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Hydrogen Safety - State of the Art - 

1. Definitions 

2. Risk Assessment 

3. State-of-the-Art Consequence 

Modelling 

4. Some simplified methods 

5. Further Documentation and Training 
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Definitions 

• Safety is the freedom from unaccepted risk 

• Hazard: “potential source of harm” 

• Risk = Probability * Severity 

• Harm:  “physical injury or damage to health or 

property” 

 

 ISO/IEC Guide 73:2002 

 

 



Belfast, 30th September 2008 Progress in Hydrogen Safety – Hydrogen Safety SoA – T. Jordan 4 

Definitions 

State of the Art is 

 the level of development (as of a device, 

procedure, process, technique, or science) 

reached at any particular time usually as a 

result of modern methods  

 
Marriam-Webster (1910) 
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State of the Art 

Pre-normative 

Research 

Performance based, 

Risk informed 

Standards & Regulation 

 

 

•Easy  

•templated 

•low cost 

„Proof of Safety“ 
 

 

• unique 
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• costly 

„Proof of Safety“  
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• easy  
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Consortium 
● 24 partners from 12 European countries  

incl. Russia (Kurchatov Institute) and  

one Canadian partner (University of Calgary) 

● 13 public research organisations, 7 industrial partners,  

5 universities 

● ~150 scientists involved 

Time schedule 
network/project start:    03/2004 

subsidised max. duration:   5 years 

  02/2009 activities transferred to the  

    International Association “HySafe” 

Budget 
Total > 13 M€ with a EC grant of max. 7 M€ 

State-of-the-Art 
Coordinated Research (NoE HySafe) 
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Biennial Report on H2 

Safety 

WP5. (FZK) 

H2 Incidence and 

Accident Database 

HIAD 

WP14. (UNIPI) 

Int Conference on 

H2 Safety 

WP15. (UU) 

e-Academy 

WP16. 

(INERIS) 

RC&S 

Yearly planning and reporting 

 Strategy „International Association for Hydrogen Safety“  

 

Jointly Excecuted 

Research Activities 

 

Management 
Website Strategies Business Plan 

HYT

HEC 

 

WP8. (NCSRD)  

H2 reslease 

and dispersion 

WP18. (INASMET)  

Mat compatibility, 

structural integrity 

WP6. (FZK) 

Numerical 

Tools 

Dissemination 

HySafe 
Current Activities 
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CEN/CENELEC 

StorHy 

HyWays 

NATURALHY 

North 

America 

Japan 

ISO/IEC IEA HIA Task 19 

 

Advisory 

Council 

HyApproval 

HyFire 

HyTrain 
HyCourse 

HySAFEST E&T R&D 

RC&S 

  I    A 

„HySafe“ 

HFP + JTI 

HyPer 

HYTHEC 

 

Guide 

 

Co-

ordinate 

Inform         

HySafe 
External Networking 
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State-of-the-Art 
Experimental Facilities (HySafe-IEF) 

only 6 out of > 100 
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SBEP V3 (Dispersion)  
240g H2 into „garage“  

SBEP V2 (Deflagration) 
20m hemisphere (Fh-ICT test) 

State-of-the-Art 
Numerical Tools (HySafe-NT) 
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(Partially) Confined Releases 

Mitigation 

have been determined by   

- initial PIRT study 

   - expert questionnaire 

- state-of-the-art survey 

communicate the network’s working topics, 

orientate the work on intermediate time 

scale (proposals for experiments, 

benchmarking, Internal Projects …) 

State-of-the-Art 
Pre-normative research directions  
(HySafe WP7) 
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Iterative process of risk assessment 
and risk reduction 
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Risk Assessment 
Some Elements 

Source: TÜV Rheinland 

Some established methods for 

safety analyses 

More qualitative methods More quantitative methods 

-Fault tree analysis 

-Fault sequence analysis 

-Failure Mode and Effect 

Analysis FMEA 

- Check list method 

-Preliminary hazard identification 

-What if method 

-Hazard identification amd 

Operability HAZOP 
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Hazard Identification  
HAZOP 
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Safety relevant 
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• -253°C  cold burns, material degradation, NDTT 

• 780 x volume expansion during evaporation  asphyxiation 

• cryo pump effect in open LH2 pools  condensing air,  

  spontaneous ignitions 
 

Hazard Identification 

Specific issues of LH2 
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Hazard Identification 

Based on experience 

Stockholm 1984 

H2-Source 180 Nm3 

16 injuries, damage on  

vehicles and buildings 

in a radius of 90 m 

Köln 2005 Norwegen 1984 

Detonation of ~5 kg,  

2 fatalities, 

Destruction of the 

whole industry 

building 

What if …? 
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> 250 H2 specific events 

Hazard Identification 

Collection of event versions in HIAD 
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Administration & Risk “environment” 

Where (application, environment,…) 

Technical specification of the event 

Equipment spec, location,…. 

Hazardous Event Specification 

What happened and why 

Hazardous Event Consequences Specification 

Fatalities, injuries, property damage, … 

Hazard Identification 

Incidence and Accidents Database 

(HIAD) Structure 
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• Incidences with GH2 lead often to fast deflagrations 

• Ignition in LH2 incidences is less probable 
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Hazard Identification 

Some conclusions from statistics 
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Injured 

Fatalities 

• Considerably less injured with LH2 / GH2, but same fatalities 

• All combustion phenomena occur, depending on many parameters 
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CONSEQUENCE 
ANALYSIS 

Mechanical and 

thermal loads  

Structural  

Effects 

CRITERIA FOR  
HAZARD  

POTENTIAL 

Flammability 

yes 

yes 

Flame Acceleration  

yes 

COMBUSTIBLE 
MIXTURE 

GENERATION 

e.g. GASFLOW 

e.g. FLAME3D 

Fast turbulent 

deflagration  
e.g. COM3D 

Detonation 

e.g. DET3D 

Slow deflagration 

CONSEQUENCE 
ANALYSIS 

response 

e.g. SDO, 

ABAQUS 

Detonation- 

transition 

COMBUSTIBLE 
MIXTURE 

GENERATION 

Problem geometry 

Mitigation 

Scenario 

Sources 

Distribution 
e.g. GP-Program 

COMBUSTION 

SIMULATION 

State of the Art Consequence Modelling 
Analysis Methodology 



Belfast, 30th September 2008 Progress in Hydrogen Safety – Hydrogen Safety SoA – T. Jordan 23 

COMBUSTIBLE 
MIXTURE 

GENERATION 

COMBUSTIBLE 
MIXTURE 

GENERATION 

Problem geometry 

Mitigation 

Scenario 

Sources 

Distribution 

State of the Art Consequence Modelling 
Mixture Generation 



Belfast, 30th September 2008 Progress in Hydrogen Safety – Hydrogen Safety SoA – T. Jordan 24 

GENERIC ARCHITECTURE OF AN LH2-TANK SYSTEM 

Source: EU-Project EIHP-2, Final Report 2004 

CRACK! 
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INVESTIGATED GARAGE SCENARIOS 
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CASE HYDROGEN SOURCE GEOMETRY 

• A thermal energy deposition of 1 Watt into a cryogenic LH2-tank leads to a  

  boil-off of 170 g of gaseous hydrogen per day 

 

• Assume here 5 release pulses per day, 34 g H2 each, with two different release rates 
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WHAT ARE THE IMPORTANT RISK DETERMINING PARAMETERS? 

• Large spectrum of events possible, ranging from zero risk to destruction 

  of garage 

 

• What are the parameters influencing the outcome of such a leak scenario? 

- H2 release rate 

- total H2 mass released 

- venting 

- garage volume 

- … 

- ignition source 

- scale of combustible  

  cloud 

- obstacles 

- confinement 

- turbulence 

- … 

- pressure loads 

- temperature 

- loads 

- … 

- effects on structures 

- effects on people 

- … 

• Obvious first step is to understand mixture generation, defines initial and  

   boundary conditions for further accident development 
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GASFLOW SIMULATION OF GARAGE SCENARIO 

Isosurface with  4 vol% H2, depicts flammable mixture in garage 

• Case 1: release rate 3.4 g H2 / s for 10 seconds 

volume fraction H2 
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GASFLOW SIMULATION OF GARAGE SCENARIO 

Isosurface with  4 vol% H2 , depicts flammable mixture in garage 

• Case 2: release rate 0.34 g H2 / s for 100 seconds 

volume fraction H2 
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Resulting Hydrogen Cloud 
in the garage 

• Computed dimension of combustible  

   H2-air cloud in garage (4…75% H2) 

 

 

• Characteristic size of combustible cloud 

   expressed as dCC = (Vcc)
1/3 

 

 

• Combustible cloud size strongly dependent 

   on release rate, is result of balance between 

   source strength and sinks, or release 

   rate and mixing mechanisms 
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What is the risk from a combustible cloud ? 

Case 1 Case 2 

• How would you judge the hazard in both cases? 

• Who would switch on lights in the garage? 

• What physical quantities determine the hazard potential  

   of a combustible H2-air cloud? 
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State-of-the-Art CFD code Verification 
Based on HySafe SBEPs 

Report FZKA-7085 (2005), www.fzk.de/hbm 
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Mixing classification 

• Extreme thermodynamic states  

   (20K, 80 MPa) 
• Compressibility 
• Buoyancy 
• Diffusion 
• Phase changes 

- Condensing gases (H2, H20, air, 
etc) 
- Evaporating liquids (H2, H20…) 

• Multiple components 
• Gradient mixtures 
• Turbulence 
• Frictional and electrostatic effects 
• Heat transfer 

Main phenomena and processes which has 
to be considered in mixing simulations 
including their coupling  
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• Jet Releases 
Free, slow, vertical upwards 
Cold 
Fast 
Horizontal 
Wall attached 
Multiphase 
Cross-wind 
Discharge coefficients 
 

• LH2 pools 
Heat transfer (soil, gases) 
Condensing air 

  

• Diffusion 

       Gravitational effects 
 

State of the Art in Gas Mixing  
Open issues vs established techniques 

Models: 

  Conservation equation of fluid flow 

(fully compressible, 3-dim, Navier- 

Stokes) 

  Thermophysical properties of 

components (JANAF, internal 

energy, specific heats, for all 

relevant components including two-

phase water) 

  Molecular transport coefficients 

(CHEMKIN, thermal conductivity, 

dynamic viscosity, binary diffusion 

coefficients) 

  Convective and radiative heat 

transfer between gas and structure 

  Heat conduction within structures 

  Condensation and vaporization of 

water (film, droplets, sump) 
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• Permeation releases 
Particle vs Continuum  

 
• Turbulent transport 

Turbulence models for middle sized scenarios 
Parameters for high pressure, cryogenic gases 
Gravitational effects on turbulent transport 
Wall effects 
Complex geometries 
Turbulent dissipation 
 

• Multi-phase transport 
Droplet, dust, gas interaction  
 
 

State of the Art in Gas Mixing 
Open issues vs established techniques 

Models: 

Boundary layer model for wall 

shear stress 

  Turbulence modeling  

(algebraic, k-e, LES, effects on 

molecular transport coefficients) 

At least lumped parameter models 

for accident mitigation measures 

(recombiner and igniter models, 

liquid sumps,…) 

  Ventilation systems (ducts, pipes, 

junctions, blowers, dampers, 

valves, filters, etc.) 
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State of the Art in Jet Modelling 
Free vertical upward jet 

Temperature Turbulence 

3D simulation of the head of H2 jet in air 

Turbulence: LES Smagorinsky 

Fine grid 
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Eternal problem: spatial resolution 
e.g. downward release into a cavity  

09 Sept. 2008 14 CEG-SAM Meeting, Kiev, Ukraine 

7 mm LES 1 mm LES 7 mm RANS 
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CRITERIA FOR  
HAZARD  

POTENTIAL 

Flammability 

yes 

yes 

Flame Acceleration  

yes 

COMBUSTIBLE 
MIXTURE 

GENERATION 

e.g. GASFLOW 

Detonation- 

transition 

COMBUSTIBLE 
MIXTURE 

GENERATION 

Problem geometry 

Mitigation 

Scenario 

Sources 

Distribution 
e.g. GP-Program 

State of the Art Consequence Modelling 
Criteria for Hazard Potential 
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Transient phenomena 
Cross-over of combustion regimes 

5 

Laminar deflagration 

 

v = 8 m/s, Ma << 1 

Fast turbulent 

 deflagration 

 v = 850 m/s, Ma  1 

 Detonation 

 

D = 1970 m/s, Ma >1 

Schlieren images of different combustion regimes 

M. Kuznetsov et al 

  DDT FA 
Ignitio

n 



Belfast, 30th September 2008 Progress in Hydrogen Safety – Hydrogen Safety SoA – T. Jordan 39 

overpressure ratio (p-p)/p 
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Combustion Consequence   
Overpressure 

• The maximum flame speed generally governs the damage 
potential 

• Which combustion regime for given mixture and geometry? 

• How fast can it burn? 
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Flame Acceleration FA 

Conservative conditions for flame acceleration in hydrogen mixtures  

were investigated in closed obstructed tubes, e.g. FZK 12m-tube  
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• Two distinct regimes with slow and fast    

   flame propagation are observed 
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FA criterion 

Influence of confinement   

S.B. Dorofeev et al, KI/FZK 
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• Summary of experiments with different  

   H2-O2- dilutend (N2, Ar, He) mixtures 

   in obstructed tubes of different 

   scales 

• Each point represents one 

  experiment 

• Results of data evaluation:  

   expansion ratio s of mixture is 

   is mixture property which governs  

   flame acceleration limit 

• No flame acceleration for  

   s < 3.75  0.1 

  (10.5% H2 in dry air) 
S.B. Dorofeev et al, KI/FZK 
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Fully obstructed tube (prototypic mode B)

accelerating flame DDT stable (quasi)
detonation

spark 
ignition

p

H / air2 

burned gas

obstacle section flame precursor 
shock

conus

1 m 5-6 m

Partially obstructed tube with conus (prototypic mode A)
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p

He H / air2 

high pressure
section

burst 
membrane

low pressure section conus
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0.35 m

3m

1m

Deflagration-to-Detonation-Transition DDT 

• Two different modes of DDT have been 

   observed 

- shock focussing 

- detonation on-set in turbulent  

  flame brush 

 

• Present here are one example for DDT 

  with pressure wave emitted from 

  an obstructed region and focussed  

  in a conus  
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DDT criterion   
Detonation cell size 

Cell sizes for H2-air mixtures at 

various initial temperatures 

Detonation cell sizes  depend on 

mixture composition and initial 

conditions 

Experimental data and models are 

available for  evaluation 
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• Correlation of all experimental  

  data with given definitions of D  

  and detonation cell size data  

  shows that detonations are  

  only possible for D/ > 7 

• Current uncertainty in detonation  

  cell size   factor 2 
D/  

• Experiments on DDT in differently sized and shaped facilities have shown that a certain  

  minimum scale is required for DDT 

• In accident scenarios D/ can vary  

  by orders of magnitude, criterion  

  has predictive capability 
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Summary of Criteria 
Criteria for possible occurrence of fast combustion regimes  

were evaluated from many experiments on different scales 

• Transition phenomena cannot be modeled numerically on large 

building scale 

• Criteria allow selection of fastest possible combustion mode from 

computed H2-air cloud composition and scale 
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Computed Hazard Parameters 
for selected garage scenario 
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• Volume of cloud with potential for 

spontaneous flame acceleration 

(10.5 to 75 % H2) 

• DDT index of cloud 

(10.5 to 75 % H2) 

• Dimension of combustible 

cloud, 4 to 75 % H2,  
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• Risk parameters show strong dependence on H2 release rate 

 

- Case 1: 

   (3.4 g H2/s) 

 

 Only Case 1 followed in further safety analysis 

• Contineous potential for slow deflagration 

   ( 20 g of 34 g)  

• potential for supersonic combustion regimes 

  during the release period 

• high release rate not tolerable without mitigation  

  measures 

 
• only small potential for slow deflagrations, natural 

  mixing processes sufficient 

 

• release rate (and mass) seems tolerable for 

  present garage design 

 

- Case 2: 

  (0.34 g H2/s) 

Computed Hazard Parameters 
for selected garage scenario 
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CRITERIA FOR  
HAZARD  

POTENTIAL 

Flammability 

yes 

yes 

Flame Acceleration  

yes 

COMBUSTIBLE 
MIXTURE 

GENERATION 

e.g. GASFLOW 

Fast turbulent 

deflagration  

Detonation 

Slow deflagration 

Detonation- 

transition 

COMBUSTIBLE 
MIXTURE 

GENERATION 

Problem geometry 

Mitigation 

Scenario 

Sources 

Distribution 
e.g. GP-Program 

COMBUSTION 

SIMULATION 

State of the Art Consequence Modelling 
Analysis Methodology 
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Unconfined Tests  
with the Combustion Unit 

• Peak overpressure and impulse 

  measured as function of distance 

  to characterize blast effects from 

  combustion unit 
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Flame speeds in the Combustion Unit 
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• The flame acceleration inside the combustion units measured with photodiodes 

• For 8 and 16 g H2 detonation speeds are obtained at the outer edge of the cube 

center of  

the cube 
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Simulation of Unconfined Tests 

• The unconfined tests with different combustion units were simulated  

 (with COM3D in this case) 

• The combustion model was fit to the measured flame speed  

 in the combustion units 

• The calculated peak overpressures agree with the experimental  

 values and follow Sachs scaling 


p

m
a
x
+
/p

0
 

R (p0 / E)1/3 
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Combustion experiments for Case 1 

• Up to 20 g of hydrogen would be in  

 burnable concentrations 

 

 

• A significant part of this could potentially burn  

 with high flame speeds 

 

 

• What would be pressure loads and consequences  

 from a local explosion in the garage? 

 

 

• Outcome uncertain, experiments performed in  

 test chamber simulating the garage 
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Local H2 Explosions in a “Garage” 

Experiment 

with 8g H2 

H2 - 

mass: 

 

-   1g 

-   2g 

-   4g 

-   8g 

- 16g 



Belfast, 30th September 2008 Progress in Hydrogen Safety – Hydrogen Safety SoA – T. Jordan 57 

0
100

200
300

400
500

0

50

100

150

200

250

300

0

200

400

600

8000
100

200
300

400
500

0

50

100

150

200

250

300

0

200

400

600

800

Druckaufnehmer

Beschleunigungs-

sensoren

3A

3B

1B

13A

7B

2A

1A

4A
5A

6A 7A

8A
15A

14A

2B

4B

5B

6B8B

16A

H
ö

h
e
 [c

m
]

Breite [cm] Län
ge 

[c
m

]

Tür

Zünd-
ort

Instrumentation of the „Garage“ 
The instrumentation included pressure and acceleration sensors  

at different locations, covering flat surfaces, (2d) edges and (3d) corners 

Pressure sensors 

Acceleration 

sensors 

location of combustion unit 

Height (cm) 

Width (cm) 
Length (cm)  
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Comparison of Overpressures 
• Pressure sensor 2 B, 

  floor near combustion unit 

• Pressure sensor 8 A, 

  back wall, half wall height 

• Pressure signals very consistent in timing, amplitudes increase systemarically with H2 mass, 

  reproducible pattern of reflected pressure waves in confined volume. 
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Reproducibility of Measured Data 

• The experiment with 1 g H2 

  was performed three times 

 

• Acceleration and pressure 

  sensors show very good  

  reproducibility of measured 

  signals 

 

• Complex, but reproducible 

  pressure waves are created 

  in confined local explosions 

  of H2-air mixtures 

2 
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COM3D State-of-the-Art Combustion 

Simulation 

3d pressure field, calculated isosurface for 1.1 bar 

Test  

with 8g H2 
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Comparison of Overpressures 
Good agreement, remaining differences are due to geometry simplification  

and rigid wall model in simulation 
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State-of-the-Art Reactive CFD Validation 
Large scale experiments (HySafe SBEPs)  

    performed in RUT facility near Moscow  

(FZK, CEA, partly NRC), H2-air, H2-air-steam 

- Total length 62 m 

- Total volume 480 m3 

- First channel with obstacles 

- Second part without obstacles 

RRC KI 1995 – 2002: RUT-2200 
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A. Kotchourko, IKET 
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Numerical simulation of RUT experiments with hydrogen-air and  

hydrogen-air steam mixtures.  
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State-of-the-Art Reactive CFD Validation 
Large scale experiments  
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Impinging jet flame 

Side View 

Coarse grid 

Modeling of the H2 impinging jet 

Injection time 200 ms 
Top View 
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Combustion classification 

• Ignition 

• Combustion in different regimes 

• Initial conditions 

- Mixture composition 

- Turbulence 

- Gradients (e.g., concentration) 

• Boundary conditions 

- Obstructions 

- Confinement 

- Heat Transfer 

- Turbulence 

Main phenomena and processes which has to be 

considered in combustion simulations due to their 

strong influence on combustion/explosion 

consequences 
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• Ignition 

Weak / Mild ignition (e.g., spark, gloving plug,  

  igniter, recombiner) 

Strong ignition (e.g., spark, high explosives,  

  ignition in reflections) 

Jet ignition 

 

• Combustion mode 

Laminar combustion  

Flame acceleration / deceleration 

Turbulent deflagration 

DDT 

Detonation 

Quenching 

Local quenching 

Global quenching 

Standing flames and fires 

 

State of the Art in Combustion  
Open issues vs established techniques 

Models: 

Turbulence models 

 Standard k-ε model 

 RNG k-ε model 

 LES with SGS models: 

 Smagorinski [Deardorff, 1970] 

 mixed [Biringen, 1981] 

 dynamic [Germano, 1991] 

 approximate deconvolution method 

(ADM)  

 

Eddy-Break-Up model 

  EDM 

  Set of phenomenological 

combustion models (CREBCOM, 

HEAVDET, etc)  

  Presumed β-PDF 

  1D PDF (f) 

  joint PDF (at least 2D: f, T) 
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• Spatial and time resolution 
• Initial conditions 

Mixture composition 
Initial concentrations, release rates 
Fuel additives: Carbon monoxide / Hydrocarbons 
Combustion inhibitors: Steam / Carbon dioxide 

Initial turbulence 
Gradients (concentration, temperature, etc) 

• Boundary conditions 
Obstructions 

Large scale obstructions (resolved: same size as 
the characteristic size of the problem) 
Small scale obstructions (unresolved: much less 
than the characteristic size of the problem) 

Confinement 
 Closed   
 Vented / Semi-confined and open 
Additional sources of turbulence (fans, jets, etc) 

State of the Art in Combustion  
Open vs established issues and established 
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CONSEQUENCE 
ANALYSIS 

Mechanical and 

thermal loads  

Structural  

Effects 

CRITERIA FOR  
HAZARD  

POTENTIAL 

Flammability 

yes 

yes 

Flame Acceleration  

yes 

COMBUSTIBLE 
MIXTURE 

GENERATION 

e.g. GASFLOW 

e.g. FLAME3D 

Fast turbulent 

deflagration  
e.g. COM3D 

Detonation 

e.g. DET3D 

Slow deflagration 

CONSEQUENCE 
ANALYSIS 

response 

e.g. SDO, 

ABAQUS 

Detonation- 

transition 

COMBUSTIBLE 
MIXTURE 

GENERATION 

Problem geometry 

Mitigation 

Scenario 

Sources 

Distribution 
e.g. GP-Program 

COMBUSTION 

SIMULATION 

State of the Art Consequence Modelling 
Structural response 
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Maximum Overpressures vs Distance 
• Measured peak overpressures p+ in unconfined tests with combustion units  

 of 0.5 to 16 g H2  

• Data are well reproducible 
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 What are effects of blast loads on the structure? 

Commercial systems like LS-DYNA, PAMCRASH, etc… 

State of the Art Consequence Modelling 
Structural response 
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Limiting Pressure Loads  

on Humans  
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The proposed analysis procedure allows identification  

of possible mitigation measures for risk reduction 

• Exlude severe scenarios by design changes 

• Limit hydrogen sources 

• Support hydrogen dispersion  

 and mixing processes 

• Exclude ignition sources 

• Suppress flame acceleration 

  (low confinement and turbulence generation) 

• Avoid detonation transition processes 

  (lean mixtures, small scale) 

• Confine consequences (strong enclosure) 

 

 Accident 

progression 

If this level of 

defence 

has been 

optimized, work 

on next barrier for 

accident 

progression 

Mitigation Measures 
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Mitigation by Steam Inerting 
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• safe venting of compressed hydrogen gas cylinders (35 and 70 MPa), 

• optimum arrangement of H2 storage vessels in the vehicle, 

• fire safety of hydrogen-powered vehicles with the primary goal to prevent bursting 

of the high-pressure hydrogen system (flamelets impingement, PRDs,..) 

• guidelines for fire fighters in case of fire or accident, 

• optimum number and location of hydrogen detectors, 

• safety concept in case of a hydrogen leak detection in a running car, 

• tolerable H2 leak rates in the vehicle for different operating conditions, including a 

parked car, 

• optimum position and activation criteria for pressure relief devices on the H2 tank, 

• procedures to prevent penetration of hydrogen into the passenger compartment, 

• effectiveness of forced ventilation for reducing local H2 concentrations in sensitive 

car areas, 

• maximum possible reduction of ignition sources, 

• development of standardised safety test procedures for new solid storage 

materials, such as nanocrystalline powders. 

• development of non-destructive testing methods for cryo-vessels and high 

pressure tanks made from composite materials including highly accelerated 

lifetime testing. 

State of the Art in H2 Vehicle Safety  
Open issues 



Belfast, 30th September 2008 Progress in Hydrogen Safety – Hydrogen Safety SoA – T. Jordan 77 

Some Simplified Methods 
Risk Evaluation with FMEA 

RBZ = A * B * E 
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Some Simplified Methods 
Risk Evaluation with FMEA 
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• Simplest model for structural 

response is SDO model 

• Describes ground mode (first 

harmonic) of structural element 

which is represented by lumped 

values for mass, stiffness and 

damping of motion 

• Tool to understand basic effects of 

transient pressure loads on global 

displacement of element 

• In FEM analysis also higher 

modes included, but superposition 

of different effects, results not so 

transparent 

r max 

k 

p(t) 

m 
t 

D 

Some Simplified Methods 
Single-DOF-Oscillator model for structural response 
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• Use of Sachs scaling collapses measured peak overpressures  

  to universal correlation for  1 g H2, E = total energy of explosive charge 

• Combustion units provide conservative overpressures 
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TNT Equivalence, Multi-energy methods,… 



Belfast, 30th September 2008 Progress in Hydrogen Safety – Hydrogen Safety SoA – T. Jordan 81 

(Partially) Confined Releases 

Mitigation 

determined by   

- initial PIRT study 

   - expert questionnaire 

- state-of-the-art survey 

communicate the network’s working 

topics, 

orientate the work on intermediate time 

scale (proposals for experiments, 

benchmarking, Internal Projects …) 

Expanding the State of the Art  
(Pre-normative) Research Directions 
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HySafe Internal Project “InsHyde”  
Objectives 

 

 

 

 

 

• Investigation of realistic non-catastrophic releases in 

(partially) confined areas 

• Determination of permeation and release limits 

• Systematic assessment of mitigation  

(including detection) measures  

(sensors + venting + recombiner...) 

• Simulations and experiments  

for critical releases 

• Deriving „Recommendations“,  

→ standards, ... 

• Proposing a dedicated  

project for JTI support 

“HyGarage” (lead NCSRD) 

 Garage facility at partner CEA 
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• Released mass of  Hydrogen: - 1-10 g (Standard variation) 

• Release time:   - 0.1-100 s (Jet  Plume) 

• Ignition time:   - to be chosen in a way, that presumably 

• Ignition location:     maximum H2- combustion occurs 

• Ignition energy:   - weak, strong  

• Complexity of geometry 

 a) Obstacles:   - different number of wire netting layers 

        turbulence and flame convolution 

 b) Enclosure:   - different number of restrictive plates 

       (i.e. aluminum) 

1/6 3/6 5/6 6/6 

 

 

Obstructed area / 

Total area 

HySafe Internal Project “InsHyde”  
Definition of acceptable inventories 
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m = 0.15 g/s, 

hign = 0.45 m  

m = 3.0 g/s, 

hign = 0.8 m 

m = 6.0 g/s, 

hign = 0.8 m  

“InsHyde” Integral tests (10 g)  

D = 21mm 
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Mixture degree is dependent on 

• Release time 

• Enclosure  

• Obstacles 

  all in Deliverable D113 

(to be published) 
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“InsHyde” – Permeation  
Survey on Existing Allowable Rates 

  all in Deliverable D113 

(to be published) 
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HySafe Internal Project “HyTunnel”  

 

 

 

 

 

→ Improved Tunnel Safety  

with H2 as the fuel of the 

future 

- Selection of broadly 
accepted szenarios. 

- Review of available 
relevant numerical and 
experimental simulations 

- Qualitative assessment 
on  standard mitigation 
measures effectiveness 
(benchmark) 

i. Experimental part 
(depending on financing) 

ii.Extension of the EC 
Tunnel „directives“ 
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I – ignition point; 

P, I – pressure and light gauges.  

L = 12 m – A1 length; 

D = 3.5 m – A1 diameter; 

V = 100 m3 (+30 m3)– total volume; 

BR = 0.6 (0.3) by obstacle laden grid  

 

CH2 –hydrogen concentration; 

– layer thickness 

• Objective: Critical conditions for FA and DDT in semi-

confined gas mixture layer 

• Expected data: Dependence of critical σ* and λ*  

on gas layer thickness δ 

“HyTunnel” - Experimental Layout   
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Large scale facility (5.7 x 1.6 x 0.6 m) 

- effective venting ratio a = 0.46  (layer thickness  = 0.15 

m) Film opening  Diagonal view 

“HyTunnel” – Main Experiments  
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Detonation cell on the 

ceiling of the box  

Detonation cell on the side 

wall of the box  

Observed averaged cell 

sizes vary within  

1.5 – 1.7 cm 

~ corresponds to 

theoretical expectations 

“HyTunnel” – Smoked-foil records 
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• Large scale test completed 

• Effective flame acceleration (FA) depends on mixture 

reactivity and gas layer thickness.  

Flame accelerates to sonic velocity: 

  for 15% H2 d  0.6 m  

  for 20% H2 d  0.3 m  

• Detonation in semi-confined geometry at 25% H2 can occur 

if gas layer d  0.3 m       

• Critical layer thickness for detonation propagation:  

    15 > d/l > 7.5  

“HyTunnel” - Some results  
regarding FA and DDT 
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“HyTunnel” Simulations 

Flammable 

cloud of a  

5kg release 
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Experience from space research/rocket engineering 
indicates that hydrogen 5.0 with less than 5ppm O2 
contamination  
(HPH2, as required for PEM FC) can induce accelerated 
material damage processes. 

Objectives: 

• Investigation of the effect of HPH2 induced cracking 

• Recommendations for the safety aspects of the use of 
HPH2 in fuel cell cars 

Lead: AL Partners: BAM, DNV, HSE/HSL, INASMET, Risø  
and Active Supporters: ET, INTA.  

WP18.3 Effect of high purity high pressure 

hydrogen on structural material 
Objectives 
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Comparison 

between pure gas 

and H2 with 

additives [4] 

WP18.3 High Purity H2  
Some results of a literature study 
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Fundamental understanding the safety issues 
regarding nano-scaled solid-state hydrogen 
storage materials/systems through:  

(i) development of standard testing  
techniques to quantitatively  
evaluate both materials and systems,  

(ii)understand the fundamental science 
of environmental reactivity of  
hydrides and 

(iii)develop methods and systems  
to mitigate the risks to acceptable  

levels.  

nano-structured alanate blown out of a heat exchanger tube at 10 bar and 120 °C  

(frames of a high speed video (left) and of a infrared video (right) at the same instant)  

 

WP18.4 Safety of Nano Storage Material 
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Specific Surface by BET-Analysen and TGA analysis 

AlH3 from pyrolysis furnace 2.59 m2/g 

AlH3 in TGA*   15 to 20 m2/g 

 

AlH3 (original crystals)  0.69 m2/g 

ALEX (nano-Al)   12.28 m2/g 

5 µm Aluminum (ALCAN)  1,36 m2/g 
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particle  
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Progress status WP18.4 
Methods of investigation: decomposition – oxidation 

Methods of Thermal Analysis: 

DSC, TG, X-Ray 
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1) Develop a reference Quantitative Risk Assessment (QRA) 
methodology for hydrogen technologies applying – where necessary - 
simplified methods for acceptable answer times as required for an 
engineering tool 

The tool supports the following steps: 

 a. Hazard identification  

 b. Frequency estimation  

 c. Consequence assessments 

 d. Risk estimation  

 e. Validation of acceptance criteria  

 f. Assessment of measures for risk reduction 

2) Prototypical validation at few relevant cases of the developed 
methodology 

HySafe Internal Project “HyQRA”  

Objectives 



Belfast, 30th September 2008 Progress in Hydrogen Safety – Hydrogen Safety SoA – T. Jordan 98 

HyQRA  
The project structure 
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HyQRA Benchmark Base Case  
Geometry of the HRS - BBC 
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• determination of tolerable H2 releases during vehicle repair, which pose no risk to 

the personnel, 

• design of effective and low-cost ventilation systems, 

• CFD analysis of leaking hydrogen scenarios, including complex surroundings 

near the vehicle, extension of the investigations described in [33] and including 

the special features of a LH2 leak including cold jets, 

• control of ignition sources and definition of a realistic conservative ignition model, 

• in case of filling stations, the issues of protecting walls and safety distances need 

to be investigated. 

State of the Art in Infrastructure Safety  
Open issues 
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• measurement of ignitable space regions, given a certain leak size, shape, and 

mass flow rate, an extension of the work described in, 

• systematic investigation of active and passive safety systems, e.g. ventilators, 

catalytic recombiners, or flame arrestors, 

• modelling of ignition processes under realistic boundary conditions, 

• investigation of diffusion flame stability after ignition (limits for lift-off and 

extinction), 

• criteria for flame acceleration and detonation onset in H2-air mixtures with 

concentration gradients and partial confinement (Note: the criteria described in 

Section 3.2 are valid for homogeneous and fully confined mixtures; they are, 

hence, very conservative with respect to practical accident conditions in mobile 

applications and should be extended to more prototypic conditions). 

• basic investigations of the gas behaviour including its reactions at the very low 

temperatures around 20K and very high pressures 

• effect of high purity hydrogen on the relevant materials 

State of the Art in Basic Research  
Open issues 
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Other References 
H2 Testing – EIHP2 (www.eihp.org) 
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A simulation contributions to the EC project  HyApproval „Handbook for the safe 

installation/operation of a HRS“ (details on http://www.hyapproval.org)  

Other References 
HRS Handbook – HyApproval (www.hyapproval.org) 

http://www.hyapproval.org/
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Other References 
HyPer – Permitting Guidelines for small  

stationary installations (www.hyperproject.eu) 



Belfast, 30th September 2008 Progress in Hydrogen Safety – Hydrogen Safety SoA – T. Jordan 105 

State of the Art Education 
Online reviewed curriculum (HySafe e-Academy) 
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Other Education and Training Offers 
PGC and Summer School (HySafe e-Academy) 

http://www.ehammertraining.us/energy/hydrogen/controller.cfm 

for details see 

http://www.hysafe.net/eAcademy 
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Invitation to the 3rd Int. Conf. on Hydrogen Safety 

 September 16-18th, 2009 

 Ajaccio, Corse, France 

Contact: ICHS@hysafe.org 
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Support 

NoE HySafe is co-funded by the European Commission  

within the 6th Framework Programme (2002-2006); 

Contract n°: SES6-CT-2004-502630. 

 

The network is contributing to the implementation of the  

Key Action "Integrating and strengthening the ERA" within 

the Energy, Environment and Sustainable Development. 

 

Thanks to all HySafe colleagues… 

 

… and thank you for your attention. 
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TURBULENT DEFLAGRATION EXPERIMENT WITHOUT DDT 

• Partially obstructed tube with conus, 15 % hydrogen in air 

5
 m

 

350 mm 
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TURBULENT DEFLAGRATION EXPERIMENT WITH DDT 

• Partially obstructed tube with conus, 16.5 % hydrogen in air 
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BLAST LOADED ELASTIC OSCILLATOR (1) 
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BLAST LOADED ELASTIC OSCILLATOR (2) 

• Asymptotes for maximum deflection /deformation 

  can be computed from energy balances 
 

• Quasistatic loading real m (T load >>Tosc) 

  - strain energy = work on structure 
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OSCILLATOR RESPONSE: ANOTHER VIEW 

• Often oscillator response is presented with inverted ordinate and unscaled load parameters  

   p+ and Tload 

• Quasistatic asymptote 
 

Maximum deflagration xmax is only proportional to 

applied peak overpressure p+, indipendent of load 

duration 

• Impulsive asymptote 
 

Maximum deflagration xmax is proportional 

to applied impulse 

possitive peak 
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p+ 
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Internal Project “HyTunnel”  

 

 

 

 

 • Accidents in public focus 

• Heterogenous regulations 

• Costly and long term 

investments 
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Tunnel 2D-geometry of gas mixture with one solid 

wall is assumed to be semi-confined volume with 

venting ratio  a = 0.5 

• FA criterion: s/s0 ~ 1+2·a 

• FA estimation for different a:  

a = 40% => fast deflagration in 25% H2/air 

a = 50% => fast deflagration in 30% H2/air 

• DDT estimation for different d:  

• DDT criterion: d/l ~ ? 

 

“HyTunnel” - Some Experimental 

Work   
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Small scale facility (1.6 x 0.5 x 0.4 m) 

Metal grid 

Photodiodes 

“HyTunnel” - Pretests   
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BOS 15 % H2/air w/o obstacles 

Flame velocity vs. distance 

“HyTunnel” – Small Scale Tests 

Results   
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HyApproval – HRS 
Worst Case Numerical Simulation 

CGH2 Refuelling Station Side View (Luxembourg refuelling station)  

Assume all contents lost 
- 250 kg H2 released 
- ~ 10 min release time 
- ~ 1.3 kg/s initial release rate 

Leak location 

Scenario T1:  

Trailer hose  

disconnection 



Belfast, 30th September 2008 Progress in Hydrogen Safety – Hydrogen Safety SoA – T. Jordan 120 

Scenario T1: Hydrogen concentration  
Iso-surface 4% H2  

Iso-surface 15% H2  

Iso-surface 30% H2  Concentration distribution at 6.8 s 

after the beginning of the release  

Concentration distribution is imported 
from GASFLOW 
 
Grid was modified from 60x60x50 to  
120x120x100 (with total 1.44·106 cells) 
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Scenario T1: Pressure wave evolution during detonation 
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Scenario T1: Pressure loads 

Pressure ‘transducers’ 
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pressure wave resulted 
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‘Transducer’ line along trailer 



Belfast, 30th September 2008 Progress in Hydrogen Safety – Hydrogen Safety SoA – T. Jordan 123 

Scenario T1: Pressure loads 
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Recordings of the 
pressure wave resulted 
from the detonation of 
the H2 release at 6.8 s 

‘Transducer’ line between 
trailers and storage 


