In-situ Ozone Observations at Zugspitze (2962 m) from 1978 to 2008

H.E. Scheel
Forschungszentrum Karlsruhe
IMK-IFU

EGU General Assembly 2009
Zugspitze: 47°N, 11°E, 2962 m asl, at the northern rim of the Alps

Analysis of ozone data (1978 – 2008) with respect to:

- Long-term trend
- Seasonal variations
- Impact of different atmospheric conditions

Focus on differences between earlier and more recent parts of the time series
Overview on the O₃ data structure at Zugspitze (half-hourly mean values, 1996 - 2000).

By short-term variations a range of about 110 ppb is covered.
O$_3$ monthly mean values (1978 – 2008) together with regression curve and long-term trend component

Part 2: 1990 - 2002

Zugspitze (2962 m)
Trend curves for the sites Zugspitze (2962 m) and Wank (1780 m)

Comparisons with the neighbouring Wank summit: Smaller and partly negative growth rates during the 1990s, remarkable agreement in the trend behaviour from 2000 onwards.

Avg:

- ZUG: 1.13 ppb yr\(^{-1}\)
- WNK: 0.98 ppb yr\(^{-1}\)

Part 2: 1990 - 2002

- ZUG: 0.24 ppb yr\(^{-1}\)
- WNK: 0 ppb yr\(^{-1}\)
- 0.55 ppb yr\(^{-1}\)
- 0.79 ppb yr\(^{-1}\)

Instantaneous growth rate = derivate of trend curve
Results of modelling and emission inventories in the literature indicate relationships between NO$_x$ emission trends (increases / reductions) and surface ozone levels.

Strong increase in European NO$_x$ emissions between 1950 and 1980.

Ref., e.g.: Vestreng et al. (2009), Evolution of NO$_x$ emissions in Europe with focus on road transport control measures, Atmos. Chem. Phys., 9, 1503-1520.

Reductions in emissions since the late 1980s.

Filtering of Ozone Data

Based on the parameters:
- relative humidity (RH),
- beryllium-7 (7Be),
- carbon monoxide (CO) [available since 1990]

1. Selection of air masses influenced from the lower stratosphere/upper troposphere:
 "RH < 60 % AND 7Be > 85th percentile of the annual data set" (abbreviated 7Be(P85)/RH).

2. For dry air affected predominantly by the lower stratosphere/upper troposphere:
 Combined RH criterion requesting: "RH < 60 % AND RH running minimum over 12 hours < 30 %" (abbreviated RH60/30)

3. Relatively unpolluted air: CO < 30-day running median of CO

4. Polluted air: CO > 30-day running median of CO
Growth Rates for Different Atmospheric Conditions

Calculated from the slope of linear regression on selected data sets

1978-1989: Similar rates for different conditions
1990-2002: Highest rates for air from lower stratosphere/upper troposphere

1978-1989: Similar rates for different conditions
1990-2002: Highest rates for air from lower stratosphere/upper troposphere

Contribution of selected condition [%]

<table>
<thead>
<tr>
<th>Condition</th>
<th>Rate(78-89)</th>
<th>Rate(90-02)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All data</td>
<td>14.7</td>
<td>14.2</td>
</tr>
<tr>
<td>night-time</td>
<td>10.6</td>
<td>13.1</td>
</tr>
<tr>
<td>RH<60</td>
<td>23.0</td>
<td>8.8</td>
</tr>
<tr>
<td>7Be(P85)/RH</td>
<td>13.1</td>
<td>14.2</td>
</tr>
<tr>
<td>7Be(P65)/RH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RH60/30</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rate(78-89)</th>
<th>Rate(90-02)</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.7</td>
<td>14.2</td>
</tr>
<tr>
<td>10.6</td>
<td>13.1</td>
</tr>
<tr>
<td>23.0</td>
<td>8.8</td>
</tr>
<tr>
<td>13.1</td>
<td>14.2</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Comparison of growth rate calculations (1990-2002):
Monthly means & Annual means

Zugspitze: Ozone growth rates (1990 - 2002) from linear regression on monthly and annual means with 95%-confidence limits

Proxy of background trend (?)

Highest rates associated with "clean air" conditions
A different view on the ozone trend

Growth rates from seasonal percentiles: 5th, 25th, 50th, 75th, 95th
Winter = Dec, Jan, Feb; Summer = Jun, Jul, Aug

1978 – 1989: Highest O_3 increase associated with highest summer-time concentrations

1990 – 2002: Strongest O_3 decrease associated with highest summer-time concentrations
The most recent development – from 6 years only

Growth rates from seasonal percentiles

2003-2008: Winter = Dec, Jan, Feb;

Zugspitze, O3 growth rates

Winter (2003-2008)
Summer (04-05, 07-08)
Seasonal Variations from Different Data Sets
Average seasonal variations:
and with UT/LS data filtering applied
Average seasonal variations:
All data 1990 – 2002, "unpolluted", "polluted"
Average seasonal variations:
all data 1990 – 2002, "unpolluted", "polluted"
Statistics of Data Flags

What does it indicate?

Temporal development of events flagged by the criteria 7Be(P85)/RH and RH60/30

1) Annual number of events fulfilling the 7Be(P85)/RH criterion: Increase by a factor of 1.23 from 1978 to 2005 (95% confidence level)

Associated data coverage: Increase by a factor of 1.25 (90% c.l.)

→ Average duration of events ≈ constant

2) Annual number of events fulfilling the RH60/30 criterion: Increase by a factor of ≈ 2

Associated data coverage: Increase by a factor of ≈ 2.6

→ Average duration of events has increased (95% c.l.)

Ratio of annual number of events: $n(RH) / n(Be7) \rightarrow$ significant increase (99% c.l.) This means: RH60/30 events have become relatively more frequent than 7Be(P85)/RH events.
Ozone at Zugspitze (1978 – 2008)

Summary

- Part of the trend behaviour reflects the development of precursor emissions
- Clean-air data filtering (1990 – 2002): Growth rates are above the all-data value Seasonal variations with pronounced spring maximum
- O$_3$ in polluted air (1990 2002): Rates smaller than the all-data case Seasonal maximum shifted to mid-summer
- Indications of an increasing influence of upper tropospheric air masses on ozone at Zugspitze
Acknowledgements

Thanks to all who contributed through technical support and data processing, measurements of 7Be, supplementary data, discussions, financial support.

Part of this study was a contribution to the project ATMOFAST, funded by the German BMBF.

From mid-1998 until March 2002 the in-situ ozone instrumentation at the Zugspitze summit was operated by the German Environment Agency (UBA).