

HySafe network & HyTunnel project

Dr.-Ing. Thomas JORDAN, Prof. Dr. Suresh KUMAR coordinator@hysafe.net

New Energy Carriers in tunnels and underground installations Frankfurt a. M. Airport 20 November 2008

NoE HySafe - Integration of the EU H2 Safety Research

Consortium

- 24 partners from 12 European countries
 + Kurchatov Institute, Russia + University of Calgary, Canada
- 13 research institutes, 7 industry partners, 5 universities
- ~150 scientists actively involved

Budget

Total > 13 M€ ; EC grant < 7 M€

Time frame

NoE started: 03/2004

duration: 5 years (application for 8 month extension)

→ 02/2009 Founding of the "International Association HySafe" (self funded Belgian AISBL)

INER

Research Headlines

(Partially) Confined Releases Mitigation

determined by

- initial PIRT study
- expert questionnaire
- state-of-the-art survey

communicate the network's working topics,

orientate the work on intermediate time scale (proposals for experiments, benchmarking, Internal Projects ...)

Internal Project "HyTunnel"

Objectives

- review tunnel regulations, standards and practice in respect to the management of hazards and emergencies, e.g. EC directive
- identify appropriate accident scenarios for further investigation
- review previously published experimental and modelling work of relevance
- extend our understanding of hydrogen hazards inside tunnels by means of new physical experiments and numerical modelling activities.
- document suggested guidelines for the safe introduction of hydrogen powered vehicles into tunnels

\rightarrow Improved tunnel safety with H_2 as the fuel of the future

COMMISSION OF THE EUROPEAN COMMUNITIES

*** * * * *

Brussels 30 12 2003 COM(2002) 769 fina

2002/0309 (COD)

Proposal for a

FUROPEAN PARLIAMENT AND OF THE COUNCIL

on minimum safety requirements for tunnels in the **Trans-European Road Network**

HyTunnel - Experimental Layout

Objective:

Critical conditions for FA and DDT in semi-confined gas mixture layer

Expected data: Dependence of critical σ^* and λ^* on gas layer height δ

Some results of the experimental program

Hydrogen stratified layer experiments completed by FZK:

- Summary included in HyTunnel Deliverable D62
- Full report in deliverable D87
- 10 experiments conducted

HyTunnel – Numerical Simulation

Selected Scenarios

Details of H2 and CNG release (9 variants):

Vehicle	Inventory/	Initial release rate	Release rate	Orifice	Probability
	Duration	C=constant	sensitivity		
		V=variable	study (300s)		
Car LH ₂	10 kg (900s)	11 g/s C	n/a	20 mm	0.375
Car CGH ₂ 700 bar	6 kg (84s)	448 g/s V	112 g/s V	Sonic	0.1875
(vent up)					
Car CGH ₂ 700 bar	6 kg (84s)	448 g/s V	112 g/s V	Sonic	0.1875
(vent down)					
Bus CGH ₂ 350 bar	6 kg (147s)	234 g/s V	136 g/s V	Sonic	0.125
Bus CGH ₂ 350 bar	24 kg (147s)	936 g/s V	272 g/s V	Sonic	0.125
Bus NG	26 kg	375 g/s V		Sonic	0.125
Bus NG	104 kg	1500 g/s V		Sonic	0.125
Car NG vent up	26 kg	375 g/s V		Sonic	0.375
Car NG vent down	26 kg	375 g/s V		Sonic	0.375

Some results of the simulations

Preliminary set of calculations completed:

example of calculated maximum flammable gas cloud sizes

Vehicle/Release Characteristics	Inventory (kg)	Maximum flammable gas cloud size m³ (& kg)		Maximum equivalent stoichiometric flammable gas cloud size m ³ (& kg)	
		Horseshoe tunnel	Rectangular tunnel	Horseshoe tunnel	Rectangular tunnel
Car LH ₂	10 kg	1.4 (0.007)	1.8 (0.009)	0.02 (0.003)	0.02 (0.004)
Car CGH ₂ 700 bar (vent up)	5 kg	281 (1.14)	273 (1.21)	4.42 (0.07)	4.31 (0.09)
Car CGH ₂ 700 bar (vent down)	5 kg	268 (1.33)	308 (1.39)	17.75 (0.29)	8.77 (0.18)
Bus CGH ₂ 350 bar	5 kg	213 (0.89)	190 (0.81)	2.16 (0.04)	1.94 (0.04)
Bus CGH ₂ 350 bar	20 kg	1795 (7.46)	3037 (13.97)	27.46 (0.45)	24.67 (0.49)
Bus CNG 200 bar	26 kg	3.4 (0.15)	4.6 (0.19)	1.15 (0.08)	1.18 (0.08)
Bus CNG 200 bar	104 kg	45 (2.01)	647 (26.0)	13.47 (0.90)	113.48 (7.60)
Car CNG 200 bar (vent up)	26 kg	2.1 (0.10)	3.4 (0.15)	0.85 (0.06)	1.03 (0.07)
Car CNG 200 bar (vent down)	26 kg	17 (0.78)	15 (0.65)	6.31 (0.42)	5.25 (0.35)

Hazard & risk assessment

performed in terms of

- Dispersion release
 - based on pessimistic hazard level cloud volume and cloud extent
- Ignition probability
 - Ignition source type
- Exposure times for flammable gas cloud volume
- Fire and Explosions
 - Overpressures as a function of gas cloud size
 - Stoichiometeric gas clouds
 - DDT
- Sensitivity of the above hazards to the variation in tunnel geometry (tunnel cross-section, gradient, obstacles), vehicle parameters (liquid, CGH2, release location and direction), ambient and ventilation conditions

Conclusions - Dispersion

- Horseshoe cross section tunnel indicates lower hazard than equivalent rectangular cross-section tunnel with regards to flammable cloud volume and its longitudinal and lateral spread
- Increasing height of the tunnel indicates safer conditions to tunnel users for buoyant releases of H2
- Compressed gas H2 (CGH2) releases pose greater hazard than natural gas releases, but still not significant
- Increase of ventilation velocity decreases the cloud size and hence results in lower hazard
- CFD simulation results not conclusive on the following aspects:
 - Level and extent of hazard with no ventilation versus ventilation
 - Hazard posed by liquid hydrogen (LH2) versus CGH2 releases

Conclusions - Explosion

- Overpressures registered for different scenarios in the 1/5 scale 78.5 m tunnel SRI experiment (uniform mixtures, "unessential" obstruction) are in the range 0-1.7 bars
- Overpressures calculated for different scenarios are in the range of 0-12 bars depending on scenarios and tools; Good agreement between CFD simulations and SRI experiment, significant difference between simulations for real scale tunnel (not all models are described in details necessary for reproduction by other groups)
- HySafe concentrated mainly on uniform mixtures (driven by availability of unique SRI experiments) until now. "Step back" compared to EIHP project, where non-uniform distribution from different release scenarios and then combustion of non-uniform mixtures were numerically simulated (A. Venetsanos, D. Baraldi, P. Adams, et al.). The second step back compared to EIHP approach, is suggestion to change non-uniform mixture created during dispersion on uniform mixture for combustion (Q9 by GexCon)
- "No pressure decay" environment, i.e. "long safety distances";
- FZK experiments proved that DDT is possible in principle. Ceiling design and mitigation measures are important.

Need for further research

- Realistic scenarios in tunnels (release downwards under the car) with delayed ignition of non-uniform mixtures (start from an EIHP scenario)
- Scientifically grounded requirements to location and parameters of PRD
- Impinging jet fires and conjugate heat transfer in conditions of blowdown
- Releases into congested space with DDT
- Develop hydrogen safety engineering methodology and apply it to a tunnel scenario (long term)

Acknowledgement

NoE HySafe is co-funded by the European Commission within the 6th Framework Programme (2002-2006); Contract n°: SES6-CT-2004-502630.

The network is contributing to the implementation of the Key Action "Integrating and strengthening the ERA" within the Energy, Environment and Sustainable Development.

Thanks to all HySafe colleagues...

... and thank you for your attention.

to answer on:

- Do we have competent practitioners (engineers/enforcers) to ensure safe use of hydrogen powered vehicles in tunnels ?
- Is current state of knowledge premature to deliver best practice guidance on the safe use of hydrogen powered vehicles in tunnels ?
- If so, we need to identify gaps in knowledge, and training requirements, e.g., topics on which training would help in improving

Need for further research

- Realistic scenarios in tunnels (release downwards under the car) with delayed ignition of non-uniform mixtures (start from an EIHP scenario)
- Scientifically grounded requirements to location and parameters of PRD
- Impinging jet fires and conjugate heat transfer in conditions of blowdown
- Releases into congested space with DDT
- Develop hydrogen safety engineering methodology and apply it to a tunnel scenario (long term)