Integration of Measurements into Models-Enhancing Model Performance at the Interface between Atmosphere and Subsurface

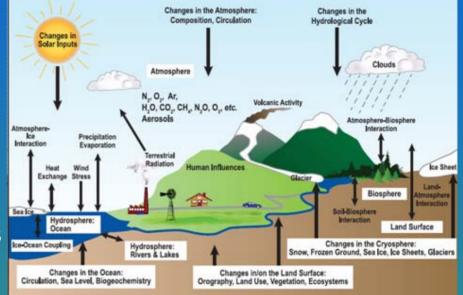
Introduction

Insa Neuweiler, Sabine Attinger, Harald Kunstmann

DFG Round Table Discussion, Berlin 10.-11.4.2008

Motivation

- Water: problem of high societal relevance


 ⇒ coping with changing flood risk and water availability
 due to climate- & land use change
 ⇒ coping with water demands of ecosystem services
 ⇒ coping with freshwater demands of growing world population
 - coping with freshwater demands of growing world population (quantity & quality)
- Decisions for sustainable water management usually based on hydrological modeling results
- Vulnerable regions are often ungauged \Rightarrow calibration/validation of models?

Motivation (II)

- Climate change impact research demands INCREASED PREDICTABILITY & DECREASED UNCERTAINTY bounds of hydrological modeling systems
- Hydrological processes: nonlinear & complex at all scales coupled with chemical & biological processes
- Close linkage & feedbacks atmosphere ↔ land surface ↔ subsurface: soil & vegetation = long & medium term memory of atmosphere atmosphere = main driver of terrestrial water fluxes

Motivation (II)

- CURRENT ATMOSPHERIC & HYDROLOGICAL MODEL PERFORMANCE OFTEN NOT SUFFICIENT FOR DECISION MAKING!
- Required: Improved knowledge and description of processes at interface between atmosphere and land surface
- Rapid development of measurement techniques and data sets
 - ... far beyond measurements of discharge, piezometric heads, solute transport

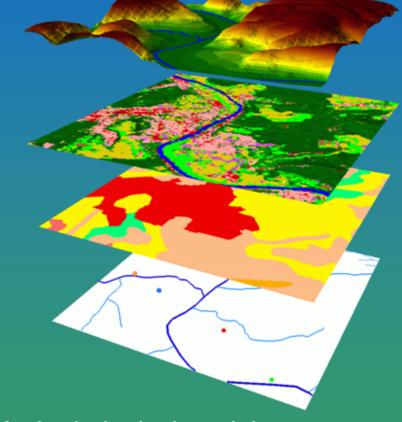
DFG Round Table Discussion, Berlin 10.-11.4.2008

Variety of Observations: Examples

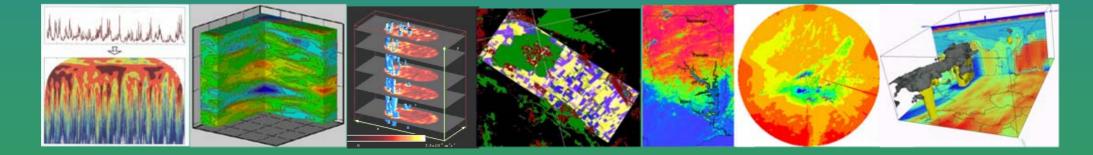
Traditionally: focus on DISCHARGE only, piezometric heads, solute transport \Rightarrow LIMITED MODEL PREDICTABILITY AND RELIABILITY

Required now: extension towards further state variables

- POINT/station measurements:
 - 1) latent heat fluxes (e.g. eddy covariance derived)
 - 2) soil moisture & temperature
- LINE integral measurements:
 - 1) scintillometer derived sensible heat fluxes
 - 2) microwave attenuation derived precipitation


Variety of Observations: Examples (II)

- AREAL measurements ⇒ remote sensing
 - 1) Radar Systems
 - independent of cloud cover & daytime
 - observation of e.g. soil moisture
 - satellites SMOS (60x60 km², Δt=3 days) ENVISAT ASAR (up to150x150m²) Terra-SAR-X (up to 1x1 m²)
 - 2) Multi- and Hyperspectral Sensors
 - observation of e.g. surface temperatures
 - vegetation & snow cover dynamics
 - heat fluxes, using Energy Balance Models, e.g. SEBAL
 - satellites NOAA-AVHRR, MODIS, Landsat


Scientific Challenge

- Integration of observations of different TYPE and different SPATIAL AND TEMPORAL SCALES in hydrological models
- COMPARTMENT CROSSING MODELING: atmosphere ↔ land surface ↔ subsurface
- Joint consideration of WATER FLUXES & ENERGY FLUXES (& other fluxes: CO₂, trace gases, etc.)
- NONLINEAR & COUPLED PROCESSES complex and heterogeneous environment
- Accounting for FEEDBACKS between soil, vegetation, and atmosphere
- Scale gap: $\Delta x, \Delta y$ atmosphere model >> $\Delta x, \Delta y$ hydrological model

Scientific Challenge (II)

- Increased PARAMETER SPACE of compartment crossing modeling systems
 ⇒ efficient non-linear parameter estimation algorithms required
 ⇒ increased number of degree of freedom
 ⇒ non-uniqueness of solutions
- Non-uniqueness of solutions and errors of INDIRECT MEASUREMENTS
- Bridging the gap between MODELING SCALE & MEASUREMENT SCALE
- Development of new DATA ASSIMILATION & INTEGRATION ALGORITHMS for hydrological modeling systems

Objectives of Round Table Discussion

- Exchange of expertise in modeling & data integration techniques in geophysics, hydrological sciences and atmospheric sciences
- Comparison data integration techniques geophysics ↔ atmospheric sciences WHAT CAN HYDROLOGICAL AND ATMOSPHERIC SCIENTISTS LEARN FROM EACH OTHER?
- Identification of transferable methods that have potential for increased hydrological predictability
- Identification of methodological research gaps and model development/extension requirements
- Improved integration of remote sensing products in hydrological modeling systems
- Identification & planning of concerted compartment crossing measurement campaigns & modeling efforts (data sets & model approaches)

Specific Questions to be Addressed

- Major difficulties in joint modeling of water and energy fluxes?
- Approaches in individual disciplines to integrate observations on different temporal and spatial scales?
- Which observations in detail are available for our purposes?
- Current model approaches and developments for
 - regional,
 - distributed,
 - fully coupled water and energy fluxes,
 - joint atmosphere & land surface (soil & vegetation) modeling systems?
- New approaches for scale bridging (upscaling & downscaling) between atmosphere and hydrological models?
- Can we build on existing modules (→ focus on model coupling) or do we need to develop completely a new model system from scratch?

Thank you for your attention

Definition

Atmospheric sciences (Kalnay, 2003) ASSIMILATION = Production of initial conditions through a *statistical combination of observations and modeling results* Purpose: using all the available information, to determine as accurately as

possible the state of the atmospheric (or oceanic) flow

Examples

- Empirical analysis schemes
- Least square methods
- Multivariate statistical data assimilation methods
- 3D-Var
- Dynamical and physical balance in the initial conditions

Hydrological/Geophysical Sciences INTEGRATION = [...Sabine ...]