

http://www.interactive-grid.eu

Where am I from?

- Karlsruhe Institute of Technology (KIT)
 - Merger between University Karlsruhe (UKA)
 - Forschungszentrum Karlsruhe (FZK)
 - 7800 Employees
 - 50 Institutes
- Steinbuch Centre for Computing (SCC)
 - 200 Employees
 - Grid
 - Cloud
 - HPC-Applications
 - EU-projects

The Grid

Marcus Hardt SCC / KIT

Marcus.Hardt@iwr.fzk.de

Outline

- Why Grid?
- The hardware
- The software
- Current uses on the grid
- Improvements to the grid
- Q&A

2001: Why should we build a grid

CERN (European Nuclear Research Center(

- New particle accelerator: LHC
- Find new particles: e.g. the Higgs boson
- Knowledge for fundamental theory of physics

2001: Why should we build a grid

2001: Why should we build a grid

One example: the ATLAS detector

Data Volume

Annual data storage: 10 PetaBytes/year

Balloon (30 Km)

> DVD stack with 1 year LHC data! (~ 20 Km)

Easy: Find the Needle in a haystack

LHC: Find the Needle in 20 million haystacks

.... find one Needle in 20 million haystacks

How to provide the required hardware?

The infrastructure

- Hierarchical Organisation:
 - Tier0: CERN
 - Tier1: 12 Big Computer Centres (Spain: PIC, Barcelona)
 - Tier2: Universities
- Organised by regions
 - Southwest Europe (= Spain + Portugal)
 - Southeast Europe
 - Germany/Switzerland
 - France...
 -

= 2176 = 6788

ied

Spain + Portugal: • 2300 CPUs • 80 PetaByte Storage

Imperial College

2176

6788

13:33:51 UTC

13:24:29 UTC

13:24:29 UTC

How to provide the required hardware?

Marcus.Hardt@iwr.fzk.de

Grid middleware

- Middleware
 - Software between application and operating system
- gLite
 - Grid middleware
 - Developed with EU-funding
 - High Energy Physics community (CERN)
- gLite architecture
 - gLite defines a set of building blocks
 - (CE, SE, UI, MON, RB, CA, VO, VOMS, BDII)

Open Source?

- Open Source?
 - Sure! What else!
- Reasons:
 - Grid is strategic platform on which EU wants to provide computer infrastructure for science
 We don't want to develop the same thing twice
 We want others to participate
 We use taxpayers money
- License
 - Based on BSD-License
 - Lacks "mention everybody"
 - Adds "return bugfixes"

Access to resources

- Authentication
 - Certification Authority (CA) infrastructure
 - Who are you?
 - => X.509 Certificate
- Authorisation
 - What are you working on? Which Group?
 > Virtual Organisation (VO)
 - Which role do you play?
 => User, Software manager, ...
 - Which resources allow access for you?
 > Virtual Organisation concept

int.eu.grid

The name <u>GRID</u>

- Analogy to electrical power grid
 - Plug a lamp into the wall and get light
 - Plug a computer into the network and get power

Using a lightbulb in the job based grid world

 Describe the lightbulb Voltage, Watts, Amount Lighting_time, ...

int.eu.grid

- Describe the lightbulb Voltage, Watts, Amount Lighting_time, ...
- Submit request for electricity to broker

- Describe the lightbulb Voltage, Watts, Amount Lighting_time, ...
- Submit request for electricity to broker
 - => Powerplant chosen for you

- Describe the lightbulb Voltage, Watts, Amount Lighting_time, ...
- Submit request for electricity to broker
 - => Powerplant chosen for you
 - => Send lightbulb to powerplant

- Describe the lightbulb Voltage, Watts, Amount Lighting_time, ...
- Submit request for electricity to broker
 - => Powerplant chosen for you
 - => Send lightbulb to powerplant
 - => Wait for electricity

- Describe the lightbulb Voltage, Watts, Amount Lighting_time, ...
- Submit request for electricity to broker
 - => Powerplant chosen for you
 - => Send lightbulb to powerplant
 - => Wait for electricity
 - => Lightbulb glows

- Describe the lightbulb Voltage, Watts, Amount Lighting_time, ...
- Submit request for electricity to broker
 - => Powerplant chosen for you
 - => Send lightbulb to powerplant
 - => Wait for electricity
 - => Lightbulb glows
- Results come back

- Describe the lightbulb Voltage, Watts, Amount Lighting_time, ...
- Submit request for electricity to broker
 - => Powerplant chosen for you
 - => Send lightbulb to powerplant
 - => Wait for electricity
 - => Lightbulb glows
- Results come back
 - About 20% of the bulbs broken

Intermediate Summary

IMS Model Suite Mass Concentration 33h after Release Bordeaux

T + 33h ng/m³

Volumetric concentration in ng/m³

Interval	Color
(-INF, 0)	
<0, 0.2)	
<0.2, 0.4)	
<0.4, 0.6)	
<0.6, 0.8)	
<0.8, 1)	
<1, 1.2)	
<1.2, 1.4)	
<1.4, 1.6)	
<1.6, 1.8)	
<1.8, 2)	
<2, +INF)	

Slide courtesy Isabel Campos, IFCA

Fusion Reactor "TJ-II" in Zaragoza

Slides courtesy Ruben Vallez, Bifi, Uni Zaragoza

Trayectorias individuales

Interactive Visualizator for ISDEP

Puntos de choque con la cámara de vacío

Ultrasound CT

- Breast cancer detection
- Ultrasound is difficult to trace
- Intelligent algorithms required
 - Intelligence requires CPU time

Ultrasound CT Characteristics

- Data: 20 GB (one full measurement)
- Computing time depends
 - On output size / resolution
 - amount of input data
- Currently possible:
 - 2 GB input
 - 100x1024² 3D-image

10 days of computation on 1 CPU P-IV-2GHz

Ultrasound CT on the grid

Phantom

- This phantom is used for testing the measurement hardware and the software algorithms
- For measurement it is placed into the USCT

3D USCT demonstrator

 Measurement device, located under the treatment table on which the patient lies

Grid reconstruction in progress

• Every line of the image is processed on a different CPU of the int.eu.grid infrastructure

Final reconstruction of the phantom

• Speedup by using 40 CPUs of int.eu.grid is roughly 2h versus 60h on a laptop

Marcus.Hardt@iwr.fzk.de

Problems with the infrastructure

- There are many **excellent** componets!!!
- Just **some** things are bad:
 - Design of gLite was made by & for CERN
 - Submission of jobs is unflexible
 - No API style access
 - Startup of resources takes minutes
 - No interactivity

Is there a solution?

Marcus.Hardt@iwr.fzk.de

Is there a solution?

Yes: We just need a direct connection

Marcus.Hardt@iwr.fzk.de

Is there a solution?

Yes: We just need a direct connection

Marcus.Hardt@iwr.fzk.de

Solutions

- Several solutions exist
- Just a layer on top of the grid
- Remote Procedure Calls <=> API like access
- One tool:
 - GridSolve

GridSolve interface ICL 🕹 🖝

- Client interface for Java, C, C++, Fortran, Matlab, Octave, and many more
- Easy to use:

y=problem(x) <=> y=gs_call('problem', x)

- Transport input parameters to remote side
- Execute "problem"
- Transport result back

Demonstration

• Running Ultrasound CT on the grid

• Life demo on int.eu.grid

Source code

```
function f=broetchenverteiler p (N, RESO, MAX ITERATIONS)
|for i=1:N;
        session id(i)=gs call async('maendele', i-1, N, RESO, M
end
while (num finished < N)
        for i=1:N;
                status(i)=gs probe(session id(i));
                if (status(i) == 0)
                         result=gs wait(session id(i));
                end
        end
end
```


Muchas gracias por su atención

What's missing?

• Goal:

- Seamless
- Interactive
- Grid access
- From matlab
- Seamless
 - Don't compile standalone application

个

- Interactive
 - No overhead (< 10 s)
 - No manual data mover La
- From Matlab
 - Run Matlab-functions rer

Example:

- ^r Large Excel Table
 - Excel must run locally
 - Computation in the grid

How to do it?

- 1. Make Matlab run on gLite
- 2. Integrate GridSolve with gLite

=> Grid in Matlab using Gridsolve & RPC GIMGER

USCT reconstruction := "Black Box"

• Computation takes long (days, weeks, years)

Using gLite

- Initial approach to parallel execution:
 - Partitioning of data
 - Many parallel jobs

Marcus.Hardt@iwr.fzk.de

Using gLite in practise

What's missing?

Goal:

- Seamless
- Interactive
- Grid access
- From matlab
- Seamless
 - Don't compile standalone application
- Interactive
 - No overhead (< 10 s)
 - No manual data movement

創

From Matlab

Our cable: GridSolve

GridSolve ready for action

GridSolve in action

GridSolve in action

