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Aim: To introduce the statistical concept of 1) linear 
regression

 
for trend analysis

 
and show how it can be used to 

model the response of a variable to changes in an explanatory 
variable, 2) theory of statistical significance tests.

Practical exercises: Exercises will follow using rainfall 
observation data from the Volta Basin (West Africa).

Prerequisistes: Minimal statistical knowledge, but some basic 
mathematics and computer skills.



1. Introduction

Linear Regression Analysis (LRA):

•
 

Modeling functional relationship of two or more variables
•

 
Correlation coefficient just quantifies the magnitude and the 
direction of the relationship, not

 
the functional relationship!
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Example
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Hypothesis: Body height (xi

 

) is an important factor in 
determining the body weight (yi

 

).

i Weight Height
1 64 1.62
2 74 1.83
3 86 1.91
4 69 1.76
5 84 1.88
6 69 1.69
7 74 1.78

0.9419 → strong 
positive relationship!



Correlation Coefficient

Correlation
 

Coefficient
 

(CC) reflects
 

the
 

noisiness
 

and direction
 

of 
a linear relationship

 
(top

 
row),  but

 
not the

 
slope

 
of that

 
relationship

 (middle), nor
 

many
 

aspects
 

of nonlinear
 

relationships
 

(bottom). 
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Regression = Functional relationship

Body weight = -57.8 + 0.741 Body height
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What is the body weight of a person with a height of 165cm?

Body weight = -
 

57.8 + 0.741 * 165
 

= 64.5

Prediction



1. Introduction

Linear Regression Analysis (LRA):

•
 

Modeling functional relationship of two or more variables
•

 
Correlation coefficient just quantifies the magnitude and the 
direction of the relationship!

•
 

Predicting values, which are not measured
•

 
Assessing linear trends in time series
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Time Series

•
 

A time series
 

is a sequence of data points, measured 
typically at successive times, spaced at (often uniform: e.g. 
δt = 1d) time intervals.

•
 

Superposition of four components:
1.

 
Seasonal (periodical)

2.
 

Cyclical
3.

 
Transient (Trend) 

4.
 

Stochastic
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Transient component can often be described as 
a linear function (linear regression)!



Modeling Steps -
 

General

1. Model identification
•

 
Descriptive statistics (mean, variance, etc)

•
 

Plotting the data (scatter plot)
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Modeling Steps -
 

General

2. Model estimation
•

 
Fitting the model to the sample data

•
 

Estimating the confidence intervals
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Modeling Steps -
 

General

3. Model validation
•

 
The model fit is critically assessed by carefully analysing

 
the 

residuals (errors) of the fit
•

 
Further diagnostics
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Modeling Steps -
 

General

4. Application (Prediction) 
•

 
The model is used to make predictions in new situations 

•
 

Ultimate test for any model (real skill)
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2. Brief mathematical description of 
LRA

Linear regression
 

describes the linear
 relationship between a predictor variable, 

plotted on the x-axis, and a response 
variable, plotted on the y-axis

Independent Variable (X)

D
ep

en
de

nt
 V

ar
ia

bl
e 

(Y
)

1. Introduction
2. Brief mathematical description of LRA
3. Regression statistics
4. Inference statistics
5. Practical exercises using MATLAB!



1oY Xβ β= +

X

Y

oβ

1.0

1β

β0 –
 

Intercept

β1 -
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X

Y ε
ε

1i o i iY Xβ β ε= + +

Point estimation
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How to built a linear model that fits 
to the measured data?

The Ordinary Least Square Method (OLS)
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Ordinary Least Squares (OLS) 
Regression

We must find values of      and     that minimiseoβ 1β

Model line: XŶ 10 β+β=

Residual (ε) = ŶY −

Sum of squares of residuals = ∑ − 2)ŶY(

∑ − 2)ŶY(min
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Least squares estimators for β1 and β0
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Regression Statistics

nsobservatio ofnumber n =

n
X

X ∑=

n
Y

Y ∑=

1. Introduction
2. Brief mathematical description of LRA
3. Regression statistics
4. Inference statistics
5. Practical exercises using MATLAB!



Descriptive Statistics
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Regression Statistics

∑ −= 2)YY(SST
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Y

Variance to be
explained by predictors

(SST)
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Y

X

Variance
 

NOT 
explained by

 
X

(SSE)

Variance 
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X
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SSESSRSST +=

Regression Statistics
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Regression Statistics

SST
SSRR 2 =

Coefficient of Determination
to judge the adequacy of the regression model
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Regression Statistics
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Standard Error for the regression model
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Confidence Interval on Regression 
Coefficients
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Example -
 

Confidence Interval

1.
 

Identify a sample statistic, e.g. the regression slope b1
 calculated from sample data.

2.
 

Select a confidence level. The confidence level describes the 
uncertainty of a sampling method. Often, researchers choose 
90%, 95%, or 99%

 
confidence levels, but any percentage 

can be used.

3.
 

Calculate the margin of error for b1, use a t score for the 
critical value, with degrees of freedom (DF) equal to n – 2:



Margin of Error

•
 

Compute alpha (α): α
 

= 1 -
 

(confidence level / 100) = 1 -
 99/100 = 0.01 

•
 

Find the critical probability (p*): p* = 1 -
 

α/2 = 1 -
 

0.01/2 = 
0.995 

•
 

Find the degrees of freedom (df): df
 

= n -
 

2 = 7 -
 

2 = 5. 
•

 
The critical value is the t score having 5 degrees of freedom 
and a cumulative probability equal to 0.995. From the t 
Distribution (tabulated values), we find that the critical value 
is 4.032. 

•
 

ME = critical value * SE = 4.032 * 0.12 = 0.477



Steps

4.
 

Specify the confidence interval. The range of the confidence 
interval is defined by the sample statistic +

 
ME. And the 

uncertainty is denoted by the confidence level.

b1

 

= 0.741
ME = 0.477

We are 99% confident that the true slope of the regression 
line is in the range 0.2645 ≤ β1 ≤

 
1.2184.



Inferential Statistics
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Comprises the use of statistics to make inferences from the 
sample data to unknown aspects of the population (general 
condition)!



Statistical Hypothesis Testing:

•
 

make a null hypothesis (H0 ) and an alternative hypothesis (H1 ) 
and set a

 
significance level. This is the (low) probability α

 
at 

which
 

we
 

will reject
 

H0

•
 

calculate
 

the
 

statistic
 

and its
 

degrees
 

of freedom
•

 
look

 
up its

 
predicted

 
value

 
in statistical

 
distribution

 
tables

•
 

if
 

the
 

observed
 

statistic
 

is
 

larger than
 

the
 

tabulated
 

value
 

we
 reject

 
H0
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Hypotheses Tests for Regression 
Coefficients
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Hypothesis Tests on Regression 
Coefficients
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Hypotheses Test on the CC
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ANOVA

df Sum of 
Squares

Mean 
Squares

Femp P-value

Regression 1 SSR SSR / df MSR / MSE P(Femp

 

)

Residual n-2 SSE SSE / df

Total n-1 SST

If P(Femp

 

)<α
 

then we know that we get significantly better prediction of Y 
from the regression model than by just predicting mean of Y.
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Assumptions of LRA
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1.
 

Homoscedasticity
 

–
 

the variance of the error terms is 
constant for each xi

 

,  To check this, look at the plot(s) of the 
residuals versus the X value. 

iε

X

Here: not fulfilled (increasing in 
variance)!



Assumptions of LRA
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2.
 

Linearity
 

–
 

the relationship between X and Y is linear.  To 
check this,  again look at the plot of the residuals versus the 
X value. You don’t want to see a clustering of positive 
residuals or a clustering of negative residuals. 

iε

X



Assumptions of LRA

1. Introduction
2. Brief mathematical description of LRA
3. Regression statistics
4. Inference statistics
5. Practical exercises using MATLAB!

3.
 

Normality of the residuals
 

–
 

residuals
 

follow a normal 
distribution. > Normal probability plot of standardized 
residuals, histogram of residuals.  

4.
 

Independence of error terms
 

–
 

successive residuals are 
not correlated.  If they are correlated, it is known as 
autocorrelation. > Durbin-Watson statistics.



Assumptions

If any of these assumptions is violated (i.e., if there is 
nonlinearity, serial correlation, heteroscedasticity, and/or 
non-normality), then the predictions, confidence intervals, 
and relationship yielded by a regression model may be (at 
best) inefficient or (at worst) seriously biased or misleading.
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Violations of linearity
 

are extremely serious -
 

if you fit a linear 
model to data which are nonlinearly related, your predictions 
are likely to be seriously in error, especially when you 
extrapolate beyond the range of the sample data.
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Violations of independence
 

are also very serious in time series 
regression models: serial correlation in the residuals means 
that there is room for improvement in the model, and extreme 
serial correlation is often a symptom of a badly misspecified

 model. Serial correlation is also sometimes a byproduct of a 
violation of the linearity assumption as in the case of a simple

 (i.e., straight) trend line fitted to data which are growing 
exponentially over time.
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Violations of homoscedasticity
 

make it difficult to estimate the 
true standard deviation of the forecast errors, usually resulting 
in confidence intervals that are too wide or too narrow. In 
particular, if the variance of the errors is increasing over time, 
confidence intervals for out-of-sample predictions will tend to 
be unrealistically narrow. Heteroscedasticity

 
may also have the 

effect of giving too much weight to small subset of the data 
when estimating coefficients.
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Violations of normality
 

compromise the estimation of 
coefficients and the calculation of confidence intervals. 
Sometimes the error distribution is "skewed" by the presence 
of a few large outliers. Since parameter estimation is based on 
the minimization of

 
squared error, a few extreme observations 

can exert a disproportionate influence on parameter estimates. 
Calculation of confidence intervals and various signficance

 tests for coefficients are all based on the assumptions of 
normally distributed errors. If the error distribution is 
significantly non-normal, confidence intervals may be too 
wide or too narrow. 
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Thank You!
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