

Numerische Untersuchung von Taylor-Blasen in einem quadratischen Minikanal: Hydrodynamik und Stofftransport

Dr.-Ing. Martin Wörner

Forschungszentrum Karlsruhe, Institut für Reaktorsicherheit (zukünftig: Institut für Kern- und Energietechnik)

Seminarvortrag am Institut für Technische Chemie und Polymerchemie Universität Karlsruhe, 25. Januar 2008

Forschungszentrum Karlsruhe

- Wissenschaftliche Institute: Forschungsbereiche:
 - Energie
 - Gesundheit
- Struktur der Materie
- Erde und Umwelt
- Schlüsseltechnologien
- Programme:
- Nukleare Sicherheitsforschung
- Nano- und Mikrosysteme
- Rationelle Energieumwandlung
 Nachhaltigkeit und Technik

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

Gliederung

Numerische Simulation von Taylor-Blasen im Minikanal

- Einleitung und Motivation
- Numerisches Verfahren
 - Grundgleichungen
 - Rechenprogramm TURBIT-VOF

Ergebnisse

- Beschreibung des physikalischen Problems
- Hydrodynamik und Validierung
- Stofftransport mit und ohne chemische Reaktion
- Verweilzeitverteilung der Flüssigphase

Zusammenfassung und Ausblick

Konventionelle Mehrphasen-Reaktoren

4 | M. Wörner Seminar Uni KA 25.01.2008

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

- Nachteile der konventionellen Reaktoren
 - Häufig chargenweiser Betrieb
 - Keine Abstimmung auf die chemische Reaktion im Detail möglich
 - Ungleichmäßige Vermischung der Reaktionspartner und ungleichmäßige Temperaturverteilung
 - Probleme beim Scale-up vom Labor- und Pilotmaßstab auf die Produktionsgröße
- Folgen
 - Eingeschränkte Produktqualität
 - Bildung unerwünschter Nebenprodukte
 - Übermäßiger Energieverbrauch

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

Prozessintensivierung durch Miniaturisierung

- Vorteile der Taylor-Strömung in kleinen Kanälen
 - Großes Verhältnis Phasengrenzfläche zu Volumen
 - \Rightarrow effiziente Stoffübertragung
 - Segmentierung der Flüssigkeit
 ⇒ reduzierte axiale Dispersion

- Gute Durchmischung der Flüssigkeit
- Wandnormaler konvektiver Transport bei laminarer Strömung

- Vorteile der miniaturisierten Apparate
 - Kontinuierlicher Betrieb
 - "Numbering-up" statt "scale-up"
 - Abstimmung auf optimale hydrodynamische und thermische Bedingungen der konkreten Reaktion erscheint möglich \Rightarrow
 - Verbesserte Ausbeute
 - Weniger Nebenprodukte
 - Gleichmäßigere Produktqualität
 - Notwendig ist Verständnis der lokalen, instantanen Phänomene
- <u>Ziel unserer Arbeiten:</u>
 Einblick in lokale Strömungsphänomene durch detaillierte numerische Simulation der Strömung im Einzel-Kanal

Gliederung

- Einleitung und Motivation
- Numerisches Verfahren
 - Grundgleichungen
 - Rechenprogramm TURBIT-VOF

Ergebnisse

- Abbildung des physikalischen Problems
- Hydrodynamik und Validierung
- Stofftransport mit und ohne chemische Reaktion
- Verweilzeitverteilung

Zusammenfassung und Ausblick

Numerisches Verfahren - Annahmen

- Beschreibung im Rahmen der Kontinuumsmechanik
- Betrachtung von zwei Fluiden mit folgenden Eigenschaften
 - Nicht mischbar, kein Phasenübergang
 - Inkompressibel
 - Newton'sches Stoffgesetz mit konstanter Viskosität
 - Phasengrenzfläche ist unendlich dünn
 - Oberflächenspannung ist konstant

Grundgleichungen

$$\begin{aligned} \frac{\partial \rho_{1}^{*}}{\partial t^{*}} + \nabla^{*} \cdot \rho_{1}^{*} \mathbf{v}_{1}^{*} &= 0 \\ \frac{\partial (\rho_{1}^{*} \mathbf{v}_{1}^{*})}{\partial t^{*}} + \nabla^{*} \cdot (\rho_{1}^{*} \mathbf{v}_{1}^{*} \mathbf{v}_{1}^{*}) &= -\nabla^{*} p_{1}^{*} + \nabla^{*} \cdot \mu_{1}^{*} \left(\nabla^{*} \mathbf{v}_{1}^{*} + \left(\nabla^{*} \mathbf{v}_{1}^{*} \right)^{\mathsf{T}} \right) + \rho_{1}^{*} \mathbf{g}^{*} \end{aligned} \right\} \mathbf{x}^{*} \in \Omega_{1} \left(t^{*} \right) \\ \frac{\partial (\rho_{2}^{*} \mathbf{v}_{1}^{*})}{\partial t^{*}} + \nabla^{*} \cdot (\rho_{2}^{*} \mathbf{v}_{2}^{*} \mathbf{v}_{2}^{*}) &= -\nabla^{*} p_{2}^{*} + \nabla^{*} \cdot \mu_{2}^{*} \left(\nabla^{*} \mathbf{v}_{1}^{*} + \left(\nabla^{*} \mathbf{v}_{2}^{*} \right)^{\mathsf{T}} \right) + \rho_{2}^{*} \mathbf{g}^{*} \end{aligned} \right\} \mathbf{x}^{*} \in \Omega_{2} \left(t^{*} \right) \\ \frac{\partial (\rho_{2}^{*} \mathbf{v}_{2}^{*})}{\partial t^{*}} + \nabla^{*} \cdot (\rho_{2}^{*} \mathbf{v}_{2}^{*} \mathbf{v}_{2}^{*}) &= -\nabla^{*} p_{2}^{*} + \nabla^{*} \cdot \mu_{2}^{*} \left(\nabla^{*} \mathbf{v}_{2}^{*} + \left(\nabla^{*} \mathbf{v}_{2}^{*} \right)^{\mathsf{T}} \right) + \rho_{2}^{*} \mathbf{g}^{*} \end{aligned} \right\} \mathbf{x}^{*} \in \Omega_{2} \left(t^{*} \right) \\ \frac{\nabla_{1}^{*} = \mathbf{v}_{2}^{*} = \mathbf{v}_{1}^{*}, \quad \left(p_{1}^{*} - p_{2}^{*} + H^{*} \sigma^{*} \right) \hat{\mathbf{n}}_{1} = \left(\mathbb{T}_{1}^{*} - \mathbb{T}_{2}^{*} \right) \cdot \hat{\mathbf{n}}_{1}, \quad \mathbf{x}^{*} \in S_{1} \left(t^{*} \right) \quad Grenzfläche \\ \Omega_{1} \left(t^{*} \right) \quad \Omega_{2} \left(t^{*} \right) \quad S_{1} \left(t^{*} \right) \quad X_{1} = 1 \quad X_{1} = 0 \\ \frac{\nabla_{1} \left(t^{*} \right) \quad \nabla_{2} \left(t^{*} \right) \quad S_{1} \left(t^{*} \right) \quad X_{1} = 1 \quad X_{1} = 0 \\ \frac{\nabla_{1} \left(t^{*} \right) \quad \nabla_{2} \left(t^{*} \right) \quad X_{1} = 1 \quad X_{1} = 0 \\ \frac{\nabla_{1} \left(t^{*} \right) \quad Y_{2} \left(t^{*}$$

(dimensionsbehaftete Größen sind durch * gekennzeichnet)

Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

Grundgleichungen

Mittelung über Volumen V:

$$\alpha_k \equiv \frac{1}{V} \iiint_V X_k \mathrm{d}V = \frac{V_k}{V}, \quad \overline{\mathbf{v}_k^*}^{V_k} = \frac{1}{V_k} \iiint_V X_k \mathbf{v}_k^* \mathrm{d}V, \quad k = 1, 2$$

$$k = 2$$

Volumengemittelte Grundgleichungen in Ein-Feld-Formulierung

$$\frac{\partial \alpha_{1}}{\partial t^{*}} + \nabla^{*} \cdot \alpha_{1} \mathbf{v}_{m}^{*} = \nabla^{*} \cdot \alpha_{1} \alpha_{2} \frac{\rho_{2}^{*}}{\rho_{m}^{*}} \mathbf{v}_{r}^{*} \\ \nabla^{*} \cdot \mathbf{v}_{m}^{*} = -\nabla^{*} \cdot \frac{\alpha_{1} \alpha_{2} \left(\rho_{1}^{*} - \rho_{2}^{*}\right)}{\rho_{m}^{*}} \mathbf{v}_{r}^{*} \\ \frac{\partial \rho_{m}^{*} \mathbf{v}_{m}^{*}}{\partial t^{*}} + \nabla^{*} \cdot \left(\rho_{m}^{*} \mathbf{v}_{m}^{*} \mathbf{v}_{m}^{*} + \mathbb{D}_{i}^{*}\right) = -\nabla^{*} \rho_{m}^{*} + \nabla^{*} \cdot \left[\mu_{m}^{*} \left(\nabla^{*} \mathbf{v}_{m}^{*} + \left(\nabla^{*} \mathbf{v}_{m}^{*}\right)^{T}\right) + \mathbb{T}_{i}^{*}\right] + \rho_{m}^{*} \mathbf{g}^{*} + a_{i}^{*} \sigma^{*} \kappa^{*} \hat{\mathbf{n}}_{i}^{*} \\ \frac{\partial \rho_{m}^{*} \mathbf{v}_{m}^{*}}{\partial t^{*}} + \nabla^{*} \cdot \left(\rho_{m}^{*} \mathbf{v}_{m}^{*} \mathbf{v}_{m}^{*} + \mathbb{D}_{i}^{*}\right) = -\nabla^{*} \rho_{m}^{*} + \nabla^{*} \cdot \left[\mu_{m}^{*} \left(\nabla^{*} \mathbf{v}_{m}^{*} + \left(\nabla^{*} \mathbf{v}_{m}^{*}\right)^{T}\right) + \mathbb{T}_{i}^{*}\right] + \rho_{m}^{*} \mathbf{g}^{*} + a_{i}^{*} \sigma^{*} \kappa^{*} \hat{\mathbf{n}}_{i}^{*} \\ \frac{\partial \rho_{m}^{*} \mathbf{v}_{m}^{*}}{\partial t^{*}} + \nabla^{*} \cdot \left(\rho_{m}^{*} \mathbf{v}_{m}^{*} \mathbf{v}_{m}^{*} + \mathbb{D}_{i}^{*}\right) = -\nabla^{*} \rho_{m}^{*} + \nabla^{*} \cdot \left[\mu_{m}^{*} \left(\nabla^{*} \mathbf{v}_{m}^{*} + \left(\nabla^{*} \mathbf{v}_{m}^{*}\right)^{T}\right) + \mathbb{T}_{i}^{*}\right] + \rho_{m}^{*} \mathbf{g}^{*} + a_{i}^{*} \sigma^{*} \kappa^{*} \hat{\mathbf{n}}_{i}^{*} \\ \frac{\partial \rho_{m}^{*} \mathbf{v}_{m}^{*}}{\partial t^{*}} + \nabla^{*} \cdot \left(\rho_{m}^{*} \mathbf{v}_{m}^{*} \mathbf{v}_{m}^{*}\right) = -\nabla^{*} \rho_{m}^{*} + \nabla^{*} \cdot \left[\mu_{m}^{*} \left(\nabla^{*} \mathbf{v}_{m}^{*} + \left(\nabla^{*} \mathbf{v}_{m}^{*}\right)^{T}\right) + \mathbb{T}_{i}^{*}\right] + \rho_{m}^{*} \mathbf{g}^{*} + a_{i}^{*} \sigma^{*} \kappa^{*} \hat{\mathbf{n}}_{i}^{*} \\ \frac{\partial \rho_{m}^{*} \mathbf{v}_{m}^{*}}{\partial t^{*}} + \nabla^{*} \cdot \left(\rho_{m}^{*} \mathbf{v}_{m}^{*} \mathbf{v}_{m}^{*}\right) = -\nabla^{*} \rho_{m}^{*} + \nabla^{*} \cdot \left[\mu_{m}^{*} \left(\nabla^{*} \mathbf{v}_{m}^{*}\right)^{T}\right] + \nabla^{*} \cdot \left[\mu_{m}^{*} \left(\nabla^{*} \mathbf{$$

$$\boxed{ \rho_{m}^{*} \equiv \alpha_{1}\rho_{1}^{*} + \alpha_{2}\rho_{2}^{*}, \quad \mu_{m}^{*} \equiv \alpha_{1}\mu_{1}^{*} + \alpha_{2}\mu_{2}^{*}, \quad \mathbf{v}_{m}^{*} \equiv \frac{\alpha_{1}\rho_{1}^{*}\overline{\mathbf{v}_{1}^{*}} + \alpha_{2}\rho_{2}^{*}\overline{\mathbf{v}_{2}^{*}}}{\alpha_{1}\rho_{1}^{*} + \alpha_{2}\rho_{2}^{*}}, \quad \mathbf{v}_{r}^{*} \equiv \overline{\mathbf{v}_{2}^{*}} - \overline{\mathbf{v}_{1}^{*}}} \\ \boxed{\mathbb{D}_{i}^{*} \equiv \alpha_{1}\alpha_{2}\frac{\rho_{1}^{*}\rho_{1}^{*}}{\rho_{r}^{*}}\mathbf{v}_{r}^{*}\mathbf{v}_{r}^{*}} \left[\mathbb{T}_{i}^{*} \equiv \alpha_{2}\mu_{2}^{*} \left(\nabla^{*}\frac{\alpha_{1}\rho_{1}^{*}}{\rho_{m}^{*}}\mathbf{v}_{r}^{*} + \left(\nabla^{*}\frac{\alpha_{1}\rho_{1}^{*}}{\rho_{m}^{*}}\mathbf{v}_{r}^{*} \right)^{T} \right) - \alpha_{1}\mu_{1}^{*} \left(\nabla^{*}\frac{\alpha_{2}\rho_{2}^{*}}{\rho_{m}^{*}}\mathbf{v}_{r}^{*} + \left(\nabla^{*}\frac{\alpha_{2}\rho_{2}^{*}}{\rho_{m}^{*}}\mathbf{v}_{r}^{*} \right)^{T} \right) \right)$$

Grundgleichungen

Dimensionslose Grundgleichungen in Ein-Feld-Formulierung

$$f \equiv \alpha_{1}, \quad \mathbf{X} \equiv \frac{\mathbf{X}^{*}}{L_{\text{ref}}^{*}}, \quad \mathbf{V}_{\text{m}} \equiv \frac{\mathbf{V}_{\text{m}}^{*}}{U_{\text{ref}}^{*}}, \quad t \equiv \frac{t^{*}U_{\text{ref}}^{*}}{L_{\text{ref}}^{*}}, \quad \rho_{\text{m}} \equiv \frac{\rho_{\text{m}}^{*}}{\rho_{1}^{*}}, \quad \mu_{\text{m}} \equiv \frac{\mu_{\text{m}}^{*}}{\mu_{1}^{*}}, \quad P \equiv \frac{p^{*} + \mathbf{f}_{\text{pd}}^{*} \cdot \mathbf{X}^{*}}{\rho_{1}^{*}U_{\text{ref}}^{*}}$$

$$\frac{\partial f}{\partial t} + \nabla \cdot f \mathbf{v}_{m} = 0 \qquad \text{Annahme: } \mathbf{v}_{r} = 0$$

$$\frac{\partial \rho_{m} \mathbf{v}_{m}}{\partial t} + \nabla \cdot (\rho_{m} \mathbf{v}_{m} \mathbf{v}_{m}) = -\nabla P + \frac{\nabla \cdot \left[\mu_{m} \left(\nabla \mathbf{v}_{m} + \left(\nabla \mathbf{v}_{m} \right)^{T} \right) \right]}{Re_{ref}} + \left[f + (1 - f) \frac{\rho_{2}^{2}}{\rho_{1}^{*}} \right] Fr_{ref} \hat{\mathbf{e}}_{g} + \frac{Eu_{ref}}{L_{axial}} \hat{\mathbf{e}}_{axial} + \frac{a_{i} \kappa \hat{\mathbf{n}}_{i}}{We_{ref}}$$

$$Re_{ref} = \frac{\rho_{1}^{*} L_{ref}^{*} U_{ref}^{*}}{*}, \quad Fr_{ref} = \frac{g^{*} L_{ref}^{*}}{r_{ref}^{*}}, \quad Eu_{ref} = \frac{\Delta p_{axial}^{*}}{*r_{ref}^{*}}, \quad We_{ref} = \frac{\rho_{1}^{*} L_{ref}^{*} U_{ref}^{*}}{*}$$

 $\rho_1 U_{\rm ref}$

Keine anderen Grundgleichungen als für makroskopische Strömungen, aber bei Mikroströmungen andere Gewichtung der Terme!

 $U_{\rm ref}$

 μ_1

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

 σ

Rechenprogramm TURBIT-VOF

- Eigenentwicklung von FZK/IRS (Doktorarbeit W. Sabisch)
- Diskretisierung im Raum
 - Finite-Volumen Formulierung
 - Strukturiertes, kartesisches, versetztes Gitter
 - Zentrale Differenzen-Approximationen 2. Ordnung
- Lösungsstrategie für die Navier-Stokes-Gleichung
 - Projektionsmethode
 - Lösung der Druck-Poisson-Gleichung mit CG-Verfahren
 - Explizites Runge-Kutta Zeitintegrationsverfahren 3. Ordnung
- Lösung der *f*-Gleichung mit Volume-of-Fluid Methode

Volume-of-Fluid Methode (VOF)

1.0

1.0

1.0

KIT - die Kooperation von

und Universität Karlsruhe (TH)

Forschungszentrum Karlsruhe GmbH

- $f_{i,i,k}$ = Volumenfraktion von Phase 1 in einer Gitterzelle ($0 \le f_{i,i,k} \le 1$)
- In Zellen mit $0 < f_{i,i,k} < 1$ wird die Phasengrenzfläche lokal als Ebene angenähert
- Position und Orientierung der Ebene wird • aus diskreter Verteilung von f in benachbarten Gitterzellen "rekonstruiert"
- "Geometrische" Berechnung der konvektiven Flüsse von f
- Vorteil: sehr gute Massenerhaltung

GEMEINSCHAFT

in der Helmholtz-Gemeinschaft

Doktorarbeit M. Ilic (2006)

16 | M. Wörner Seminar Uni KA 25.01.2008

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

Gliederung

- Einleitung und Motivation
- Numerisches Verfahren
 - Grundgleichungen
 - Rechenprogramm TURBIT-VOF

Ergebnisse

- Beschreibung des physikalischen Problems
- Hydrodynamik und Validierung
- Stofftransport mit und ohne chemische Reaktion
- Verweilzeitverteilung
- Zusammenfassung und Ausblick

Physikalisches Problem

Charakterisierung der idealisierten Taylor-Strömung

- Blasen sind lang gestreckt und füllen nahezu den ganzen Querschnitt aus (Taylor-Blasen)
- Die Blasen haben identische Form und bewegen sich mit gleicher Geschwindigkeit durch den Kanal
- Die idealisierte Strömung wird vollständig beschrieben durch eine Einheitszelle der Länge L_{uc} bestehend aus Blase und "Slug" der Flüssigkeit

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

Experimente von Thulasidas et al.*

- Quadratischer vertikaler Kanal
 - Querschnittsfläche: 2 mm × 2 mm (D_h = 2 mm)
- Luftblasen in Silikonöl
 - Silikonöl unterschiedlicher Viskosität
 - Weiter Bereich der <u>Kapillar-Zahl</u> $Ca_{\rm B} \equiv \mu_{\rm L} U_{\rm B} / \sigma = We / Re$
- Aufprägung des Volumenstroms von Luft und Öl
- Länge der Einheitszelle (L_{uc}), Gasanteil in der Einheitszelle (ε) und Druckverlust stellen sich ein

* Thulasidas, Abraham, Cerro, Chem. Eng. Sci. 50 (1995) 183-199

Abbildung des Problems in TURBIT-VOF

- Betrachtung <u>einer</u> Einheitszelle (eine Blase, ein Slug)
- Einfluss der vor- und nacheilenden Blasen wird durch periodische Randbedingungen abgebildet
 - Aufspaltung des Druckes in linear abfallenden und variierenden Anteil
- Die Strömung wird angetrieben vom Auftrieb und einem vorgegebenen axialen Druckgradienten
 - Volumenstrom von Gas und Flüssigkeit stellen sich ein
- Der Gasgehalt der Einheitszelle und deren Länge wird zu Beginn der Simulation vorgegeben

– Untersuchung des Einflusses von $L_{\rm uc}$ / $D_{\rm h}$

•
$$L_x = L_z = D_h = 2 \text{ mm}$$

- Gasgehalt in der Einheitszelle in allen Simulationen $\varepsilon = 33\%$
- Alle Simulationen starten aus Ruhezustand
- *L*_{ref} = 2 mm
- U_{ref} = 2,64 cm/s

$$t_{\rm ref} = L_{\rm ref} / U_{\rm ref} = 0,757 \ {\rm s}$$

Numerische Vorstudie

• Stoffwerte im Experiment von Thulasidas et al.

$ ho_{L}$	$ ho_{G}$	$\mu_{ m L}$	$\mu_{ m G}$	σ
957 kg/m ³	1,17 kg/m ³	0,048 Pa s	1,84×10 ⁻⁵ Pa s	0,022 N/m

• Simulationen für $L_{uc} / D_h = 1$

Fall	$ ho_{ m G}[m kg/m^3]$	$\mu_{ m G}$ [m Pa s]	Gitter	Δt / $t_{ m ref}$ [-]
A1	1,17	0,0184	$48 \times 48 \times 48$	2,5 × 10 ⁻⁶
A2	11,7	0,184	48 imes 48 imes 48	$2,5 imes 10^{-5}$
A3	11,7	0,184	$64 \times 64 \times 64$	1,0 × 10 ⁻⁵

 $\rho_{\rm G}$ und $\mu_{\rm G}$ sind um Faktor 10 höher als bei Luft

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

Numerische Vorstudie

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

Fall	<i>L</i> _{uc} / <i>D</i> _h	Gebiet [-]	Gitter
A2	1	1 × 1 × 1	$48\times48\times48$
В	1,125	$1 \times 1,125 \times 1$	$48\times54\times48$
С	1,25	1 × 1,25 × 1	$48\times60\times48$
D	1,375	$1 \times 1,375 \times 1$	$48\times 66\times 48$
Е	1,5	1 × 1,5 × 1	$48\times72\times48$
F	1,625	$1 \times 1,625 \times 1$	$48\times78\times48$
G	1,75	$1 \times 1,75 \times 1$	$48\times84\times48$
Н	2	$1 \times 2 \times 1$	$48 \times 96 \times 48$

Fall A3

25 | M. Wörner Seminar Uni KA 25.01.2008

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

Virtuelle Partikelbahnen

- Blase ist rotationssymmetrisch
- Ein großer Wirbel innerhalb der Blase
- Geringe Strömung in Umfangsrichtung innerhalb der Blase

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

Blasenform und Geschwindigkeitsfeld

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

Vergleich mit dem Experiment*

28

.

Dimens	sionsloser B	lasendurchmes	ser Dimensio	onsloses U _B	Relativgeschw.
Fall	$L_{\rm uc}/D_{\rm h}$	Ca _B	$D_{\rm B}/D_{\rm h}$	$U_{\rm B}/J_{\rm ges}$	$(U_{\rm B}$ – $J_{\rm ges})/J_{\rm ges}$
Α	1	0,204	0,81	1,80	0,445
С	1,25	0,207	0,84	1,75	0,430
Е	1,5	0,215	0,85	1,75	0,430
G	1,75	0,238	0,85	1,78	0,438
Н	2	0,253	0,85	1,8	0,445
Experimentelle Daten [*] als Funktion der Kapillar-Zahl $Ca_{\rm B} \equiv \mu_{\rm L} U_{\rm B} / \sigma$					
		0,2 - 0,25	0,82 – 0,86	1,68 – 1,84	0,435–0,475
* Thulasidas Abraham Corro Cham Eng Sci 50 (1005) 182 100					
M. Wörner Sen	ninar Uni KA 25.01.2008	3	KIT – die Kooperation vo Forschungszentrum Kar und Universität Karlsruh	on Isruhe GmbH	Forschungszentrum Karlsruh in der Helmholtz-Gemeinscha

Dimensionsloser Blasendurchmesser

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

Einfluss der Kapillar-Zahl

(Exp. Daten von Thulasidas, Abraham, Cerro, Chem. Eng. Sci. 50 (1995) 183-199)

Einfluss der Kapillar-Zahl*

31 | M. Wörner Seminar Uni KA 25.01.2008

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) HELMHOLTZ

Bewertung von kommerziellen CFD-Codes*

- TURBIT-VOF ist beschränkt auf Einzelkanal mit rechteckigem Querschnitt und kartesisches Gitter
- Komplexere Untersuchungen f
 ür mehrere Kan
 äle, die
 über Einund Austrittsplenum gekoppelt sind, erfordern den Einsatz kommerzieller CFD-Programme
- Unterschiedliche VOF-Methoden in den Codes
 - Rekonstruktion der Phasengrenzfläche mit lokaler Approximation als beliebig orientierte Ebene (TURBIT-VOF, FLUENT)
 - Lösung der Volumenfraktionsgleichung mit Differenzenverfahren (CFX, STAR-CD, FLUENT als Option)
- Nur VOF-Methode mit Rekonstruktion liefert in allen Fällen physikalisch sinnvolle und konsistente Ergebnisse
 - gute Übereinstimmung der Ergebnisse von TURBIT-VOF und FLUENT

* Özkan, Wörner, Wenka, Soyhan, Int. J. Num. Meth. Fluids 55 (2007) 537-564

Direkte Validierung von TURBIT-VOF

- Kooperation mit TU Dresden (Prof. R. Lange, Dr. T. Bauer)
- Experimente in Glaskapillare mit Querschnitt 1 mm × 1 mm
 - Beide Phasen strömen vertikal abwärts
 - Drei verschiedene Stoff-Paarungen
 - <u>Squalan-Stickstoff</u>, AMS-Stickstoff, Wasser-Stickstoff
 - Druckniveau 1- 40 bar
 - Weiter Bereich der Kapillar-Zahl Ca_B
 - Für kleine Werte von Ca_B sind Blasen nicht mehr rotationssymmetrisch

Direkte Validierung von TURBIT-VOF

- Abschätzungen
 - Länge der
 Einheitszelle
 L_{uc} = 6 mm
 - Gasgehalts in der Einheitszelle $\varepsilon = 40\%$
 - Druckdifferenz
 über die
 Einheitszelle
- Rechenaufwand
 - Rechengebiet: $1 \times 6 \times 1 \text{ mm}^3$
 - Gitter:
 80 × 480 × 80
 - Zeitschritte: ca.
 20000

In der Simulation ist L_{uc} etwas zu klein, während das Blasenvolumen und J_{tot} etwas zu groß sind. Trotzdem stimmt die Blasenform gut überein.

Einfluss der Durchflussrate

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

Stofftransport und chemische Reaktion

- Methodische Erweiterung von TURBIT-VOF
 - Doktorarbeit A. Onea (2006)
 - Transportgleichung für eine/mehrere chemische Spezies
 - <u>Annahmen:</u>
 - keine Rückwirkung auf die Hydrodynamik
 - Konzentrationen an der Phasengrenzfläche sind im Gleichgewicht $H \equiv \frac{c_L}{c_G^{eq}}$
- Numerische Problematik
 - Konzentration an Phasengrenzfläche ist i. A. unstetig
 - Transformation von c in ein <u>stetiges</u> Feld \tilde{c} mit Hilfe der Henry-Zahl H

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) HELMHOLTZ

Verifizierung für diffusiven Stoffübergang

• TURBIT-VOF; — analytische Lösung (Crank, 1994) für 1D und numerische Lsg. von (Bothe et al., 2004) für 2D

Verifizierung für chemische Reaktion

Stoffübergang in Taylor-Strömung

- Betrachtung eines artifiziellen Systems
 - Hydrodynamik: Gasphase = Luft, Flüssigphase = Silikonöl
 - Diffusivität in der Gasphase D_G = 19,16 ×10⁻⁶ m²/s (entspricht O₂)
 - Realistischer Wert für Diffusivität D_L in Flüssigkeit bewirkt
 - Sehr dünne Konzentrationsgrenzschicht auf der Flüssigkeitsseite der Phasengrenzfläche, die numerisch nicht aufgelöst werden kann
 - Sehr langsame Transportvorgänge und damit hohe Rechenzeiten
 - Diffusivität D_L wird um ca. den Faktor 30 000 erhöht

<i>k</i> _{hmg} [1/s]	k _{htg} [m/s]	Н	<i>D</i> _L [m²/s]	<i>D</i> _G [m²/s]	Re _B	Sc
19800	1,32	0,03 and 3	62,24×10 ⁻⁶	19,16×10 ⁻⁶	10	0,8

- Betrachtung von zwei verschiedenen Werten der Henry-Zahl
 - *H* = 0,03 (Wert von O₂ für System Luft Wasser)
 - H = 3 (Wert von Methylchlorid CH₃Cl für System Luft Wasser)

Stoffübergang in Taylor-Strömung

Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

Stoffübergang in Taylor-Strömung

- Der Flüssigkeitsfilm ist gesättigt
 - Der Stofftransport erfolgt hauptsächlich über Spitze und Ende der Blase in Übereinstimmung mit experimentellen Ergebnissen von Bercic & Pintar (1997)
- Kurze Einheitszellen sind effektiver für den Stoffübergang

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

Chemische Reaktion in Taylor-Strömung

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) HELMHOLTZ

Verweilzeitverteilung: Bedeutung

- Ein chemischer Reaktor hat zwei essentielle Aufgaben
 - Vermischung der Edukte
 - Bereitstellung von ausreichender Reaktionszeit
- Jede chemische Reaktion hat eine charakteristische Zeitskala (Reaktionsgeschwindigkeit)
- Ist die Verweilzeit der Edukte im Reaktor zu klein, so ist die <u>Ausbeute</u> des Reaktionsproduktes gering
- Ist die Verweilzeit der Edukte zu groß so entstehen unerwünschte Nebenprodukte (geringe <u>Selektiviät</u>)
- Experimentelle Bestimmung der Verweilzeitverteilung
 - Tracer-Zugabe am Eintritt und Konzentrationsmessung am Austritt des Reaktors
 - Für Mikroreaktoren ist Methode mit großen Ungenauigkeiten behaftet, da i. A. das Reaktorvolumen kleiner ist als das des Zulaufs und das Messvolumen im Ablauf

Verweilzeitverteilung: Numerische Auswertung

- Auswertung der Verweilzeitverteilung ("residence time distribution", RTD) der Flüssigphase als <u>Post-Processing</u>:
 - Verwendung des zuvor berechneten voll entwickelten Strömungsfeldes zu einem bestimmten Zeitpunkt
- Berechnung der Partikel-Bahnlinien und Bestimmung der Zeit, die jedes Partikel braucht um sich in axialer Richtung um die Länge der Einheitszelle L_{uc} weiterzubewegen
- Wichtung und Normierung der Häufigkeitsverteilung aller Partikel liefert die Verweilzeitverteilung

Verweilzeitverteilung: Ergebnis und Ersatzmodel*

Ausgewertete RTD der Einheitszelle (grau hinterlegt)

Ē, n_{___} = 64 ; Case E: E,;-- -1.5 Ξ $t_{\rm ref}E$ [-] 1.0 $\log_{10} t_{ m ref} E$ 0.1 0.01 0.5 0 2 6 *t/t*_{ref} [-] 0.0 2 6 0 8 *t/t*_{ref} [-]

Ersatzmodell

$$E_{J} = \begin{cases} 0 & \text{für } t < L_{\text{uc}} / U_{\text{B}} \\ \frac{J}{L_{\text{uc}}} \exp\left(-\frac{J}{L_{\text{uc}}} \cdot t + \frac{J}{U_{\text{B}}}\right) & \text{für } t \ge L_{\text{uc}} / U_{\text{B}} \end{cases}$$

*Wörner, Ghidersa, Onea, Int. J. Heat Fluid Flow 28 (2007) 83-94

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) HELMHOLTZ

Verweilzeitverteilung: Ausblick

- Praktische Anwendung des Modells
 - Empirische Beziehung $U_{\rm B} = U_{\rm B} (J_{\rm L}, J_{\rm G}, ...)$
 - Empirische Beziehung für Länge der Einheitszelle $L_{uc} = L_{uc}(J_L, J_G, ...)$
 - Anzahl der Einheitszellen im Reaktor: $n_{uc} = L_{Reaktor} / L_{uc}$
 - Bestimmung der Verweilzeitverteilung für den Reaktor durch
 - $n_{\rm uc}$ fache Faltung der RTD für die Einheitszelle

 Verifikation des Modells anhand RTD-Messungen f
ür Einzelkanal und Monolithreaktor (Projektantrag in Vorbereitung)

Zusammenfassung

- Numerische Simulation von Taylor-Blasen im Minikanal
 - Entwicklung eines Codes auf Basis der Kontinuumsgleichungen
 - Volume-of-Fluid Methode mit Rekonstruktion der Phasengrenzfläche
 - Iokale Approximation der Phasengrenzfläche als Ebene
 - VOF-Methoden ohne Rekonstruktion in kommerziellen CFD Codes sind ungeeignet
 - Validierung für quadratischen vertikalen Mini-Kanal
 - Indirekt anhand Literaturdaten für 2 mm \times 2 mm Kanal
 - Direkt durch 1:1 Nachrechnung von Experimenten im 1 mm \times 1 mm Kanal
 - Großer Einfluss der Kapillar-Zahl auf Blasenform und Strömung
 - Qualitative Untersuchungen zu Stofftransport und chemischer Reaktion
 - Auswertung der Verweilzeitverteilung der Flüssigkeit für die Einheitszelle und Entwicklung eines analytischen Modells

Ausblick: Mittelfristiges Ziel

- Detaillierte Simulation von:
 - Hydrodynamik der Blasenströmung
 - Stofftransport mehrerer Spezies
 - (Einfache) chemische Reaktion mit Wärmetönung
 - Wärmetransport und Rückkopplung auf die Hydrodynamik
- Ermittlung optimaler hydrodynamischer Parameter f
 ür gegebene chemophysikalische Parameter
- Konkret: Fischer-Tropsch Synthese in Monolith-Reaktoren

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

