

International Short Course Series "Progress in Hydrogen Safety" Short course: "Hydrogen and fuel cell technologies - Safety issues" 29th September to 3rd October 2008, Belfast

Hydrogen Safety - State of the Art -

Dr.-Ing. Thomas Jordan Institut für Kern- und Energietechnik Forschungszentrum Karlsruhe GmbH Karlsruhe Institute of Technology Representing the HySafe coordinator

2

Content Hydrogen Safety - State of the Art -

- 1. Definitions
- 2. Risk Assessment
- 3. State-of-the-Art Consequence Modelling
- 4. Some simplified methods
- 5. Further Documentation and Training

Definitions

- Safety is the freedom from unaccepted risk
- Hazard: "potential source of harm"
- Risk = Probability * Severity
- Harm: "physical injury or damage to health or property"

ISO/IEC Guide 73:2002

Definitions

State of the Art is

the level of development (as of a device, procedure, process, technique, or science) reached at any particular time usually as a result of modern methods

Marriam-Webster (1910)

State-of-the-Art Coordinated Research (NoE HySafe)

Consortium

- 24 partners from 12 European countries incl. Russia (Kurchatov Institute) and one Canadian partner (University of Calgary)
- 13 public research organisations, 7 industrial partners, 5 universities
- ~150 scientists involved

Budget

Total > 13 M€ with a EC grant of max. 7 M€

Time schedule

network/project start: 03/2004 subsidised max. duration: 5 years → 02/2009 activities transferred to the International Association "HySafe"

HySafe Current Activities

State-of-the-Art **Experimental Facilities (HySafe-IEF)**

MISTRA

cylindrical steel vessel

originally designed as 1/10th in linear scale of Pressurized Water Reactor containment

studies of H2 (simulated by He) release and distribution in a confined geometry

Combustion and ventilation Fragmentation.

V1. V2 and H4. H5

GexCon 168 m³ open geometry with internal obstructions

explosion vessel

large scale (168 m³)

studies on explosions in open, congested geometries

studies on turbulent combustion and detonations, vented explosions, hydrogen distribution, integrity of mechanical structures under high pressure load

full or large scale

State-of-the-Art Numerical Tools (HySafe-NT)

SBEP V3 (Dispersion) 240g H2 into "garage" SBEP V2 (Deflagration) 20m hemisphere (Fh-ICT test)

State-of-the-Art

Pre-normative research directions (HySafe WP7)

- (Partially) Confined Releases
- Mitigation
- have been determined by
 - initial PIRT study
 - expert questionnaire
 - state-of-the-art survey

communicate the network's working topics, **orientate** the work on intermediate time scale (proposals for experiments, benchmarking, Internal Projects ...)

2412 – hydrogen concentration; – layer thickness; – layer length; – l – pressure and light gauges

ixture volume is expected to be less than 10% of total vessel volume

Iterative process of risk assessmentand risk reduction

Risk Assessment Some Elements

Source: TÜV Rheinland

Hazard Identification HAZOP

Guide words	Meaning	Parameter	Deviation	
No	Negation intention	Flow	No flow	
	-	Level	Zero level	
Less	Quantitative decrease	Flow	Low flow rate	
		Level	Low level	
		Temperature	Low temperature	
More	Quantitative increase	Flow	High flow rate	
		Level	High level	
		Temperature	High temperature	
Reverse	Logical opposite	Flow	Reverse flow	
		Pressure	Reverse pressure	
Part of	Qualitative decrease	Concentration	Concentration decrease	
		Flow	Flow decrease	
		Level	Level decrease	
As well as	Qualitative increase	Concentration of impurity	Concentration increase	
		Temperature of substance	Temperature increase	
		Level of impurity	Level increase	
		Pressure of substance	Pressure increase	
Other than	Complete substitution	Concentration of desired substance	Concentration zero	
		Level of desired substance	Level zero	
		Flow of desired substance	Flow rate zero	

Hazard Identification

Safety relevant properties of GH2

- hydrogen
- methane
- propane
- gasoline vapour

Belfast, 30th September 2008 Progress in Hydrogen Safety – Hydrogen Safety SoA – T. Jordan

Hazard Identification Specific issues of LH2

- -253°C → cold burns, material degradation, NDTT
- 780 x volume expansion during evaporation \rightarrow asphyxiation
- cryo pump effect in open LH2 pools → condensing air,

spontaneous ignitions

Hazard Identification Based on experience

Detonation of ~5 kg, 2 fatalities, Destruction of the whole industry building

H₂-Source 180 Nm³ 16 injuries, damage on vehicles and buildings in a radius of 90 m

Stockholm 1984

What if ...?

Hazard Identification

Collection of event versions in HIAD

Hazard Identification Incidence and Accidents Database (HIAD) Structure

Administration & Risk "environment" Where (application, environment,...) **Technical specification of the event** Equipment spec, location,.... Hazardous Event Specification What happened and why Hazardous Event Consequences Specification Fatalities, injuries, property damage, ...

Hazard Identification Some conclusions from statistics

- Incidences with GH2 lead often to fast deflagrations
- Ignition in LH2 incidences is less probable

Hazard Identification

Some conclusions from statistics

- Considerably less injured with LH₂ / GH₂, but same fatalities
- All combustion phenomena occur, depending on many parameters

State of the Art Consequence Modelling Analysis Methodology

State of the Art Consequence Modelling Mixture Generation

GENERIC ARCHITECTURE OF AN LH2-TANK SYSTE

INVESTIGATED GARAGE SCENARIOS

- A thermal energy deposition of 1 Watt into a cryogenic LH₂-tank leads to a boil-off of 170 g of gaseous hydrogen per day
- Assume here 5 release pulses per day, 34 g H₂ each, with two different release rates

GEOMETRY		HYDROGEN SOURCE					CASE
Garage Volume (m ³)	Vent Openings	H ₂ -Rate (g/s)	Duration (s)	Total Mass (g)	Release Temp. (K)	Release Location	Nr.
70.2	Two times 10 x 20 cm ²	3.40	10	34	22.3	underneath	1
		0.34	100	34	22.3	trunk	2
1	ž.,	0.04	100		22.0	9	

WHAT ARE THE IMPORTANT RISK DETERMINING PARAMETERS?

- Large spectrum of events possible, ranging from zero risk to destruction of garage
- What are the parameters influencing the outcome of such a leak scenario?

- H₂ release rate
- total H₂ mass released
- venting
- garage volume

- ignition source
- cloud
- obstacles
- confinement
- turbulence
- pressure loads effects on structures - scale of combustible - temperature - effects on people - loads

• Obvious first step is to understand mixture generation, defines initial and boundary conditions for further accident development

GASFLOW SIMULATION OF GARAGE SCENARIO

• Case 1: release rate 3.4 g H_2 / s for 10 seconds

Isosurface with \geq 4 vol% H₂, depicts flammable mixture in garage

GASFLOW SIMULATION OF GARAGE SCENARIO

• Case 2: release rate 0.34 g H_2 / s for 100 seconds

Resulting Hydrogen Cloud in the garage

- Computed dimension of combustible H_2 -air cloud in garage (4...75% H_2
- Characteristic size of combustible cloud expressed as $d_{CC} = (V_{cc})^{1/3}$
- Combustible cloud size strongly de endent on release rate, is result of balance between source strength and sinks, or release rate and mixing mechanisms

What is the risk from a combustible cloud free

- How would you judge the hazard in both cases?
- Who would switch on lights in the garage?
- What physical quantities determine the hazard potential of a combustible H₂-air cloud?

State-of-the-Art CFD code Verification Based on HySafe SBEPs

		SBEP #	Short description	Year	Dispersion	Combustion
PHYSICAL PROCESS	PHYSICAL PROCESS		'Russian' test	2005	+	
		V02	FhICT baloon deflagration test	2005		+
Distribution. GASFLOW		V03	INERIS jet experiments	2005	+	
- geometry	- 3d, cylin	V04	FZK jet experiments	2006	+	
- flow and	 graphica Navier-S 	V05	GexCon muti-compartment experiments	2006	+	
transport	vollkom	V06 ext.	BAM experiments with LH2	2006	+	
thermophys. properties	JANAF 1	V07	Shell RS premixed experiments	2006		+
molekular transport	CHEMK	V08	KI combustion tube with end venting	2006		+
- turbulence	- k/ε	V09 ext.	FHICT experiments with DDT	2006		+
 turbulent heat transfer 	- wall fund	V10	HSL jet tests	2007	+	
 heat conduction in struct 	- Fourier e	V11	QRA-connected exercise (Tunnel)	2007	+	
- radiation	- Moment	V12	Tunnel (Groethe, et al.)	2007		+
- vaporation/condensation	- homoge	V13	KI tests in RUT (Detonation)	2007		+
 critcal flowl 	- analyt. C	V14	Explosion with vent (Pasman et al)	2007		+
Mitigation:		V15	QRA-connected exercise (comvustionof V11)	2007		+
 rekombiners a) Siemens 	- 1-cell ma	V16	HSL / Shell dynamic tests H2-air for RS model	2008		+
b) NIS	- 1-cell ma	V17	SNL free space & impinging jets	2008		+
ioniter	1.cell m	V18	Vessel 10.3 m3 Whitehouse H2-air	2008		+
- ignitor	- 1-001111	V19	Combustion tube with transverse venting	2008		+
 sump vaporization 	 homoger 	V20	Swain test in garage with car	2008	+	-
		V21	CEA dispersion tests in garage - to be finally decided	2008	+	

Mixing classification

Main phenomena and processes which has to be considered in mixing simulations including their coupling

- Extreme thermodynamic states (20K, 80 MPa)
 Compressibility
 Buoyancy
 Diffusion
 Phase changes
 - Condensing gases (H2, H20, air, etc)
 - Evaporating liquids (H2, H20...)
- Multiple components
- Gradient mixtures
- Turbulence
- Frictional and electrostatic effects
- Heat transfer

State of the Art in Gas Mixing

Open issues vs established techniques

• Jet Releases

- ☑ Free, slow, vertical upwards Cold
 - Fast
 - Horizontal
 - Wall attached
 - Multiphase
 - Cross-wind
 - Discharge coefficients
- LH2 pools
 ☑ Heat transfer (soil, gases)
 Condensing air
- Diffusion
 Gravitational effects

Models:

- Conservation equation of fluid flow (fully compressible, 3-dim, Navier-Stokes)
- Thermophysical properties of components (JANAF, internal energy, specific heats, for all relevant components including twophase water)
- Molecular transport coefficients (CHEMKIN, thermal conductivity, dynamic viscosity, binary diffusion coefficients)
- Convective and radiative heat transfer between gas and structure
- ✓ Heat conduction within structures
- Condensation and vaporization of water (film, droplets, sump)

Multi-phase transport liquid sumps,...) Droplet, dust, gas interactio valves, filters, etc.)

 Permeation releases Particle vs Continuum

State of the Art in Gas Mixing

Open issues vs established techniques

State of the Art in Jet Modelling Free vertical upward jet

3D simulation of the head of H2 jet in air Turbulence: LES Smagorinsky

Belfast, 30th September 2008 Progress in Hydrogen Safety – Hydrogen Safety SoA – T. Jordan

Eternal problem: spatial resolution e.g. downward release into a cavity

State of the Art Consequence Modelling Criteria for Hazard Potential

Transient phenomena Cross-over of combustion regimes

Schlieren images of different combustion regimes

Combustion Consequence Overpressure

- The maximum flame speed generally governs the damage potential
- Which combustion regime for given mixture and geometry?

How fast can it burn?
Belfast, 30th September 2008
Progress in Hydrogen Safety – Hydrogen Safety SoA – T. Jordan

Flame Acceleration FA

Conservative conditions for flame acceleration in hydrogen mixtures were investigated in closed obstructed tubes, e.g. FZK 12m-tube

FA criterion

Influence of obstruction

 Lean hydrogen mixtures in obstructed tubes with different tube diameters D and 60% blockage ratio (BR)

FA criterion Influence of confinement

FA criterion Summary

- Summary of experiments with different H₂-O₂- dilutend (N₂, Ar, He) mixtures in obstructed tubes of different scales
- Each point represents one experiment
- Results of data evaluation: expansion ratio σ of mixture is is mixture property which governs flame acceleration limit
- No flame acceleration for σ < 3.75 ± 0.1 (10.5% H₂ in dry air)

- shock focussing

Deflagration-to-Detonation-Transition D

 detonation on-set in turbulent flame brush

Two different modes of DDT have been

3 m/1m

Shock tube with conus (idealized mode A

Present here are one example for DD Partially obstructed tube with conus (prototypic mode A) with pressure wave emitted from an obstructed region and focussed

9 m

• Fully obstructed tube (prototypic mode B)

conus

DDT criterion Detonation cell size

DDT criterion 7λ-criterion

- Experiments on DDT in differently sized and shaped facilities have shown that a certain minimum scale is required for DDT
- Correlation of all experimental data with given definitions of D and detonation cell size data shows that detonations are only possible for $D/\lambda > 7$
- Current uncertainty in detonation cell size $\lambda \approx$ factor 2
- In accident scenarios D/λ can vary by orders of magnitude, criterion has predictive capability

irregular cellular structure)

Summary of Criteria

- Transition phenomena cannot be modeled numerically on large building scale
- Criteria allow selection of fastest possible combustion mode from the computed H₂-air cloud composition and scale

Computed Hazard Parameters for selected garage scenario

• Dimension of combustible cloud, 4 to 75 % H₂,

- Volume of cloud with potential for spontaneous flame acceleration (10.5 to 75 % H₂)
- DDT index of cloud (10.5 to 75 % H₂)

Computed Hazard Parameters for selected garage scenario

- Risk parameters show strong dependence on H₂ release rate
 - Case 1: (3.4 g H₂/s)
- Contineous potential for slow deflagration (≈ 20 g of 34 g)
- potential for supersonic combustion regimes during the release period
- high release rate not tolerable without mitigation measures
- Case 2: (0.34 g H₂/s)
- only small potential for slow deflagrations, natura mixing processes sufficient
 - release rate (and mass) seems tolerable for present garage design

 \rightarrow Only Case 1 followed in further safety analysis

State of the Art Consequence Modelling Analysis Methodology

Turbulent combustion regimes

Unconfined Tests with the Combustion Unit

Flame speeds in the Combustion Unit

The flame acceleration inside the combustion units measured with photodiodes

For 8 and 16 g H₂ detonation speeds are obtained at the outer edge of the cube

Simulation of Unconfined Tests

- The unconfined tests with different combustion units were simulated (with COM3D in this case)
- The combustion model was fit to the measured flame speed in the combustion units

 The calculated peak overpressures agree with the experimental values and follow Sachs scaling

Combustion experiments for Case 1

 Up to 20 g of hydrogen would be in burnable concentrations

 A significant part of this could potentially burn with high flame speeds

• What would be pressure loads and consequences from a local explosion in the garage?

• Outcome uncertain, experiments performed in test chamber simulating the garage

Local H2 Explosions in a "Garage"

- H_{2} mass:
- 1g
- 2g 4g 8g - 16g

Instrumentation of the "Garage"

The instrumentation included pressure and acceleration sensors at different locations, covering flat surfaces, (2d) edges and (3d) corners

Comparison of Overpressures

• Pressure sensor 2 B, floor near combustion unit

 Pressure sensor 8 A, back wall, half wall height

 Pressure signals very consistent in timing, amplitudes increase systemarically with H₂ mass, reproducible pattern of reflected pressure waves in confined volume.

Reproducibility of Measured Data

- The experiment with 1 g H₂ was performed three times
- Acceleration and pressure sensors show very good reproducibility of measured signals
- Complex, but reproducible pressure waves are created in confined local explosions of H₂-air mixtures

COM3D State-of-the-Art Combustion Simulation

Comparison of Overpressures

Good agreement, remaining differences are due to geometry simplification and rigid wall model in simulation

State-of-the-Art Reactive CFD Validation

performed in RUT facility near Moscow (FZK, CEA, partly NRC), H₂-air, H₂-air-steam

- Total length 62 m
- Total volume 480 m³
- First channel with obstacles
- Second part without obstacles

State-of-the-Art Reactive CFD Validation

Numerical simulation of RUT experiments with hydrogen-air and hydrogen-air steam mixtures. Standard k- ϵ and Eddy-Break-up model.

Impinging jet flame

Combustion classification

Main phenomena and processes which has to be considered in combustion simulations due to their strong influence on combustion/explosion consequences

Ignition

- Combustion in different regimes
- Initial conditions
 - Mixture composition
 - Turbulence
 - Gradients (e.g., concentration)
- Boundary conditions
 - Obstructions
 - Confinement
 - Heat Transfer
 - Turbulence

State of the Art in Combustion

Open issues vs established techniques

	✓ Turbulence models
 Ignition 	Standard k-ɛ model
Weak / Mild ignition (e.g., spark,	gRNG k-pmgdel
igniter, recombiner)	LES with SGS models:
Strong ignition (e.g., spark, high	Smagorinski [Deardorff, 1970]
ignition in reflections)	mixed [Biringen, 1981]
Jet ignition	dynamic [Germano, 1991]
	approximate deconvolution method
 Combustion mode 	(ADM)
☐ Laminar combustion	
Flame acceleration / deceleratio	✓ Eddy-Break-Up model
Turbulent deflagration	✓ EDM
DDT	✓ Set of phenomenological
Detonation	combustion models (CREBCOM,
✓ Quenching	HEAVDET, etc)
Local quenching	✓ Presumed β-PDF
Global quenching	✓ 1D PDF (f)
Standing flames and fires	✓ joint PDF (at least 2D: f, T) / / _ / _ / _ / _ / _ / _ / _ / _
-	

State of the Art in Combustion

Open vs established issues and established

- Spatial and time resolution
- Initial conditions
 - **Mixture composition**
 - **☑** Initial concentrations, release rates
 - Fuel additives: Carbon monoxide / Hydrocarbons

☑ Combustion inhibitors: Steam / Carbon dioxide Initial turbulence

Gradients (concentration, temperature, etc)

- Boundary conditions
 - Obstructions
 - ✓ Large scale obstructions (resolved: same size as the characteristic size of the problem)

the characteristic size of the problem) Small scale obstructions (unresolved: much less than the characteristic size of the problem)

- Confinement
 - Closed

Vented / Semi-confined and open

Additional sources of turbulence (fans, jets, etc)

State of the Art Consequence Modelling State Structural response

Maximum Overpressures vs Distance

- Measured peak overpressures ∆p⁺ in unconfined tests with combustion unit of 0.5 to 16 g H₂
 △p⁺ ↑
- Data are well reproducible

LVSafe

Impulse vs Distance

Measured positive impulse I+ values from unconfined combustion units $\Delta p^+_{\blacktriangle}$

State of the Art Consequence Modelling

What are effects of blast loads on the structure? Commercial systems like LS-DYNA, PAMCRASH, etc...

Limiting Pressure Loads on Structural Elements

Limiting Pressure Loads on Humans

Mitigation Measures

The proposed analysis procedure allows identification of possible mitigation measures for risk reduction

HySafe

Insulating Foam

Mitigation by Steam Inerting

State of the Art in H2 Vehicle Safety Open issues

- safe venting of compressed hydrogen gas cylinders (35 and 70 MPa),
- optimum arrangement of H2 storage vessels in the vehicle,
- fire safety of hydrogen-powered vehicles with the primary goal to prevent bursting of the high-pressure hydrogen system (flamelets impingement, PRDs,..)
- guidelines for fire fighters in case of fire or accident,
- optimum number and location of hydrogen detectors,
- safety concept in case of a hydrogen leak detection in a running car,
- tolerable H2 leak rates in the vehicle for different operating conditions, including a parked car,
- optimum position and activation criteria for pressure relief devices on the H2 tank,
- procedures to prevent penetration of hydrogen into the passenger compartment,
- effectiveness of forced ventilation for reducing local H2 concentrations in sensitive car areas,
- maximum possible reduction of ignition sources,
- development of standardised safety test procedures for new solid storage materials, such as nanocrystalline powders.
- development of non-destructive testing methods for cryo-vessels and high pressure tanks made from composite materials including highly accelerated lifetime testing.

Some Simplified Methods Risk Evaluation with FMEA

Some Simplified Methods Risk Evaluation with FMEA

Beispiel einer durchgeführten FMEA-Analyse für eine Membranfiltration

FMEA Membranfiltration 3 4 5-8 9 10 11 12-							-1	5						
Merkmal bzw. Baugruppe	Fehler	Wirkung	Ursache	А	в	Е	RPZ	Abhilfe	Verantw. / Termin	Kontrolle/ Bem.	А	в	Е	RPZ
Membranplatten und Permeatsystem	Platten beschädigt	Schlamm tritt ein	Schweißfehler	2	10	1	20	Regulierung 100%						
			Handling bzw. Lagerung und Transport	5	10	6	300	sicherheitstechnische Anweisungen						
			Einleitung Faser- und Grobstoffe	2	10	6	120	1mm Siebung vorgeschrieben						
			toxische membranschädigende Stoffe	4	10	6	240	vorschreiben						
	Platten werden dicht	Filtrationsleistung sinkt	Zeitintervalle zu lang Biofouling	2	5	1	10 10	weitere Erfahrungswerte sammeln					_	
			zu starke hydraulische Belastung, Anlage überlastet	4	5	1	20							
Tragegestell	Korrosion	tragende Bauteile geschwächt	falscher Werkstoff	3	5	8	120	für den jeweiligen Anwendungsfall angepasste Werkstoffe verwenden						
Antrieb	Ausfall Motor	Reinigung ungenügend	Kurzschluss, Motorschaden	2	6	2	24							
Reinigungssystem - Luftspülung	Luftspülung fällt aus	Membran verstopft, Deckschichtbildung	Gebläseausfall	2	6	2	24							
	Luftmenge nicht	undenüdende	verstopfen der Belüftungsöffnungen	3	6	7	126	saubere Verarbeitung						
-	ausreichend	Abreinigung	Dimensionierungsfehler	2	6	8	96	Testlauf						
Reinigungssystem - Mediumspülung	Spülpumpe fällt aus	keine Intensivreinigung	Pumpenausfall	2	6	2	24							
	ausreichend	Abreinigung	Dimensionierungsfehler	2	6	8	96	Testlauf						
Rollenlagerung	eine Laufrolle blockiert	Lage verändert sich	Lagerschaden, Lebensdauer	7	5	8	280	Wirkleistungsmesser						
	Lagerzapien korridiert	Lage verändert sich	falsches Material	3	5	8	120	angepasste Werkstoffe						

Some Simplified Methods Single-DOF-Oscillator model for structural response

- Simplest model for structural response is SDO model
- Describes ground mode (first harmonic) of structural element which is represented by lumped values for mass, stiffness and damping of motion
- Tool to understand basic effects of transient pressure loads on global displacement of element
- In FEM analysis also higher modes included, but superposition of different effects, results not so transparent

Scaled Peak Overpressures vs Distance

- Use of Sachs scaling collapses measured peak overpressures to universal correlation for \geq 1 g H₂, E = total energy of explosive charge
- Combustion units provide conservative overpressures

Expanding the State of the Art (Pre-normative) Research Directions

(Partially) Confined Releases Mitigation

determined by

- initial PIRT study
- expert questionnaire
- state-of-the-art survey

communicate the network's working topics,

orientate the work on intermediate time scale (proposals for experiments, benchmarking, Internal Projects ...)

HySafe Internal Project "InsHyde" Objectives

- Investigation of realistic non-catastrophic releases in (partially) confined areas
- Determination of permeation and release limits
- Systematic assessment of mitigation (including detection) measures (sensors + venting + recombiner...)
- Simulations and experiments for critical releases
- Deriving "Recommendations",
 → standards, …
- Proposing a dedicated project for JTI support "HyGarage" (lead NCSRD)

PROPOSAL FOR A NEW EXPERIMENT TO STUDY H2 BEHAVIOUR IN CONFINED SPA

HySafe Internal Project "InsHyde" Definition of acceptable inventories

- Released mass of Hydrogen:
- Release time:
- Ignition time:
- Ignition location:
- Ignition energy:
- Complexity of geometry a) Obstacles:
 - b) Enclosure:

- 1-10 g (Standard variation)
- 0.1-100 s (Jet \rightarrow Plume)
- to be chosen in a way, that presumably
- maximum H₂- combustion occurs
- weak, strong
- different number of wire netting layers
 → turbulence and flame convolution
- different number of restrictive plates (i.e. aluminum)

"InsHyde" Integral tests (10 g)

FHE

"InsHyde" Some Results

"InsHyde" – Permeation Survey on Existing Allowable Rates

- Draft UN ECE regulation (EIHP draft & possibly the basis of the EU Regulation) and superseded versions of draft ISO/DIS15869:
 - For Type 4 containers, the steady state permeation rate < 1.0NmL/hr/L internal vol.
 - The test is conducted at ambient temperature and nominal working pressure.
- > ISO/DIS 15869.2 & .3:
 - For Type 4 containers, the steady state permeation rate < 2.0NmL/hr/L water capacity at 35 MPa, and 2.8NmL/hr/L water capacity at 70 MPa.
 - The test is conducted at ambient temperature and nominal working pressure.
- > SAE J2579, Jan. 2008:
 - The steady state hydrogen discharge rate due to leakage and permeation from the hydrogen storage system shall not > 75NmL/min <u>at 85°C</u> and nominal working pressure for a standard passenger vehicle.
 - The rate may be increased in proportion to the enclosure volume for large vehicles.

HySafe Internal Project "HyTunnel"

- Selection of broadly accepted szenarios.
- Review of available relevant numerical and experimental simulations
- Qualitative assessment on standard mitigation measures effectiveness (benchmark)
- *i. Experimental part (depending on financing)*
- *ii. Extension of the EC Tunnel "directives"*

In of the EUROPEAN COMPANY COM

2002/0309 (COD)

Proposal for a

DIRECTIVE OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL

on minimum safety requirements for tunnels in the Trans-European Road Network

Belfast, 30th September 2008 Progress in Hydrogen Safety – Hydrogen Safety SoA – T. Jordan

"HyTunnel" - Experimental Layout

- Objective: Critical conditions for FA and DDT in semiconfined gas mixture layer
- Expected data: Dependence of critical σ^* and λ^* on gas layer thickness δ

"HyTunnel" – Main Experiments

Large scale facility (5.7 x 1.6 x 0.6 m)- effective venting ratio $\alpha = 0.46$ (layer thickness $\delta = 0.15$ m)Diagonal viewFilm opening

Belfast, 30th September 2008 Progress in Hydrogen Safety – Hydrogen Safety SoA – T. Jordan

"HyTunnel" – Smoked-foil records

Detonation cell on the side wall of the box

Detonation cell on the ceiling of the box

- Observed averaged cell sizes vary within 1.5 – 1.7 cm
- ~ corresponds to theoretical expectations

Belfast, 30th September 2008 Progress in Hydrogen Safety – Hydrogen Safety SoA – T. Jordan

"HyTunnel" - Some results regarding FA and DDT

- Large scale test completed
- Effective flame acceleration (FA) depends on mixture reactivity and gas layer thickness.
 Flame accelerates to sonic velocity:

 $\begin{array}{ll} \mbox{for 15\% H}_2 & d \geq 0.6 \ m \\ \mbox{for 20\% H}_2 & d \geq 0.3 \ m \end{array}$

- Detonation in semi-confined geometry at 25% H₂ can occur if gas layer d ≥ 0.3 m
- Critical layer thickness for detonation propagation:

15 > d/l > 7.5

"HyTunnel" Simulations

Flammable cloud of a 5kg release

WP18.3 Effect of high purity high pressures hydrogen on structural material Objectives

Experience from space research/rocket engineering indicates that hydrogen 5.0 with less than 5ppm O₂ contamination (HPH2, as required for PEM FC) can induce accelerated material damage processes.

Objectives:

- Investigation of the effect of HPH2 induced cracking
- Recommendations for the safety aspects of the use of HPH2 in fuel cell cars
- Lead: AL Partners: BAM, DNV, HSE/HSL, INASMET, Risø and Active Supporters: ET, INTA.

WP18.3 High Purity H2 Some results of a literature study

Comparison between pure gas and H_2 with additives [4]

WP18.4 Safety of Nano Storage Material Hysaf

- Fundamental understanding the safety issues regarding nano-scaled solid-state hydrogen storage materials/systems through:
- (i) development of standard testing techniques to quantitatively evaluate both materials and systems,
- (ii)understand the fundamental science of environmental reactivity of hydrides and
- (iii)develop methods and systems to mitigate the risks to acceptable levels.

nano-structured alanate blown out of a heat exchanger tube at 10 bar and 120 °C (frames of a high speed video (left) and of a infrared video (right) at the same instant)

HySafe Internal Project "HyQRA" Objectives

1) Develop a reference **Quantitative Risk Assessment (QRA)** methodology for hydrogen technologies applying – where necessary **simplified methods** for acceptable answer times as required for an **engineering tool**

The tool supports the following steps:

- a. Hazard identification
- b. Frequency estimation
- c. Consequence assessments
- d. Risk estimation
- e. Validation of acceptance criteria
- f. Assessment of measures for risk reduction

2) Prototypical validation at few relevant cases of the developed methodology

HyQRA The project structure

HyQRA Benchmark Base Case Geometry of the HRS - BBC

State of the Art in Infrastructure Safety

- determination of tolerable H2 releases during vehicle repair, which pose no risk to the personnel,
- design of effective and low-cost ventilation systems,
- CFD analysis of leaking hydrogen scenarios, including complex surroundings near the vehicle, extension of the investigations described in [33] and including the special features of a LH2 leak including cold jets,
- control of ignition sources and definition of a realistic conservative ignition model,
- in case of filling stations, the issues of protecting walls and safety distances need to be investigated.

State of the Art in Basic Research Open issues

- measurement of ignitable space regions, given a certain leak size, shape, and mass flow rate, an extension of the work described in,
- systematic investigation of active and passive safety systems, e.g. ventilators, catalytic recombiners, or flame arrestors,
- modelling of ignition processes under realistic boundary conditions,
- investigation of diffusion flame stability after ignition (limits for lift-off and extinction),
- criteria for flame acceleration and detonation onset in H2-air mixtures with concentration gradients and partial confinement (Note: the criteria described in Section 3.2 are valid for homogeneous and fully confined mixtures; they are, hence, very conservative with respect to practical accident conditions in mobile applications and should be extended to more prototypic conditions).
- basic investigations of the gas behaviour including its reactions at the very low temperatures around 20K and very high pressures
- effect of high purity hydrogen on the relevant materials

Other References H2 Testing – EIHP2 (www.eihp.org)

	European Integrated Hy	drogen Pro	ect 🤊		Compaction Strates		1.1.1
EIHP		Welcome	Publications	Workshops	EIHP 1	Supporters	Members

Public Section		
		Ho Coordina Webma
	EIHP Final Reports [if not mentioned otherwise all in PDF format]	webilla
	Joint Final Report EIHP2 - Publishable Part, 05APR2004 [0.34 MB] download	
	WP 2.1 Codes and Standards, by Inger Hugstmyr, Hydro, 22MAR2003 [0.3 MB] download	
	WP 2.2 Gaseous Hydrogen Vehicle Refuelling Station, by Shell, Air Products, BP, Air Liquide, Vandenborre Hydrogen Systems (Stuart Energy Europe), DNV and Hydro, JAN2004 [1.33 MB] download	
	WP 2.3 Harmonisation of Components, by BP, 11MAR2004 [0.12 MB] download	
	WP 2.4 Results from Workshop on "Risk Based Maintenance and Inspection for Hydrogen Refuelling Stations", by DNV, 29JAN2004 [0.44 MB] download	
	WP 3.1 Identification of Optimum On-Board Storage Pressure for Gaseous Hydrogen City Buses, by Volvo Technology Corporation (lead) and contributing partners: Adam Opel AG, Air Products PIc., DaimlerChrysler AG, Norsk Hydro ASA, Raufoss Alternative Fuel Systems AS, Shell Global Solutions, MAR2004 [0.3 MB] download	
	WP 3.2 Connectors Test Under High Pressure Hydrogen, by M. Le Digabel, C. Eyraud, N. Botrel, CEA, JAN2004 [0.34 MB] <u>download</u> WP 3.2 Modelling and Simualtion of the Filling of a Gaseous Hydrogen Tank Under Very High Pressure, by C. Perret, CEA, 04FEB2004 [6.28 MB] <u>download</u>	

Other References HRS Handbook – HyApproval (www.hyapproval.org)

	Project Website			
HyApproval		······	ers	
Publications &		home		
Presentations				contact
: presentations	The HyApprov	/al Handbook		- webmaster
public deliverables	04 JUN 2008	HyApproval Deliverable 2.2 Final version of Handbook for hydrogen refuelling station approval - V2.1		
	04 DEC 2007	APPENDIX I "Safety Data Sheets for hydrogen and refrigerated hydrogen"		· · ·
	04 DEC 2007	APPENDIX II "Approval requirements in five EU countries and the USA"		
	24 NOV 2006	APPENDIX III WP4 "Emergency Response Plan"		
	14 APR 2008	APPENDIX IV WP4 Deliverable "Quantitative Risk Assessment of Hydrogen Refuelling Station with on-site production"		
	07 AUG 2008	APPENDIX V HyApproval WP4 Deliverable "Consequence Assessment Summary Report" [reduced version - complete version to follow]		
	04 DEC 2007	APPENDIX VI "Vehicle description and requirements"		

A simulation contributions to the EC project HyApproval "Handbook for the safe installation/operation of a HRS" (details on <u>http://www.hyapproval.org</u>) \rightarrow

Other References HyPer – Permitting Guidelines for small stationary installations (www.hyperproject.eu)

A PlugPower natural gas fuelled CHP unit powers a greenhouse in Nancy, France.

Stationary applications include systems:

•Connected to the power grid on stand alone including remote power

•Fuel Cell systems fuelled by natural gas, liquid hydrocarbon fuels, biogas, hydrogen

·Residential power and heat generation

A PlugPower GasCore[®] Fuel System in South Africa provides back-up power for telecommunications.

A Vaillant fuel cell heating appliance, Oldenburg, Germany.

- •Uninterrupted Power Supply (UPS) and backup systems •Combined Heat Power Systems (CHP)
- Tri-generation systems (heat used)

Belfast,

A PlugPower GasCore[®] Fuel System provides power to a telecommunication mast in Scotland, United Kingdom.

State of the Art Education

Online reviewed curriculum (HySafe e-Academy)

International Curriculum on Hydrogen Safety Engineering

Menu:

- International Curriculum on Hydrogen Safety Engineering
- Alumni Database
- Database of Organisations Working in the Hydrogen Industry
- Peer reviewed journal publications by HySafe-partners since 2004
- Bibliography Database
- European Summer School on Hydrogen Safety
- International Short Course Series Progress in Hydrogen Safety
- PgCert/PgDip/MSc in Hydrogen Safety Engineering
- Questionnaire Demand for Education in Hydrogen Safety Engineering
- Statistics Demand for Education in Hydrogen Safety Engineering
- HySafe Funding for Tuition Fees of HySafe Members
- Consolidated Topics for Research
 Students
- . Work in Brogross Workshop for Young

Click here to view curriculum in pdf format.

Click here for the Questionnaire to assess the demand for education in Hydrogen Safety Engineering.

CONTENTS

1 INTRODUCTION

- 1.1 The safety of hydrogen
- 1.2 Educational and training programmes in hydrogen safety
- 1.3 The role of hydrogen safety education in the transition towards a hydrogen economy
- 1.4 The International Curriculum on Hydrogen Safety Engineering
- 1.5 Assessment of the need for hydrogen safety education and formation of a market of potential trainees
- 1.6 e-Learning and the European Summer School on Hydrogen Safety
- 2 BASIC MODULES
 - 2.1 MODULE THERMODYNAMICS
 - 2.1.1 INTRODUCTORY STATEMENT
 - 2.1.2 PREREQUISITE MATTER
 - 2.1.3 CONTENTS OF THE MODULE
 - 2.1.3.1 Fundamental concepts and first principles (U: 6 hrs)
 - 2.1.3.2 Volumetric properties of a pure substance (U: 6hrs)
 - 2.1.3.3 The first law of thermodynamics (U: 6 hrs)
 - 2.1.3.4 The first law of thermodynamics and flow processes (U: 6 hrs)

Other Education and Training Offers PGC and Summer School (HySafe e-Academy)

JUILLY

r rogrooo mi riyarogon oaroty

Invitation to the 3rd Int. Conf. on Hydrogen Safety September 16-18th, 2009 Ajaccio, Corse, France

Contact: ICHS@hysafe.org INTERNATIONAL CONFERENCE ON HYDROGEN SAFETY

Support

NoE HySafe is co-funded by the European Commission within the 6th Framework Programme (2002-2006); Contract n°: SES6-CT-2004-502630.

The network is contributing to the implementation of the Key Action "Integrating and strengthening the ERA" within the Energy, Environment and Sustainable Development.

Thanks to all HySafe colleagues...

... and thank you for your attention.

TURBULENT DEFLAGRATION EXPERIMENT WITHOUT DE

• Partially obstructed tube with conus, 15 % hydrogen in air

TURBULENT DEFLAGRATION EXPERIMENT WITH DDT

• Partially obstructed tube with conus, 16.5 % hydrogen in air

BLAST LOADED ELASTIC OSCILLATOR (1)

0.0

0.1

1.0

scaled loading time $\omega T =$

10

- Damage is determined by maximum displacement x_{max}, can be found from solution by setting x(t) = 0
- Scaled displacement = f(scaled loading time)

$$\frac{x_{\text{max}}}{\Delta p^+/k} = f(\omega T_{\text{load}})$$

BLAST LOADED ELASTIC OSCILLATOR (2)

 $\frac{\mathbf{x}_{\text{max}}}{\Delta \mathbf{p}^{+}/\mathbf{k}} = (\frac{\mathbf{k}}{\mathbf{m}})^{1/2} \mathbf{T}_{\text{load}} = \boldsymbol{\omega} \mathbf{T}_{\text{load}} \quad \mathbf{Or} \quad \mathbf{x}_{\text{max}} = (\frac{1}{\mathbf{k} \mathbf{m}^{1/2}}) \cdot \mathbf{I}$

maximum deformation is proportional to blast wave impulse I

Belfast, 30th September 2008 Progress in Hydrogen Safety – Hydrogen Safety SoA – T. Jordan

OSCILLATOR RESPONSE: ANOTHER VIEW

- Often oscillator response is presented with inverted ordinate and unscaled load parameters Δp^+ and T_{load}
- Quasistatic asymptote

$$\frac{\Delta p^{+}}{kx_{max}} = \frac{1}{2}$$
$$\Delta p^{+} = \frac{kx_{max}}{2}$$

Maximum deflagration x_{max} is only proportional to applied peak overpressure Δp^+ , indipendent of load duration

• Impulsive asymptote

$$\frac{\Delta p^{+}}{x_{max}} = \frac{1}{\omega T_{load}}$$
$$\Delta p^{+} = (km)^{\frac{1}{2}} x_{max} \frac{1}{T_{load}}$$
$$\Delta p^{+} T_{load} = I \sim x_{max}$$

Maximum deflagration x_{max} is proportional to applied impulse

Internal Project "HyTunnel"

- Accidents in public focus
- Heterogenous regulations
- Costly and long term investments

COMMISSION OF THE EUROPEAN COMMUNITIES

**** * * * *

> Brussels, 30.12.2002 COM(2002) 769 final

2002/0309 (COD)

Proposal for a

DIRECTIVE OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL

on minimum safety requirements for tunnels in the Trans-European Road Network

"HyTunnel" - Some Experimental Work

Tunnel 2D-geometry of gas mixture with one solid wall is assumed to be semi-confined volume with venting ratio a = 0.5

- FA criterion: $s/s_0 \sim 1+2 \cdot a$
- FA estimation for different a:
 - a = 40% => fast deflagration in 25% H2/air
 - a = 50% => fast deflagration in 30% H2/air
- DDT estimation for different d:
- DDT criterion: d/l ~ ?

Small scale facility (1.6 x 0.5 x 0.4 m)

"HyTunnel" – Small Scale Tests Results

BOS 15 % H₂/air w/o obstacles

1000

Distance [ms]

1500

500

0

0

2000

Belfast, 30th September 20

HyApproval – HRS Worst Case Numerical Simulation

Scenario T1: Trailer hose disconnection

Assume all contents lost

- 250 kg H2 released
- ~ 10 min release time
- ~ 1.3 kg/s initial release rate

Leak location

CGH2 Refuelling Station Side View (Luxembourg refuelling station)

Belfast, 30th September 2008 Progress in Hydrogen Safety – Hydrogen Safety SoA – T. Jordan

Scenario T1: Pressure wave evolution during detonation

Scenario T1: Pressure loads

Recordings of the pressure wave resulted from the detonation of the H2 release at 6.8 s

Concentration Comp. #1

Scenario T1: Pressure loads

Recordings of the pressure wave resulted from the detonation of the H2 release at 6.8 s

Concentration Comp. #1