

http://www.interactive-grid.eu

Interactive grid access for Matlab

Marcus Hardt SCC @ FZK

int.eu.grid

http://interactive-grid.eu

• Idea: Computer power <=> Electrical power

From Electrical power grid => computational grid

- Across organisational domains / countries
- Transparent access to
 - Computing
 - Data
 - Network
- Large scale installations

Grid middleware

- Middleware
 - := Softwarelayer between application and operating system
- gLite: <u>one</u> grid middleware
 - Development driven by CERN
 - Tools for data+computing of new accelerator
 - 10 PB/year * 20 years, random access
 - Job based:

int.eu.qrid

- Job = Complete application + description
- Send **job** to remote compute center
- Get result back after job is finished

- RAM/CPU: 468MB
- DISK [Tot / Avail]: [8042TB / 5408TB] ([33892GB / 22792GB] per site)

gLite architecture

int.eu.grid h

http://interactive-grid.eu

 Describe the lightbulb Voltage, Watts, Amount Lighting_time, ...

int.eu.grid

http://interactive-grid.eu

- Describe the lightbulb Voltage, Watts, Amount Lighting_time, ...
- Submit request for electricity to broker

int.eu.grid

http://interactive-grid.eu

- Describe the lightbulb Voltage, Watts, Amount Lighting_time, ...
- Submit request for electricity to broker
 - => Powerplant chosen for you

int.eu.grid

http://interactive-grid.eu

- Describe the lightbulb Voltage, Watts, Amount Lighting_time, ...
- Submit request for electricity to broker
 - => Powerplant chosen for you
 - => Send lightbulb to powerplant

int.eu.grid

http://interactive-grid.eu

- Describe the lightbulb Voltage, Watts, Amount Lighting_time, ...
- Submit request for electricity to broker
 - => Powerplant chosen for you
 - => Send lightbulb to powerplant
 - => Wait for electricity

int.eu.grid

http://interactive-grid.eu

- Describe the lightbulb Voltage, Watts, Amount Lighting_time, ...
- Submit request for electricity to broker
 - => Powerplant chosen for you
 - => Send lightbulb to powerplant
 - => Wait for electricity
 - => Lightbulb glows

int.eu.grid

http://interactive-grid.eu

- Describe the lightbulb Voltage, Watts, Amount Lighting_time, ...
- Submit request for electricity to broker
 - => Powerplant chosen for you
 - => Send lightbulb to powerplant
 - => Wait for electricity
 - => Lightbulb glows
- Results come back

- Describe the lightbulb Voltage, Watts, Amount Lighting_time, ...
- Submit request for electricity to broker
 - => Powerplant chosen for you
 - => Send lightbulb to powerplant
 - => Wait for electricity
 - => Lightbulb glows
- Results come back
 - About 20% of the bulbs broken

int.eu.grid http://interactive-grid.eu

Is interactivity a solution?

int.eu.grid

http://interactive-grid.eu

Is interactivity a solution?

Yes! We submit a cable-job !

int.eu.grid

http://interactive-grid.eu

The interactive channel

A "cable" connects user with resource

http://interactive-grid.eu

Mai

ardt@iwr.fzk.de

Our cable: GridSolve

GridSolve submitted to the WNs

GridSolve network connectivity

GridSolve workflow

GridSolve interface ICL 🕹 🗸

- Client interface for Java, C, Fortran, Matlab, Octave, ...
- Easy to use:

int.eu.grid

y=problem(x) <=> y=gs_call('problem', x)

- Transport input parameters to remote side
- Execute "problem"
- Transport result back

=> Reduce complexity of the grid to one function call

http://interactive-grid.eu

- Two concurrent runs of "backpropagation" algorithm
- Local part:
 - Matlab computes "backpropagation" on my laptop
- Grid part:
 - Matlab computes "backpropagation" using the grid
 - We use
 - GridSolve interfaces (used in backpropagation_parallel)
 - Migrating Desktop (MD): grid Integration environment
 - Grid resource allocation (via jobs from MD)

Life-Demo

- We can...
 - ... use grid resources from Matlab
 - ... compute **more** pixels
 - ... in **shorter** time
 - ... develop algorithms faster

- Download a movie of the life demonstration:
 - http://marcus.hardt-it.de/grid4matlab

Summary

• Current status

- Grid useable within Applications (like Matlab)
 - Interactively
 - Without much grid specific knowledge
- Work in progress
 - Improve minor itches with GridSolve
 - Simplify grid allocation
- Future work
 - Software deployment
 - Data management
 - Inter process communication (MPI)

Google interactive grid I'm Feeling Lucky

http://interactive-grid.eu


```
function f=broetchenverteiler p (N, RESO, MAX ITERATIONS)
|for i=1:N;
        session id(i)=gs call async('maendele', i-1, N, RESO, M
end
while (num finished < N)
        for i=1:N;
                status(i)=gs probe(session id(i));
                if (status(i) == 0)
                         result=gs wait(session id(i));
                end
        end
end
```


What's missing?

• Goal:

- Seamless
- Interactive
- Grid access
- From matlab
- Seamless
 - Don't compile standalone application

卽

Interactive

- No overhead (< 10 s) E
- No manual data movem Lo
- From Matlab
 - Run Matlab-functions rer

Example:

- Large Excel Table
 - Excel must run locally
 - Computation in the grid

USCT Algorithm

- Characteristicts:
 - Input: 20 GB (full set)
 - Computing time depends
 - on output size / resolution
 - amount of input data

35MB	20GB	20GB	Data
4096²	128²x100	4096²x3410	Voxels
1 Hour	1.5 Months	150 Years	Time

• Matlab

- Strategic development platform (95% sourcecode)
- Goals for grid access:
 - Seamless
 - Interactive
 - from Matlab

GridSolve (GS)/gLite integration

- Send GS-servers to gLite clusters
 - Package GridSolve + My software
 - Send packages into gLite jobs
 - Install packages on WorkerNodes (WN)
- Create GS-service hosts (GS-agent)
- Ensure network connectivity
 - GS-client, GS-agent, GS-proxy, GS-server

• All this happens behind the scenes!

How to do it?

- 1. Make Matlab run on gLite
- 2. Integrate GridSolve with gLite

=> Grid in Matlab using Gridsolve & RPC GIMGER

int.eu.grid http://interactive-grid.eu

USCT reconstruction := "Black Box"

• Computation takes long (days, weeks, years)

int.eu.grid

http://interactive-grid.eu

Using gLite

- Initial approach to parallel execution:
 - Partitioning of data
 - Many parallel jobs

Using gLite in practise

• A lot of work is left to the user

int.eu.grid

http://interactive-grid.eu

Using gLite

• Goal:

- Seamless
- Interactive
- Grid access
- From matlab

What's missing?

• Goal:

- Seamless
- Interactive
- Grid access
- From matlab
- Seamless
 - Don't compile standalone application
- Interactive
 - No overhead (< 10 s)
 - No manual data movement
- From Matlab
 - Run Matlab-functions remotely

