pleiotropic effects in grey poplar caused by UV radiation in wt & isoprene non-emitting plants
pleiotropic effects in grey poplar caused by UV radiation in wt & isoprene non-emitting plants

• BVOCS contribute to ozone-formation & global warming

• BVOS are carbon bases molecules

• chances in carbon-fluxes might alter BVOC emissions

→ UV as a trigger to alter “C”-sequestration within the cell
- in our work-group we study isoprene-emission

- mainly on grey poplar (*Populus x canescens*) in wt & transgenic plants

- considerable amounts of fixed C are released from the plant as isoprene

pleiotropic effects in grey poplar caused by UV radiation in wt & isoprene non-emitting plants
pleiotropic effects in grey poplar caused by UV radiation in wt & isoprene non-emitting plants

crosstalk between isoprene formation & other biochemical pathways

quantification of variable „C“ pools

regulation of MEP pathway (feedback control; post-translational modifications)

export of IPP import of DMAPP contribution to different isoprenoid pathways

metabolic competition: C5/C10 versus C40 isoprenoids

introduction idea set-up results conclusions out-look
what is UV radiation anyway?

- high-frequent light
- low wavelength (280-380nm)
- not visible to human eyes
pleiotropic effects in grey poplar caused by UV radiation in wt & isoprene non-emitting plants

UV effects - direct:

- oxidative damaging of macro-molecules such as DNA, aromatic amino-acids & membrane-lipids
- generation of reactive oxygen species (ROS)

UV effects - indirect:

- induction of synthesis of protective compounds such as phenolic compounds & carotinoids...
- changes in gene-expression at different levels:
 - transcription
 - translation
 - post-translational modification
- induction of anti-oxidative enzymes

e.g. Brown et. al., 2005; Jordan, 2002
pleiotropic effects in grey poplar caused by UV radiation in wt & isoprene non-emitting plants

what is the idea of the experiment, then?

- UV has in impact on the cells metabolism
- so it might change the use of carbon & its fluxes

→ therefore UV possibly also affects isoprenoid metabolism & isoprene emission?

→ the data should become integrated in a cellular model of BVOC emission
pleiotropic effects in grey poplar caused by UV radiation in wt & isoprene non-emitting plants

Fatty acid biosynthesis

Acetaldehyde emission

Phenylpropanoid/Flavonoid pathway

Shikimate pathway aromatic aa

ABA

Carotenoids

introduction idea set-up results conclusions out-look

DTDP

DOXP

MEP

GPP

IPP + DMAPP

IDI

NADPH

NADP+

DXS

TP

Pyr

PEP

PEP

data by Katja Behnke

20 40 60 80 100 120 140 160

DMAPP [nmol mg dw⁻¹]
SO:

- exposure of poplar plants to UV radiation in comparison to un-radiated plants
- also we compare wt vs. transgenic lines

→ 4 treatments

<table>
<thead>
<tr>
<th>introduction</th>
<th>idea</th>
<th>set-up</th>
<th>results</th>
<th>conclusions</th>
<th>out-look</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- exposure of poplar plants to UV radiation in comparison to un-radiated plants</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- also we compare wt vs. transgenic lines</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

pleiotropic effects in grey poplar caused by UV radiation in wt & isoprene non-emitting plants
pleiotropic effects in grey poplar caused by UV radiation in wt & isoprene non-emitting plants

how did we set up the experiment:

- sun-simulators at the Helmholtz Centre, Munich
- these allow a good approximation to the solar spectrum
- under controlled conditions
- 2 repeats

on-line monitoring:

- PTR-MS (Ionicon, Austria)
- GFS-3000 (Walz, Germany)
- Mini-PAM (Walz, Germany)
pleiotropic effects in grey poplar caused by UV radiation in wt & isoprene non-emitting plants

schematic outline of the sun simulators

introduction idea set-up results conclusions out-look

Metal halide lamps
Quartz halogène lamps
Blue fluorescent tubes
UV fluorescent tubes

picture by Dr. Andreas Albert
pleiotropic effects in grey poplar caused by UV radiation in wt & isoprene non-emitting plants

timing:

- in total 2 weeks of monitoring
- on-line measurements at days 0,1,5,9,13
- harvest of leaves at days 0,1,2,3,5,9,13
pleiotropic effects in grey poplar caused by UV radiation in wt & isoprene non-emitting plants

in vitro measurements include:

- analysis of:

 - PS-Pigments via HPLC
 - Metabolomics via ICR-FT/MS
 - Phenolic compounds via HPLC-MS
 - Gene-expression via RT-PCR
pleiotropic effects in grey poplar caused by UV radiation in wt & isoprene non-emitting plants

Morphology

- Wild type
- \(Pc\text{ISPS}\text{-RNAi}\) line

<table>
<thead>
<tr>
<th>introduction</th>
<th>idea</th>
<th>set-up</th>
<th>results</th>
<th>conclusions</th>
<th>out-look</th>
</tr>
</thead>
<tbody>
<tr>
<td>minus UV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>plus UV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

wild type
pleiotropic effects in grey poplar caused by UV radiation in wt & isoprene non-emitting plants

No Differences

- photosynthetic parameters
- carotinoid-content
- α-tocopherol-level
pleiotropic effects in grey poplar caused by UV radiation in wt & isoprene non-emitting plants

DMAPP & Isoprene

introduction

idea

set-up

results

conclusions

out-look
Anthocyanins & other Phenolic compounds

...more than 20 different compounds were found & quantified...
pleiotropic effects in grey poplar caused by UV radiation in wt & isoprene non-emitting plants

Anthocyanins & other Phenolic compounds

phenolic compound 8:
- no line-effect
- no treatment-effect
- no time-effect

<table>
<thead>
<tr>
<th>introduction</th>
<th>idea</th>
<th>set-up</th>
<th>results</th>
<th>conclusions</th>
<th>out-look</th>
</tr>
</thead>
</table>

- **K - UV**
- **K + UV**
- **RB - UV**
- **RB + UV**
Anthocyanins & other Phenolic compounds

Anthocyanins:
- treatment-effect
- time-effect
pleiotropic effects in grey poplar caused by UV radiation in wt & isoprene non-emitting plants

Anthocyanins & other Phenolic compounds

Introduction

Idea

Set-up

Results

Conclusions

Outlook

Camphorol-derivate:

- line-effect
- treatment-effect
- time-effect

R-lines show less flavonoids!
pleiotropic effects in grey poplar caused by UV radiation in wt & isoprene non-emitting plants

Results

- Up and down regulation of pathways

- Transcription/translation: downregulated (71), upregulated (138)
- Others: downregulated (36), upregulated (87)
- Signal transduction: downregulated (3), upregulated (12)
- Photosystems: downregulated (1), upregulated (2)
- Antioxidative system: downregulated (3), upregulated (11)
- Stress metabolism: downregulated (3), upregulated (8)
- Isoprenoid metabolism: downregulated (2), upregulated (6)
- Phenylpropanoid/flavonoid metabolism: downregulated (1), upregulated (2)
- Amino acid (aa) metabolism: downregulated (1), upregulated (1)
- Sugar metabolism: downregulated (1), upregulated (1)
- Unknown: downregulated (1), upregulated (2)

Data by Katja Behnke
pleiotropic effects in grey poplar caused by UV radiation in wt & isoprene non-emitting plants

review:

- by eye: clear effect of treatments
 - wild type
- effects in anthocyanins & flavonoids
- isoprene metabolism emission shows clear trends

introduction
idea
set-up
results

conclusions
out-look

PcISPS-RNAi
line
interpretation:

- isoprene emission is probably linked to UV-response in poplar

- UV-radiation can be used to alter "C"-fluxes in plant systems

- isoprene is not a compound protecting the plant from UV effects, but rather acting competitive for "C"
interpretation:

- interesting however, is the observed decrease in flavonoid content in the ISPS-repressed plants
pleiotropic effects in grey poplar caused by UV radiation in wt & isoprene non-emitting plants

this study:

- promising to analyse flavonoid gene expression
 - i.e. find target genes responsible for expression-pattern
 - quantify there expression levels

- structure analysis of phenolic compounds

- METABOLOMIC analysis should show compound composition & distribution in more detail
future prospects:

• METABOLOMICS provide a powerful tool for easy data-access

• transgenic lines will help to better understand cellular processes

• cooperation with modelers will help to better:
 - predict
 - understand

future scenarios
pleiotropic effects in grey poplar caused by UV radiation in wt & isoprene non-emitting plants

many thanks to:

co-operating scientists from the Helmholtz Centre:
- Dr. Harald Seidlitz
- Dr. Werner Heller
- Dr. Andreas Albert

the supporting staff from the Helmholtz Centre:
- Dr. Babro Winkler
- Peter Kary
- Werner Rupprecht

my supervisor:
Prof. Dr. Joerg-Peter Schnitzler
pleiotropic effects in grey poplar caused by UV radiation in wt & isoprene non-emitting plants

...and...of course:

you, for your attention...