_{\mathbf{m}}^* \left(\nabla^* \mathbf{v}_{\mathbf{m}}^* + \left(\nabla^* \mathbf{v}_{\mathbf{m}}^* \right)^{\mathsf{T}} \right) + \mathbb{T}_{\mathbf{i}}^* \right] + \rho_{\mathbf{m}}^* \mathbf{g}^* + a_{\mathbf{i}}^* \sigma^* \kappa^* \hat{\mathbf{n}}_{\mathbf{i}}^* \right]$$

$$\rho_{m}^{*} \equiv \alpha_{1} \rho_{1}^{*} + \alpha_{2} \rho_{2}^{*}, \quad \mu_{m}^{*} \equiv \alpha_{1} \mu_{1}^{*} + \alpha_{2} \mu_{2}^{*}, \quad \mathbf{v}_{m}^{*} \equiv \frac{\alpha_{1} \rho_{1}^{*} \overline{\mathbf{v}_{1}^{*}} + \alpha_{2} \rho_{2}^{*} \overline{\mathbf{v}_{2}^{*}}}{\alpha_{1} \rho_{1}^{*} + \alpha_{2} \rho_{2}^{*}}, \quad \mathbf{v}_{r}^{*} \equiv \overline{\mathbf{v}_{2}^{*}} - \overline{\mathbf{v}_{1}^{*}}^{V_{1}}$$

$$\left| \mathbb{D}_{i}^{*} \equiv \alpha_{1} \alpha_{2} \frac{\rho_{1}^{*} \rho_{1}^{*}}{\rho_{r}^{*}} \mathbf{v}_{r}^{*} \mathbf{v}_{r}^{*} \right|^{T} = \alpha_{2} \mu_{2}^{*} \left(\nabla^{*} \frac{\alpha_{1} \rho_{1}^{*}}{\rho_{m}^{*}} \mathbf{v}_{r}^{*} + \left(\nabla^{*} \frac{\alpha_{1} \rho_{1}^{*}}{\rho_{m}^{*}} \mathbf{v}_{r}^{*} \right)^{T} \right) - \alpha_{1} \mu_{1}^{*} \left(\nabla^{*} \frac{\alpha_{2} \rho_{2}^{*}}{\rho_{m}^{*}} \mathbf{v}_{r}^{*} + \left(\nabla^{*} \frac{\alpha_{2} \rho_{2}^{*}}{\rho_{m}^{*}} \mathbf{v}_{r}^{*} \right)^{T} \right)$$

Grundgleichungen

Dimensionslose Grundgleichungen in Ein-Feld-Formulierung

$$f \equiv \alpha_{1}, \quad \mathbf{x} \equiv \frac{\mathbf{x}^{*}}{L_{\text{ref}}^{*}}, \quad \mathbf{v}_{\text{m}} \equiv \frac{\mathbf{v}_{\text{m}}^{*}}{U_{\text{ref}}^{*}}, \quad t \equiv \frac{t^{*}U_{\text{ref}}^{*}}{L_{\text{ref}}^{*}}, \quad \rho_{\text{m}} \equiv \frac{\rho_{\text{m}}^{*}}{\rho_{1}^{*}}, \quad \mu_{\text{m}} \equiv \frac{\mu_{\text{m}}^{*}}{\mu_{1}^{*}}, \quad P \equiv \frac{p^{*} + \mathbf{f}_{\text{pd}}^{*} \cdot \mathbf{x}^{*}}{\rho_{1}^{*}U_{\text{ref}}^{*2}}$$

$$\frac{\partial f}{\partial t} + \nabla \cdot f \mathbf{v}_{m} = 0 \qquad \nabla \cdot \mathbf{v}_{m} = 0 \qquad \text{Annahme: } \mathbf{v}_{r} = 0$$

$$\frac{\partial \rho_{\mathbf{m}} \mathbf{v}_{\mathbf{m}}}{\partial t} + \nabla \cdot (\rho_{\mathbf{m}} \mathbf{v}_{\mathbf{m}} \mathbf{v}_{\mathbf{m}}) = -\nabla P + \frac{\nabla \cdot \left[\mu_{\mathbf{m}} \left(\nabla \mathbf{v}_{\mathbf{m}} + (\nabla \mathbf{v}_{\mathbf{m}})^{\mathsf{T}} \right) \right]}{Re_{\mathrm{ref}}} + \left[f + (1 - f) \frac{\rho_{2}^{*}}{\rho_{1}^{*}} \right] F r_{\mathrm{ref}} \hat{\mathbf{e}}_{\mathbf{g}} + \frac{E u_{\mathrm{ref}}}{L_{\mathrm{axial}}} \hat{\mathbf{e}}_{\mathrm{axial}} + \frac{a_{i} \kappa \hat{\mathbf{n}}_{i}}{W e_{\mathrm{ref}}}$$

$$Re_{\text{ref}} = \frac{\rho_{1}^{*}L_{\text{ref}}^{*}U_{\text{ref}}^{*}}{\mu_{1}^{*}}, \quad Fr_{\text{ref}} = \frac{g^{*}L_{\text{ref}}^{*}}{U_{\text{ref}}^{*2}}, \quad Eu_{\text{ref}} = \frac{\Delta p_{\text{axial}}^{*}}{\rho_{1}^{*}U_{\text{ref}}^{*2}}, \quad We_{\text{ref}} = \frac{\rho_{1}^{*}L_{\text{ref}}^{*}U_{\text{ref}}^{*2}}{\sigma^{*}}$$

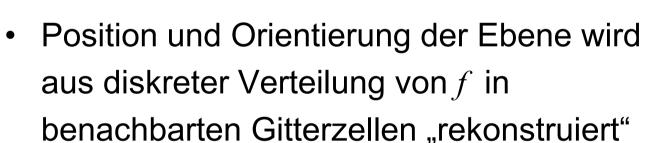
Keine anderen Grundgleichungen als für makroskopische Strömungen, aber bei Mikroströmungen andere Gewichtung der Terme!

Rechenprogramm TURBIT-VOF

- Eigenentwicklung von FZK/IRS (Doktorarbeit W. Sabisch)
- Diskretisierung im Raum
 - Finite-Volumen Formulierung
 - Strukturiertes, kartesisches, versetztes Gitter
 - Zentrale Differenzen-Approximationen 2. Ordnung
- Lösungsstrategie für die Navier-Stokes-Gleichung
 - Projektionsmethode
 - Lösung der Druck-Poisson-Gleichung mit CG-Verfahren
 - Explizites Runge-Kutta Zeitintegrationsverfahren 3. Ordnung
- Lösung der *f*-Gleichung mit Volume-of-Fluid Methode

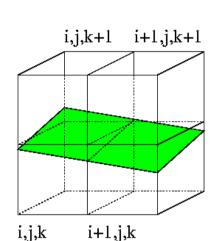
Volume-of-Fluid Methode (VOF)

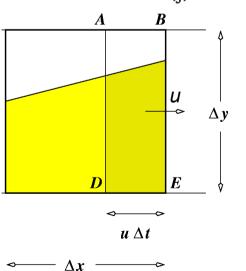
- $f_{i,i,k}$ = Volumenfraktion von Phase 1 in einer Gitterzelle ($0 \le f_{i,i,k} \le 1$)
- In Zellen mit $0 < f_{i,i,k} < 1$ wird die Phasengrenzfläche lokal als Ebene angenähert

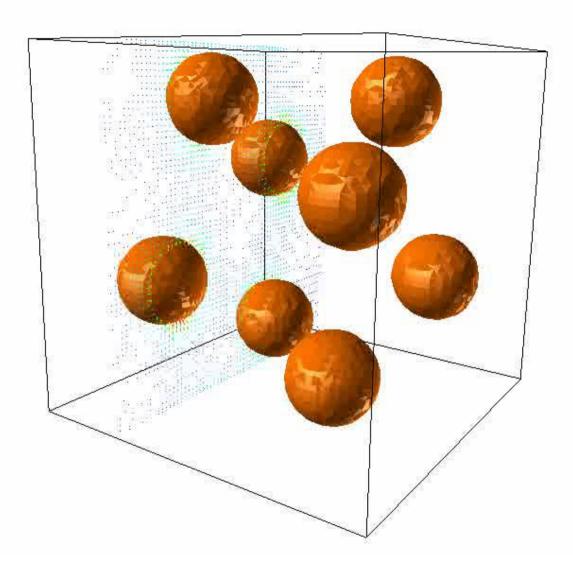


- "Geometrische" Berechnung der konvektiven Flüsse von f
- Vorteil: sehr gute Massenerhaltung









Doktorarbeit M. Ilic (2006)

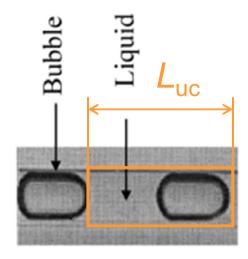
Gliederung

- **Einleitung und Motivation**
- **Numerisches Verfahren**
 - Grundgleichungen
 - Rechenprogramm TURBIT-VOF
- **Ergebnisse**
 - Beschreibung des physikalischen Problems
 - Hydrodynamik und Validierung
 - Stofftransport mit und ohne chemische Reaktion
 - Verweilzeitverteilung
- Zusammenfassung und Ausblick

Physikalisches Problem

Charakterisierung der idealisierten Taylor-Strömung

- Blasen sind lang gestreckt und füllen nahezu den ganzen Querschnitt aus (Taylor-Blasen)
- Die Blasen haben identische Form und bewegen sich mit gleicher Geschwindigkeit durch den Kanal
- Die idealisierte Strömung wird vollständig beschrieben durch eine Einheitszelle der Länge Luc bestehend aus Blase und "Slug" der Flüssigkeit



Physikalisches Problem

Experimente von Thulasidas et al.*

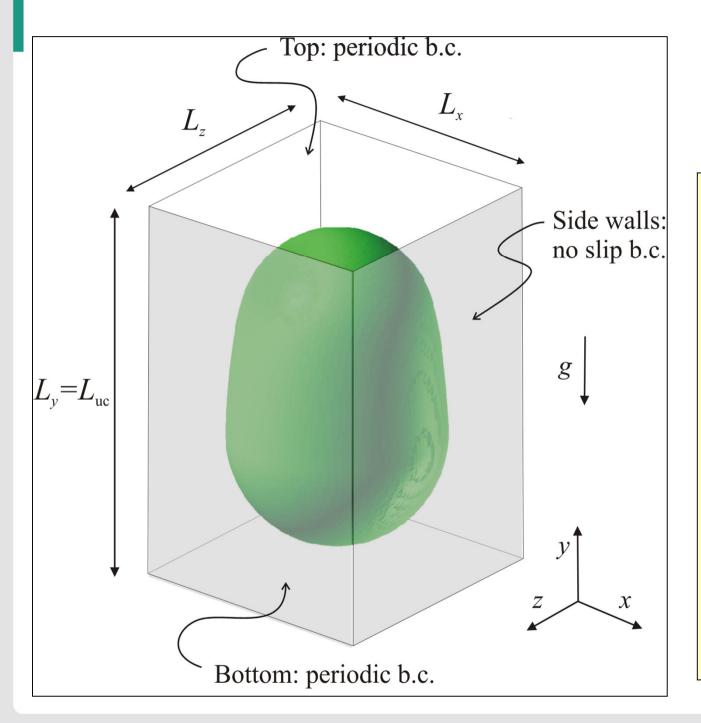
- Quadratischer vertikaler Kanal
 - Querschnittsfläche: 2 mm \times 2 mm (D_h = 2 mm)
- Luftblasen in Silikonöl
 - Silikonöl unterschiedlicher Viskosität
 - Weiter Bereich der Kapillar-Zahl $Ca_B \equiv \mu_I U_B / \sigma = We / Re$
- Aufprägung des Volumenstroms von Luft und Öl
- Länge der Einheitszelle (L_{uc}), Gasanteil in der Einheitszelle (ε) und Druckverlust stellen sich ein

^{*} Thulasidas, Abraham, Cerro, Chem. Eng. Sci. 50 (1995) 183-199

Physikalisches Problem

Abbildung des Problems in TURBIT-VOF

- Betrachtung einer Einheitszelle (eine Blase, ein Slug)
- Einfluss der vor- und nacheilenden Blasen wird durch periodische Randbedingungen abgebildet
 - Aufspaltung des Druckes in linear abfallenden und variierenden Anteil
- Die Strömung wird angetrieben vom Auftrieb und einem vorgegebenen axialen Druckgradienten
 - Volumenstrom von Gas und Flüssigkeit stellen sich ein
- Der Gasgehalt der Einheitszelle und deren Länge wird zu Beginn der Simulation vorgegeben
 - Untersuchung des Einflusses von L_{uc} / D_{h}



- $L_x = L_z = D_h = 2 \text{ mm}$
- Gasgehalt in der Einheitszelle in allen Simulationen ε = 33%
- Alle Simulationen starten aus Ruhezustand
- $L_{\text{ref}} = 2 \text{ mm}$
- $U_{\text{ref}} = 2,64 \text{ cm/s}$
- $t_{\text{ref}} = L_{\text{ref}} / U_{\text{ref}} = 0.757 \text{ s}$

Numerische Vorstudie

Stoffwerte im Experiment von Thulasidas et al.

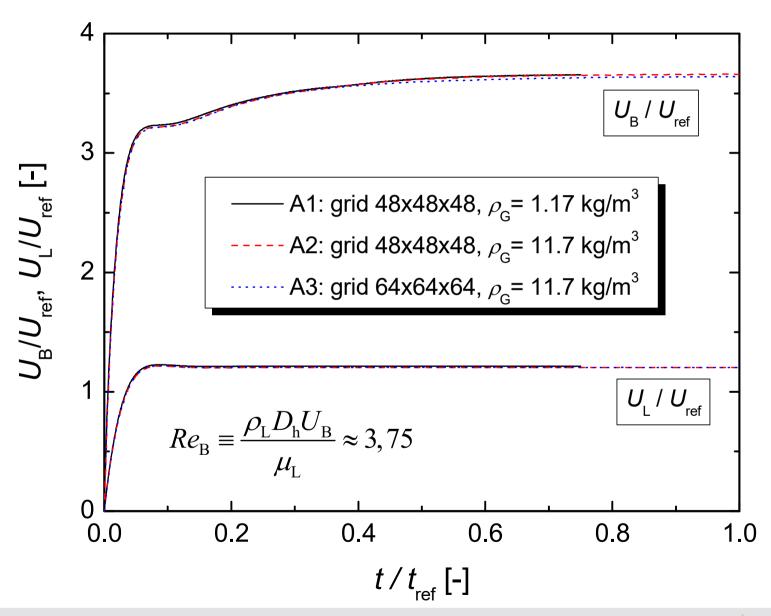
$ ho_{L}$	$ ho_{G}$	μ_{L}	μ_{G}	σ
957 kg/m ³	1,17 kg/m ³	0,048 Pa s	1,84×10 ⁻⁵ Pa s	0,022 N/m

• Simulationen für $L_{uc} / D_h = 1$

Fall	$ ho_{ m G}$ [kg/m 3]	$\mu_{\rm G}$ [m Pa s]	Gitter	Δt / $t_{ m ref}$ [-]
A1	1,17	0,0184	$48\times48\times48$	$2,5\times10^{-6}$
A2	11,7	0,184	$48 \times 48 \times 48$	$2,5\times10^{-5}$
A3	11,7	0,184	64 × 64 × 64	1,0 × 10 ⁻⁵

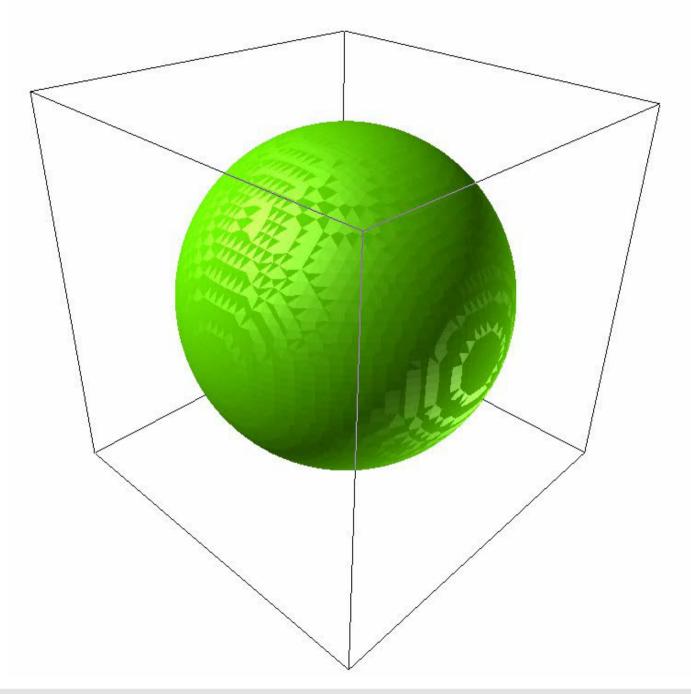
 $\rho_{\rm G}$ und $\mu_{\rm G}$ sind um Faktor 10 höher als bei Luft

Numerische Vorstudie



Variation von L_{uc} / D_h

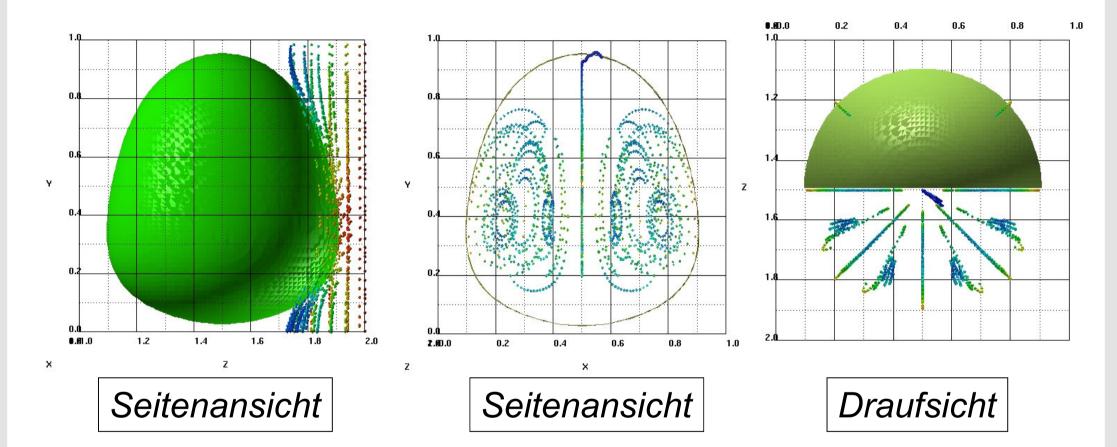
Fall	L _{uc} / D _h	Gebiet [-]	Gitter
A2	1	1 × 1 × 1	$48 \times 48 \times 48$
В	1,125	$1 \times 1,125 \times 1$	$48\times54\times48$
С	1,25	1 × 1,25 × 1	$48\times60\times48$
D	1,375	$1 \times 1,375 \times 1$	$48\times 66\times 48$
Е	1,5	$1 \times 1,5 \times 1$	$48\times72\times48$
F	1,625	$1 \times 1,625 \times 1$	$48\times78\times48$
G	1,75	1 × 1,75 × 1	$48\times84\times48$
Н	2	1 × 2 × 1	48 × 96 × 48



Fall A3

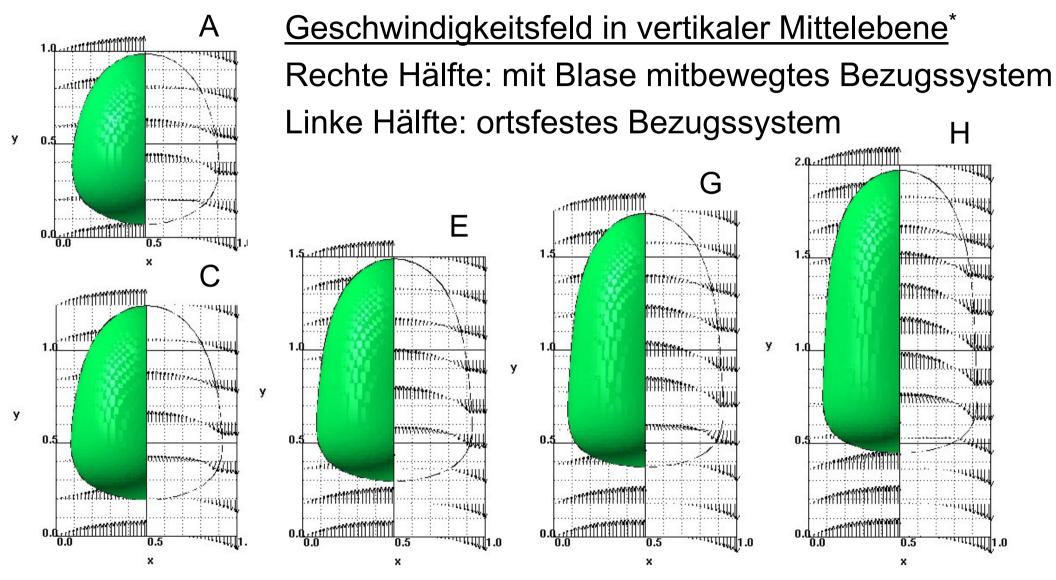
KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

Virtuelle Partikelbahnen



- Blase ist rotationssymmetrisch
- Ein großer Wirbel innerhalb der Blase
- Geringe Strömung in Umfangsrichtung innerhalb der Blase

Blasenform und Geschwindigkeitsfeld



^{*} in y-Richtung ist nur jeder 8. Vektor dargestellt

Vergleich mit dem Experiment*

D :				
Dimensions	INGAR H	lacanc	lurci	nmaccar
		nasciic	ıuı U	111103301

Dimensionsloses $U_{\rm R}$

Relativgeschw.

Fall	$L_{ m uc}/D_{ m h}$	Ca _B	$D_{\rm B}/D_{\rm h}$	$U_{ m B}/J_{ m ges}$	$(U_{\rm B}\!\!-\!\!J_{\rm ges})\!/J_{\rm ges}$
Α	1	0,204	0,81	1,80	0,445
С	1,25	0,207	0,84	1,75	0,430
E	1,5	0,215	0,85	1,75	0,430
G	1,75	0,238	0,85	1,78	0,438
Н	2	0,253	0,85	1,8	0,445
Experimentalle Daton* als Eupktion der Kapillar Zahl Ca = u 11 / a					

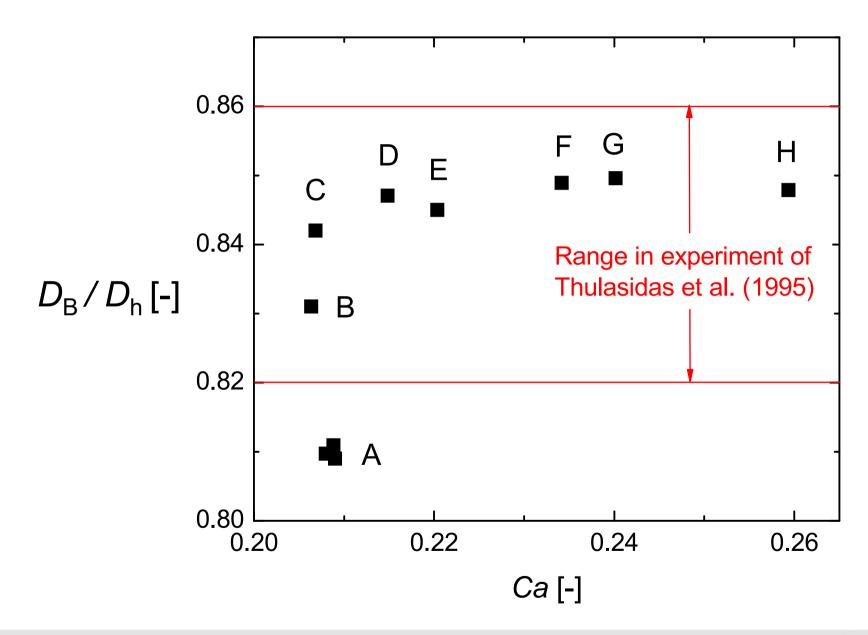
Experimentelle Daten als Funktion der Kapillar-Zahl $Ca_B = \mu_L U_B / \sigma$

0.2 - 0.25 0.82 - 0.86

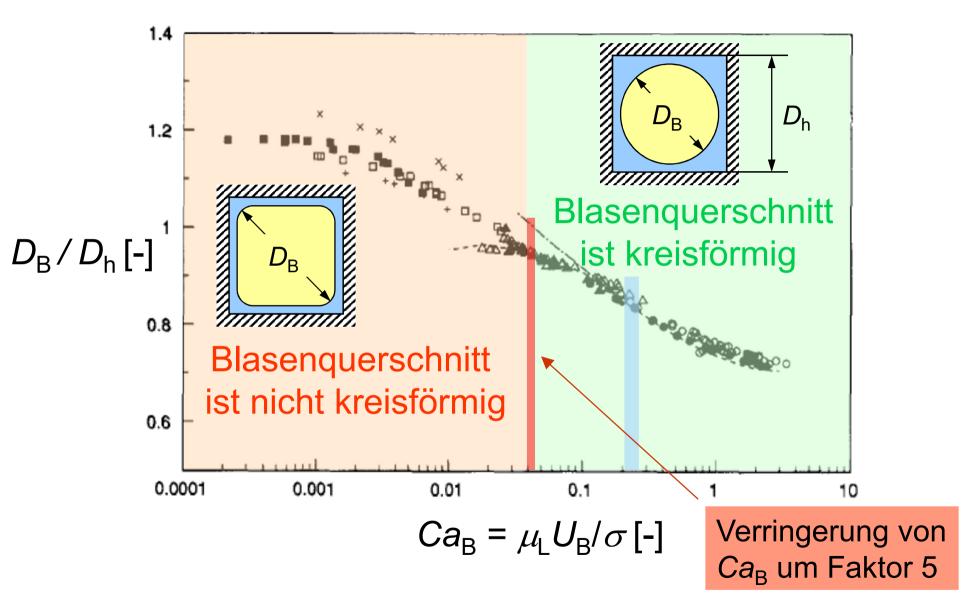
1,68 – 1,84 0,435–0,475



Dimensionsloser Blasendurchmesser

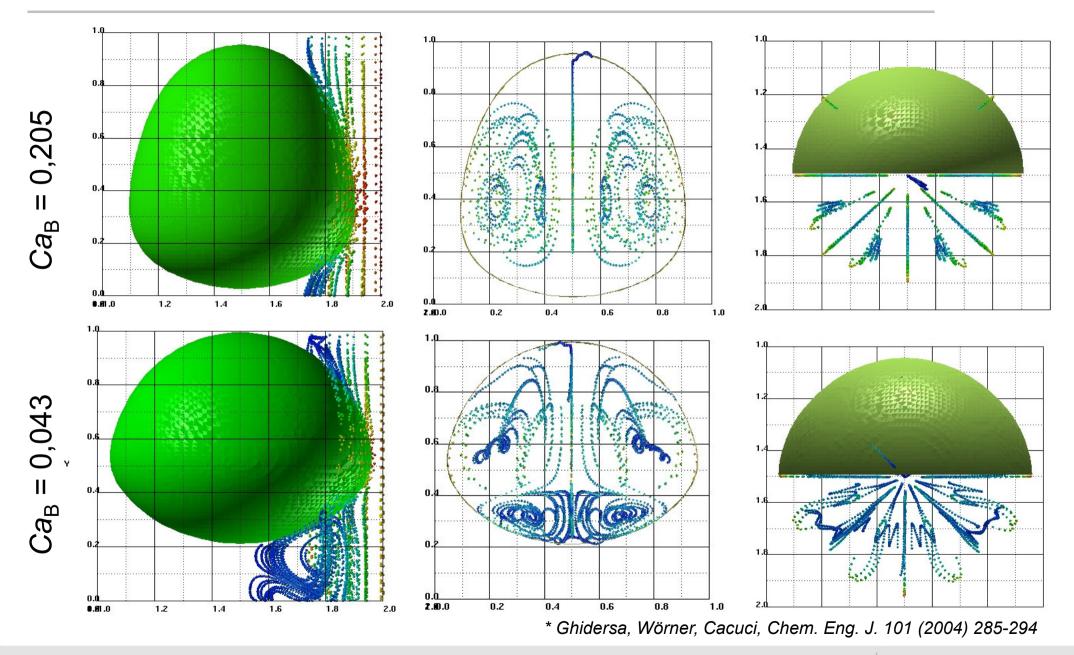


Einfluss der Kapillar-Zahl



(Exp. Daten von Thulasidas, Abraham, Cerro, Chem. Eng. Sci. 50 (1995) 183-199)

Einfluss der Kapillar-Zahl*



HELMHOLTZ

GEMEINSCHAFT

Bewertung von kommerziellen CFD-Codes*

- TURBIT-VOF ist beschränkt auf Einzelkanal mit rechteckigem Querschnitt und kartesisches Gitter
- Komplexere Untersuchungen für mehrere Kanäle, die über Einund Austrittsplenum gekoppelt sind, erfordern den Einsatz kommerzieller CFD-Programme
- Unterschiedliche VOF-Methoden in den Codes
 - Rekonstruktion der Phasengrenzfläche mit lokaler Approximation als beliebig orientierte Ebene (TURBIT-VOF, FLUENT)
 - Lösung der Volumenfraktionsgleichung mit Differenzenverfahren (CFX, STAR-CD, FLUENT als Option)
- Nur VOF-Methode mit Rekonstruktion liefert in allen Fällen physikalisch sinnvolle und konsistente Ergebnisse
 - gute Übereinstimmung der Ergebnisse von TURBIT-VOF und FLUENT

* Özkan, Wörner, Wenka, Soyhan, Int. J. Num. Meth. Fluids 55 (2007) 537-564

Direkte Validierung von TURBIT-VOF

- Kooperation mit TU Dresden (Prof. R. Lange, Dr. T. Bauer)
- Experimente in Glaskapillare mit Querschnitt 1 mm × 1 mm
 - Beide Phasen strömen vertikal abwärts
 - Drei verschiedene Stoff-Paarungen
 - Squalan-Stickstoff, AMS-Stickstoff, Wasser-Stickstoff
 - Druckniveau 1- 40 bar
 - Weiter Bereich der Kapillar-Zahl Ca_R
 - Für kleine Werte von Ca_B sind Blasen nicht mehr rotationssymmetrisch

Squalan - N₂ $J_1 = 0.017 \text{ m/s}$ $J_{\rm G} = 0.05 \, \text{m/s}$

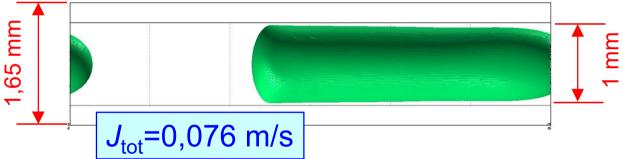
Direkte Validierung von TURBIT-VOF

Abschätzungen

- Länge der Einheitszelle $L_{\rm uc}$ = 6 mm
- Gasgehalts in der Einheitszelle $\varepsilon = 40\%$
- Druckdifferenz über die Einheitszelle

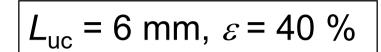
Rechenaufwand

- Rechengebiet: $1 \times 6 \times 1 \text{ mm}^3$
- Gitter: $80 \times 480 \times 80$
- Zeitschritte: ca. 20000



In der Simulation ist L_{uc} etwas zu klein, während das Blasenvolumen und J_{tot} etwas zu groß sind. Trotzdem stimmt die Blasenform gut überein.

Einfluss der Durchflussrate

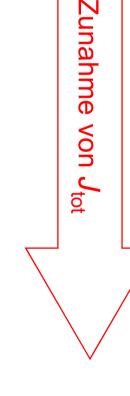


Strömung

$$J_{\text{tot}} = 0.03 \text{ m/s}$$

 $J_{\text{tot}} = 0.108 \text{ m/s}$

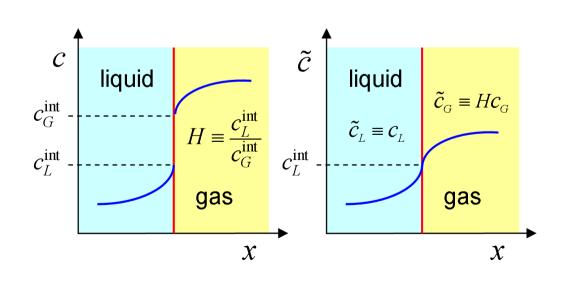




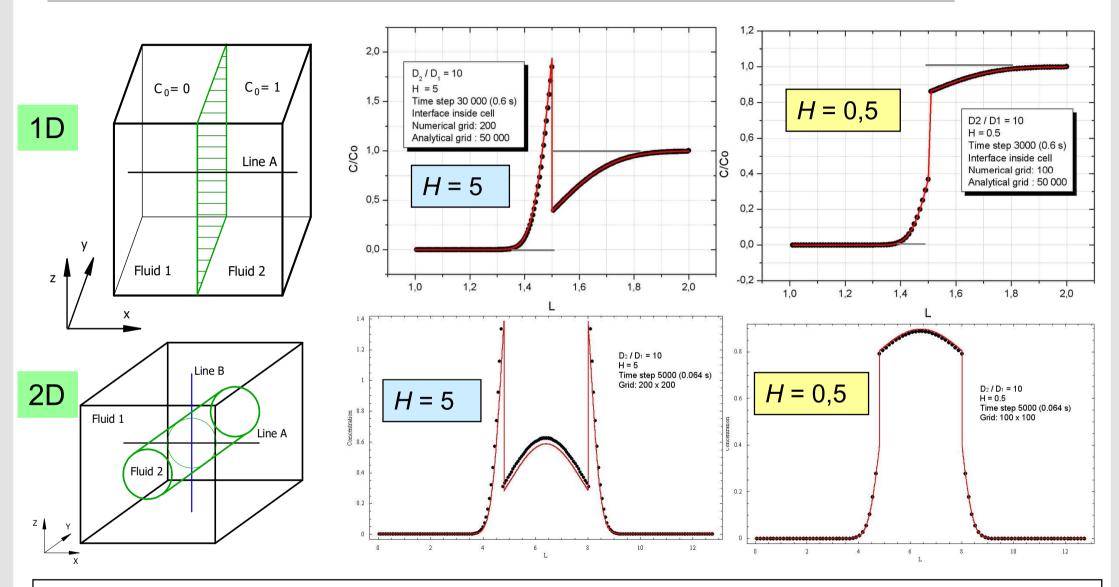
HELMHOLTZ

Stofftransport und chemische Reaktion

- Methodische Erweiterung von TURBIT-VOF
 - Doktorarbeit A. Onea (2006)
 - Transportgleichung für eine/mehrere chemische Spezies
 - Annahmen:
 - keine Rückwirkung auf die Hydrodynamik
 - ullet Konzentrationen an der Phasengrenzfläche sind im Gleichgewicht H
- Numerische Problematik
 - Konzentration an Phasengrenzfläche ist i. A. unstetig
 - Transformation von c in ein stetiges Feld \tilde{c} mit Hilfe der Henry-Zahl H

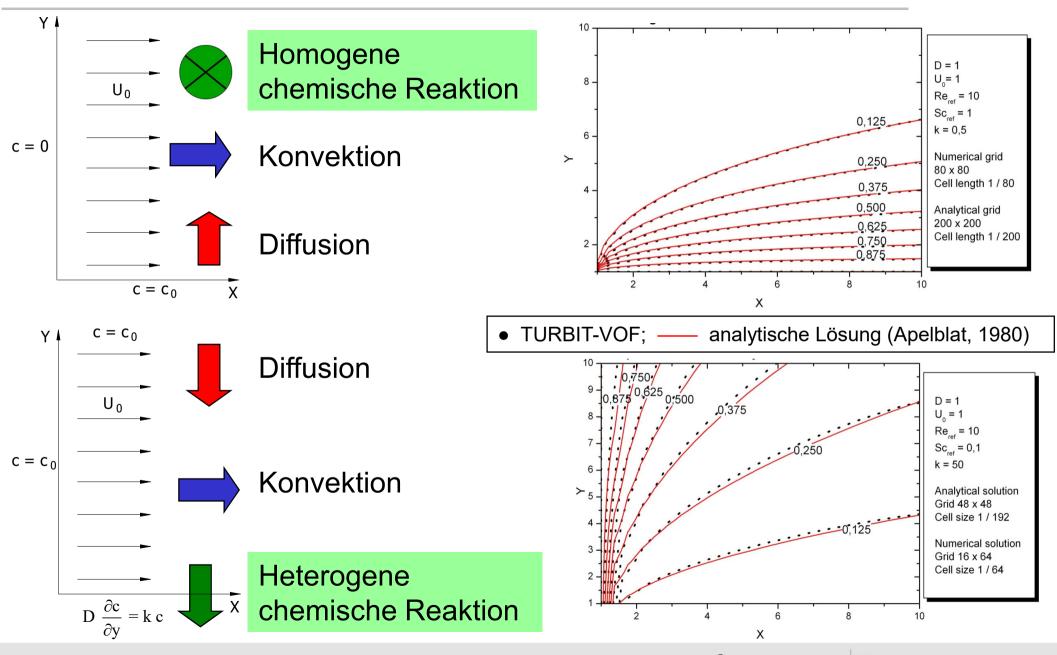


Verifizierung für diffusiven Stoffübergang



• TURBIT-VOF; analytische Lösung (Crank, 1994) für 1D und numerische Lsg. von (Bothe et al., 2004) für 2D

Verifizierung für chemische Reaktion



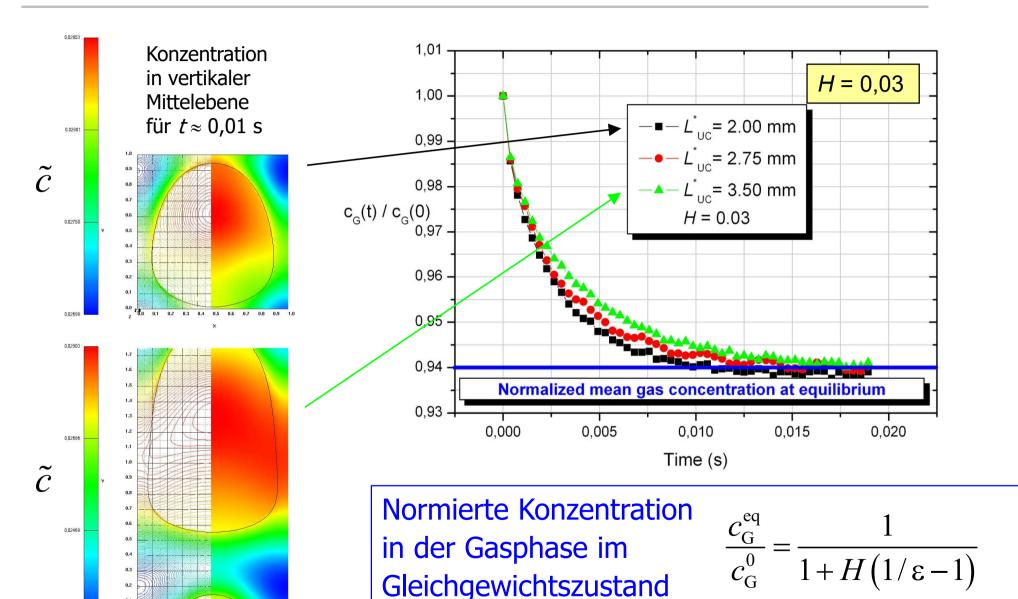
Stoffübergang in Taylor-Strömung

- Betrachtung eines artifiziellen Systems
 - Hydrodynamik: Gasphase = Luft, Flüssigphase = Silikonöl
 - Diffusivität in der Gasphase $D_G = 19,16 \times 10^{-6}$ m²/s (entspricht O₂)
 - Realistischer Wert für Diffusivität D_{l} in Flüssigkeit bewirkt
 - Sehr dünne Konzentrationsgrenzschicht auf der Flüssigkeitsseite der Phasengrenzfläche, die numerisch nicht aufgelöst werden kann
 - Sehr langsame Transportvorgänge und damit hohe Rechenzeiten
 - Diffusivität D wird um ca. den Faktor 30 000 erhöht

k _{hmg} [1/s]	k _{htg} [m/s]	Н	$D_{\rm L}$ [m ² /s]	$D_{\rm G}$ [m ² /s]	Re _B	Sc
19800	1,32	0,03 and 3	62,24×10 ⁻⁶	19,16×10 ⁻⁶	10	0,8

- Betrachtung von zwei verschiedenen Werten der Henry-Zahl
 - H = 0,03 (Wert von O₂ für System Luft Wasser)
 - (Wert von Methylchlorid CH₃Cl für System Luft Wasser)

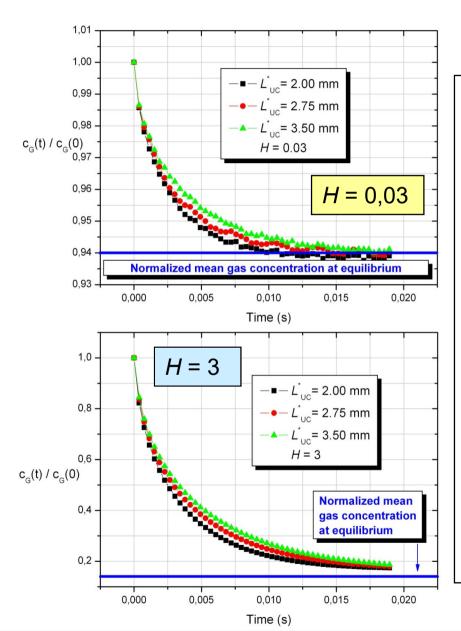
Stoffübergang in Taylor-Strömung



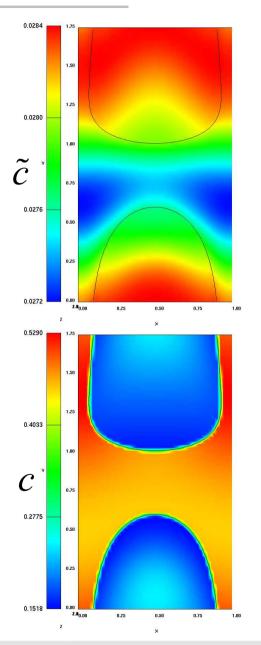
HELMHOLTZ

GEMEINSCHAFT

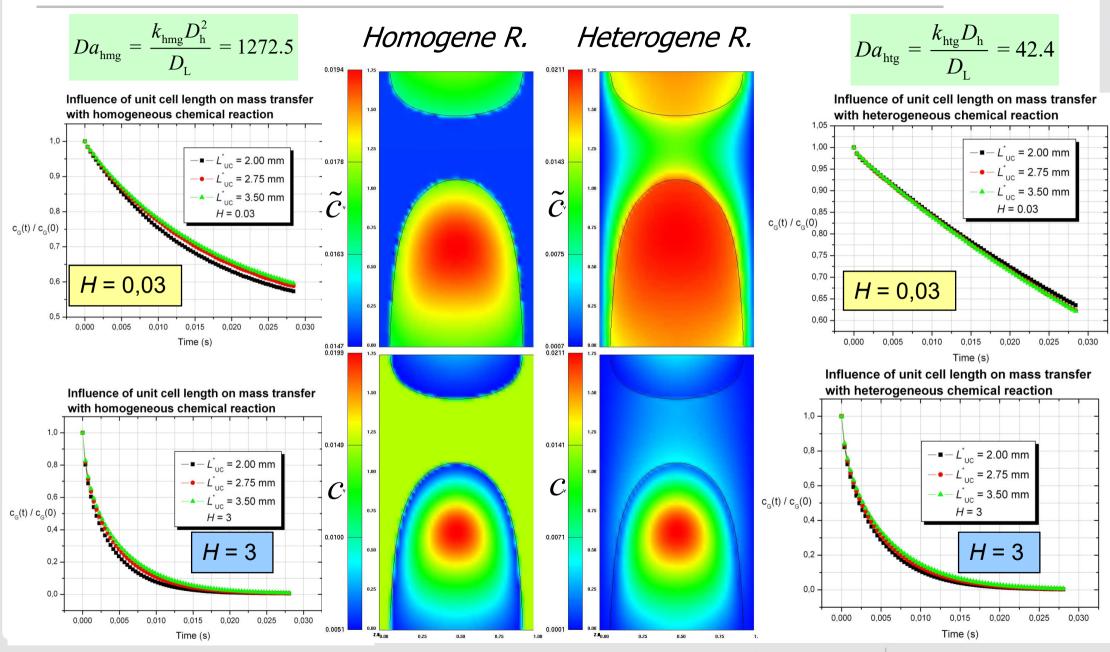
Stoffübergang in Taylor-Strömung



- Der Flüssigkeitsfilm ist gesättigt
- Der Stofftransport erfolgt hauptsächlich über Spitze und Ende der Blase in Übereinstimmung mit experimentellen Ergebnissen von Bercic & Pintar (1997)
- Kurze Einheitszellen sind effektiver für den Stoffübergang



Chemische Reaktion in Taylor-Strömung



Verweilzeitverteilung: Bedeutung

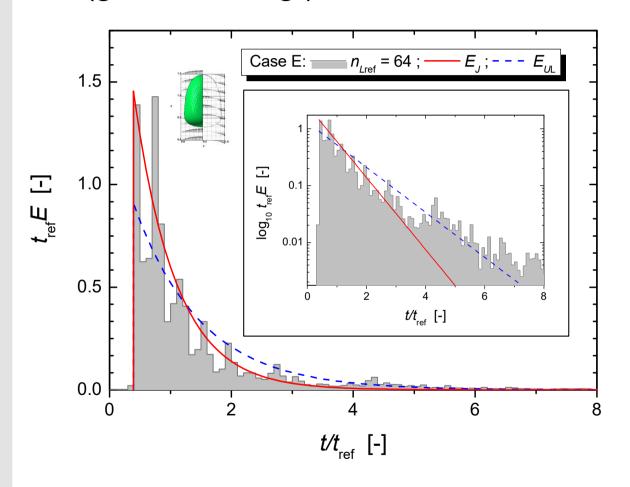
- Ein chemischer Reaktor hat zwei essentielle Aufgaben
 - Vermischung der Edukte
 - Bereitstellung von ausreichender Reaktionszeit
- Jede chemische Reaktion hat eine charakteristische Zeitskala (Reaktionsgeschwindigkeit)
- Ist die Verweilzeit der Edukte im Reaktor zu klein, so ist die Ausbeute des Reaktionsproduktes gering
- Ist die Verweilzeit der Edukte zu groß so entstehen unerwünschte Nebenprodukte (geringe Selektiviät)
- Experimentelle Bestimmung der Verweilzeitverteilung
 - Tracer-Zugabe am Eintritt und Konzentrationsmessung am Austritt des Reaktors
 - Für Mikroreaktoren ist Methode mit großen Ungenauigkeiten behaftet, da i. A. das Reaktorvolumen kleiner ist als das des Zulaufs und das Messvolumen im Ablauf

Verweilzeitverteilung: Numerische Auswertung

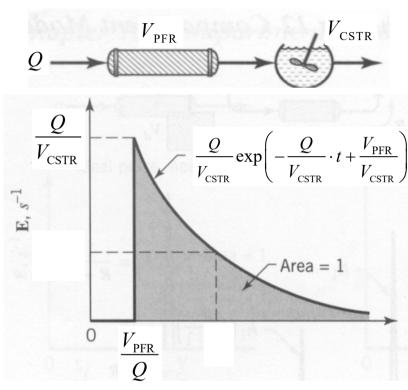
- Auswertung der Verweilzeitverteilung ("residence time distribution", RTD) der Flüssigphase als Post-Processing:
 - Verwendung des zuvor berechneten voll entwickelten Strömungsfeldes zu einem bestimmten Zeitpunkt
- Initialisierung virtueller Partikel in regelmäßigem Abstand in Gitterzellen, die vollständig mit Flüssigkeit gefüllt sind
- Berechnung der Partikel-Bahnlinien und Bestimmung der Zeit, die jedes Partikel braucht um sich in axialer Richtung um die Länge der Einheitszelle L_{uc} weiterzubewegen
- Wichtung und Normierung der Häufigkeitsverteilung aller Partikel liefert die Verweilzeitverteilung

Verweilzeitverteilung: Ergebnis und Ersatzmodel*

Ausgewertete RTD der Einheitszelle (grau hinterlegt)



Ersatzmodell



$$E_{J} = \begin{cases} 0 & \text{für } t < L_{\text{uc}} / U_{\text{B}} \\ \\ \frac{J}{L_{\text{uc}}} \exp \left(-\frac{J}{L_{\text{uc}}} \cdot t + \frac{J}{U_{\text{B}}} \right) & \text{für } t \ge L_{\text{uc}} / U_{\text{B}} \end{cases}$$

*Wörner, Ghidersa, Onea, Int. J. Heat Fluid Flow 28 (2007) 83-94

Verweilzeitverteilung: Ausblick

- Praktische Anwendung des Modells
 - Empirische Beziehung $U_{\rm B} = U_{\rm B} (J_{\rm I}, J_{\rm G}, ...)$
 - Empirische Beziehung für Länge der Einheitszelle $L_{\text{uc}} = L_{\text{uc}}(J_{\text{I}}, J_{\text{G}}, ...)$
 - Anzahl der Einheitszellen im Reaktor: $n_{uc} = L_{Reaktor} / L_{uc}$
 - Bestimmung der Verweilzeitverteilung für den Reaktor durch $n_{\rm uc}$ - fache Faltung der RTD für die Einheitszelle

 Verifikation des Modells anhand RTD-Messungen für Einzelkanal und Monolithreaktor (Projektantrag in Vorbereitung)

Zusammenfassung

- Numerische Simulation von Taylor-Blasen im Minikanal
 - Entwicklung eines Codes auf Basis der Kontinuumsgleichungen
 - Volume-of-Fluid Methode mit Rekonstruktion der Phasengrenzfläche
 - lokale Approximation der Phasengrenzfläche als Ebene
 - VOF-Methoden ohne Rekonstruktion in kommerziellen CFD Codes sind ungeeignet
 - Validierung für quadratischen vertikalen Mini-Kanal
 - Indirekt anhand Literaturdaten f
 ür 2 mm x 2 mm Kanal
 - Direkt durch 1:1 Nachrechnung von Experimenten im 1 mm × 1 mm Kanal
 - Großer Einfluss der Kapillar-Zahl auf Blasenform und Strömung
 - Qualitative Untersuchungen zu Stofftransport und chemischer Reaktion
 - Auswertung der Verweilzeitverteilung der Flüssigkeit für die Einheitszelle und Entwicklung eines analytischen Modells

Ausblick: Mittelfristiges Ziel

- **Detaillierte Simulation von:**
 - Hydrodynamik der Blasenströmung
 - Stofftransport mehrerer Spezies
 - (Einfache) chemische Reaktion mit Wärmetönung
 - Wärmetransport und Rückkopplung auf die Hydrodynamik
- Ermittlung optimaler hydrodynamischer Parameter für gegebene chemophysikalische Parameter
- Konkret: Fischer-Tropsch Synthese in Monolith-Reaktoren

