

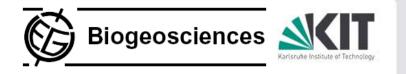
Aerobic methane emission from grey poplar (*Populus* x *canescens*)

Nicolas Brüggemann*, Rudolf Meier*, Dominik Steigner*, Ina Zimmer, Jörg-Peter Schnitzler

*Center of Stable Isotopes (CSI)

Karlsruhe Research Center Institute of Meteorology and Climate Research Atmospheric Environmental Research (IMK-IFU)

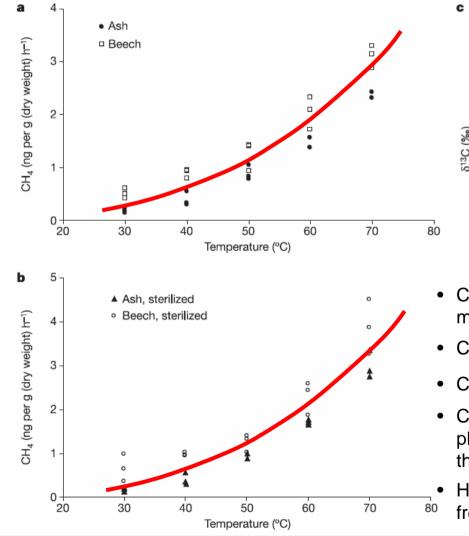
> Garmisch-Partenkirchen Germany

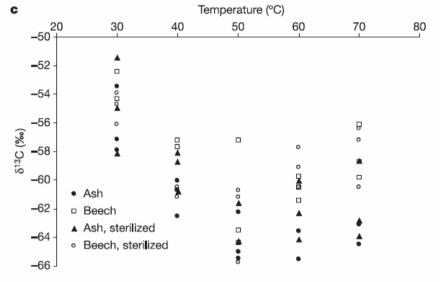

Dr. Nicolas Brüggemann | IMK-IFU | JESIUM 2008, Giens, France

KIT – a Cooperation between Karlsruhe Research Center and University of Karlsruhe

Biogeosciences, 1, 123–131, 2004 www.biogeosciences.net/bg/1/123/ SRef-ID: 1726-4189/bg/2004-1-123 European Geosciences Union

Dr


Carbon isotope anomaly in the major plant C_1 pool and its global biogeochemical implications

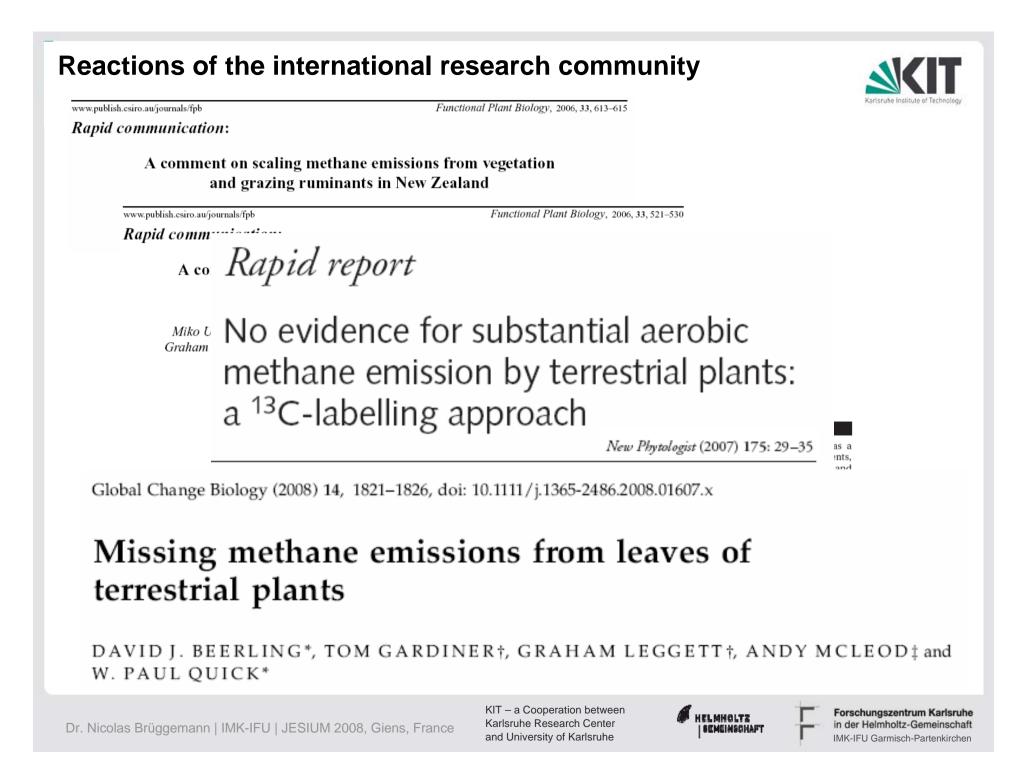

F. Keppler^{1,2}, R. M. Kalin², D. B. Harper¹, W. C. McRoberts^{1,3}, and J. T. G. Hamilton^{1,3}

Plant common name (species)	Chloromethane (CM) $(\delta^{13}C)$	Biomass (B) $(\delta^{13}C)$	Pectin methoxyl (PM) $(\delta^{13}C)$
C ₃ -leaf ²			
European ash (Fraxinus excelsior)		-27.9 ± 0.2	-73.7 ± 1.0
40°C	-147.0		
50°C	-142.6		
60°C	-129.0		
Wych elm (Ulmus glabra)		-30.8 ± 0.1	-69.2 ± 0.3
40°C	-138.9		
50°C	-130.4		
60°C	-126.9		
Cocksfoot (Dactylis glomerata)		-29.3 ± 0.2	-50.7 ± 0.2
40°C	-119.2		
50°C	-113.5		
60°C	-110.3		

Methane emissions from terrestrial plants under aerobic conditions

Frank Keppler¹, John T. G. Hamilton², Marc Braß^{1,3} & Thomas Röckmann^{1,3}

- CH₄ emission from intact plant material 1–2 orders of magnitude higher than from detached plant material
- CH₄ emission in sun light 3-5 times higher than in dark
- CH₄ unusually depleted in ¹³C


nature

- CH₄ source strength of 62–236 Tg yr⁻¹ for living plants and 1–7 Tg yr⁻¹ for plant litter, i.e. 10–30% of the global annual CH₄ emissions
- However, most measurements performed in CH₄ free air

Dr. Nicolas Brüggemann | IMK-IFU | JESIUM 2008, Giens, France

KIT – a Cooperation between Karlsruhe Research Center and University of Karlsruhe HELMHOLTZ | SEMEINSCHAFT

Methodology of follow-up experiments

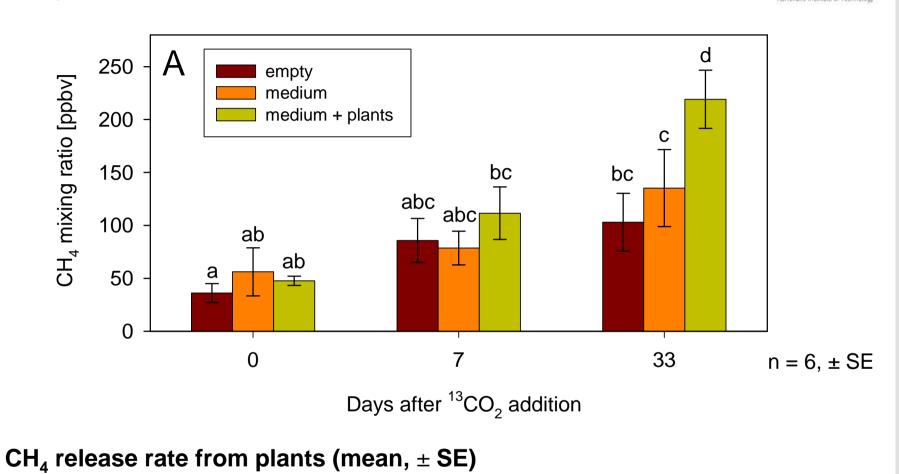
Dueck et al. (2007)

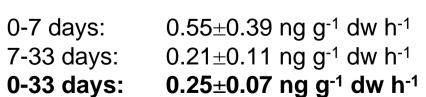
- basil, sage, wheat, maize grown under ¹³CO₂ atmosphere from seeds
- potential ¹³CH₄ emission measured with photoacoustic instrument
- observed no significant methane emission

Beerling et al. (2008)

- maize and tobacco, grown under normal CO₂ in a greenhouse
- potential ${}^{13}CH_4$ emission measured with FID and leaf cuvettes
- observed no significant methane emission

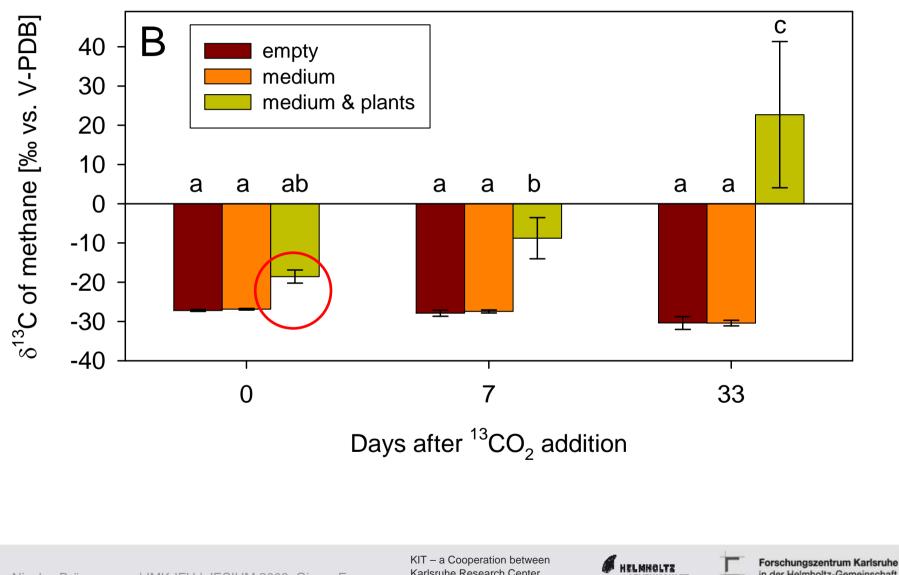
KIT – a Cooperation between Karlsruhe Research Center and University of Karlsruhe


Our experimental design


- Plant species: grey poplar (Populus x canescens, syn. Populus tremula x P. alba), derived from cell cultures under sterile conditions
- Plants on sterile medium in gas-tight flasks in CH₄-free air
- Headspace was exchanged with synthetic air containing 20% of oxygen and 385 ppm ¹³CO₂ (99 at% ¹³C)
- Flasks were kept in glove box filled with pure N₂ for 33 days under a 16/8 h light/dark regime

KIT – a Cooperation between Karlsruhe Research Center and University of Karlsruhe

CH₄ formation

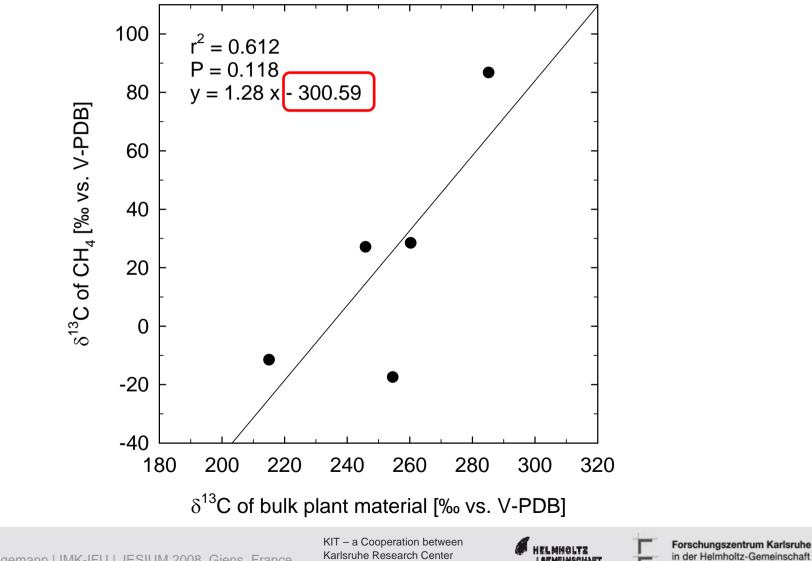


Dr. Nicolas Brüggemann | IMK-IFU | JESIUM 2008, Giens, France

KIT – a Cooperation between Karlsruhe Research Center and University of Karlsruhe HELMHOLTZ

Dr. Nicolas Brüggemann | IMK-IFU | JESIUM 2008, Giens, France

Karlsruhe Research Center and University of Karlsruhe


SEMEINSCHAFT

in der Helmholtz-Gemeinschaft IMK-IFU Garmisch-Partenkirchen

IMK-IFU Garmisch-Partenkirchen

Relationship between δ^{13} **C-CH**₄ and δ^{13} C of bulk plant material

Dr. Nicolas Brüggemann | IMK-IFU | JESIUM 2008, Giens, France

Karlsruhe Research Center and University of Karlsruhe

| SEMEINSCHAFT

Summary

- Keppler et al. (2006) reported on substantial aerobic CH₄ emission from plants and calculated a contribution of 10-30% of this new source to the global methane budget
- So far, other research groups failed to detect aerobic methane emission from plants significantly different from zero
- We have observed CH₄ release from poplar significantly different from zero and isotopically labelled
- However, the observed emission was 3 orders of magnitude lower as reported by Keppler et al. (2006)
- Possible other reasons for high atmospheric methane concentrations in the tropics: anaerobic methane formation in the soil, transport of CH₄ via the transpiration stream and release through the leaves

KIT – a Cooperation between Karlsruhe Research Center and University of Karlsruhe

