The OpenCirrus™ Project:
A global Testbed for Cloud Computing R&D

Marcel Kunze
Steinbuch Centre for Computing (SCC)
Karlsruhe Institute of Technology (KIT)
Germany
Karlsruhe Institute of Technology (KIT)

- Cooperation between research centre Karlsruhe und Karlsruhe university
- Largest scientific center in Germany
- 8,000 scientists, 18,000 students
- Annual budget: > 500 Million Euro
- R&D focus: Energy research and nano-technology
Agenda

- What is cloud computing?
- OpenCirrus™ project
- Programming the cloud
- HPC and big data
- Summary
"A computing cloud is a set of network enabled on demand IT services, scalable and QoS guaranteed, which could be accessed in a simple and pervasive way."
Cloud lives in Web 2.0

- Everything as a Service (XaaS)
 - AaaS: Application as a Service
 - PaaS: Platform as a Service
 - SaaS: Software as a Service
 - DaaS: Data as a Service
 - IaaS: Infrastructure as a Service
 - HaaS: Hardware as a Service

- Industry is pretty much engaged
 - Various commercial offerings exist
Problem: Commercial offerings are proprietary and usually not open for cloud systems research and development
Cloud Systems Research

- Simple, transparent, controllable cloud computing infrastructure
 - What types of interfaces are appropriate for clouds?
 - How should cloud networks be constructed/managed?
 - How are security concerns addressed in “the cloud”?
 - How are various workloads most efficiently transferred?
 - What types of applications can run in clouds?
 - What types of service level agreements are appropriate/possible?

- Research requirements
 - Perform experiments also on a low system level
 - Flexible cloud computing framework
 - Compare different methodologies and implementations
Cloud Computing: A new Hype following Grid

Cloud computing R&D: OpenCirrus™ project
Clouds vs. Grids: A Comparison

<table>
<thead>
<tr>
<th></th>
<th>Cloud Computing</th>
<th>Grid Computing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective</td>
<td>Provide desired computing platform via network enabled services</td>
<td>Resource sharing, Job execution</td>
</tr>
<tr>
<td>Infrastructure</td>
<td>One or few data centers, heterogeneous/homogeneous resource under central control, Industry and Business</td>
<td>Geographically distributed, heterogeneous resource, no central control, VO Research and academic organization</td>
</tr>
<tr>
<td>Middleware</td>
<td>Proprietary, several reference implementations exist (e.g. Amazon)</td>
<td>Well developed, maintained and documented</td>
</tr>
<tr>
<td>Application</td>
<td>Suited for generic applications</td>
<td>Special application domains like High Energy Physics</td>
</tr>
<tr>
<td>User interface</td>
<td>Easy to use/deploy, no complex user interface required</td>
<td>Difficult use and deployment, Need new user interface, e.g., commands, APIs, SDKs, services …</td>
</tr>
<tr>
<td>Business Model</td>
<td>Commercial: Pay-as-you-go</td>
<td>Publicly funded: Use for free</td>
</tr>
<tr>
<td>Operational Model</td>
<td>Industrialization of IT, Fully automated Services</td>
<td>Mostly Manufacture, Handcrafted Services</td>
</tr>
<tr>
<td>QoS</td>
<td>Possible</td>
<td>Little support</td>
</tr>
<tr>
<td>On-demand provisioning</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>
HP, Intel, Yahoo Join Government, Academia In Cloud Computing Research

Each of the founding members will host a cloud-computing infrastructure largely based on HP computers and Intel processors in six data centers.

By Antone Gonsalves, InformationWeek
July 29, 2008
URL: http://www.informationweek.com/story/showArticle.jhtml?articleID=209800449

Hewlett-Packard, Intel, and Yahoo on Tuesday said they have joined government and academia in launching a global, multi-data center test bed for experimentation and research in cloud computing, which many experts believe will be the dominant IT delivery model of the future.

The initiative aims at building a computing network comprised of six data centers spanning three continents. The idea is to have a large-scale platform for testing all technology -- hardware and software -- related to delivering application services over the Internet.

"This is a global collaboration that spans the industry, spans academia and government," Prith Banerjee, senior VP for research at HP, told reporters during a teleconference held by the three founding companies.
An open, internet-scale global testbed for cloud computing research

- Data center management & cloud services
- Systems level research
- Application level research

Structure: a loose federation

- Sponsors: HP Labs, Intel Research, Yahoo!
- Partners: UIUC, Singapore IDA, KIT, NSF
- Members: System and application development

Great opportunity for cloud R&D
Where are the OpenCirrus™ sites?

- Six sites initially:
 - Sites distributed world-wide: HP Research, Yahoo!, UIUC, Intel Research Pittsburgh, KIT, Singapore IDA
 - 1000-4000 processor cores per site
 - New CMU site coming in 2009

![Map of OpenCirrus sites](image)
OpenCirrus™ Blueprint

End-user services

Platform services

Applications

Hadoop

Environment save/restore

Data

Virtual Resource Sets

Cloud application services

Cloud infrastructure services

IT infrastructure layer (Physical Resource Sets)

cells-as-a-service

Tycoon

EC2

Eucalyptus

NFS storage service

S3 storage

PRS service
Physical Resource Sets (PRS)

- PRS service goals
 - Provide mini-datacenters to researchers
 - Isolate experiments from each other
 - Stable base for other research

- PRS service approach
 - Allocate sets of physical co-located nodes, isolated inside VLANs.
 - Leverage existing software (e.g. Utah Emulab, HP OpsWare)
 - Start simple, add features as we go
 - Base to implement virtual resource sets

- Hardware as a Service (HaaS)
Virtual Resource Sets (VRS)

- Basic idea: Abstract from physical resource by introduction of a virtualization layer
- Concept applies to all IT aspects: CPU, storage, networks and applications, ...

Main advantages
- Implement IT services **exactly** fitting customer‘s varying need
- Deploy IT services on demand
- Automated resource management
- Easily guarantee service levels
- Live migration of services
- Reduce both: CapEx and OpEx

Infrastructure as a Service (IaaS)
- Implement Compute and Storage services
- De-facto standard: Amazon Web Services interface
Amazon Web Services

http://aws.amazon.com/

- **Infrastructure As A Service**
 - Amazon Simple Storage Service
 - Amazon Elastic Compute Cloud
 - Amazon Simple Queue Service
 - Amazon SimpleDB *(New!)*

- **Payments/Billing As A Service**
 - Amazon Flexible Payments Service
 - Amazon DevPay *(New!)*

- **E-Commerce As A Service**
 - Amazon Associates Web Service
 - Amazon Fulfillment Web Service *(New!)*

- **Search As A Service**
 - Alexa Web Information Service
 - Alexa Top Sites
 - Alexa Site Thumbnail
 - Alexa Web Search

- **People As A Service**
 - Amazon Mechanical Turk
Eucalyptus: A potential VRS layer

http://eucalyptus.cs.ucsb.edu/

Amazon EC2 and S3 Interface

Client-side API
Translator

Cloud Controller

Database

Cluster Controller

Node Controller

Source: R.Wolski
Programming the Cloud: Hadoop

- An open-source Apache software foundation project sponsored by Yahoo!
 - http://wiki.apache.org/hadoop/ProjectDescription
 - intent is to reproduce the proprietary software infrastructure developed by Google
- Provides a parallel programming model (MapReduce), a distributed file system, and a parallel database
The MapReduce Programming Model

MapReduce

- Map computation across many objects
 - Extract a set of key value pairs of e.g. 10^{10} Web pages
- Reduce results in many different ways
 - Combine it with other values that share the same key
- System deals with issues of resource allocation & reliability
How is OpenCirrus™ different from other testbeds?

- OpenCirrus™ supports both system- and app-level research
 - n/a at Google/IBM and EC2/S3
 - OpenCirrus™ researchers will have complete access to the underlying hardware and software platform.
 - OpenCirrus™ allows Intel platform features that support cloud computing (e.g. DCMI, NM) to be exposed, and exploited.

<table>
<thead>
<tr>
<th>Map-Reduce apps</th>
<th>Cloud apps and services</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hadoop</td>
<td>Virtual or physical machines</td>
</tr>
<tr>
<td>Virtual machines</td>
<td>Open Cirrus cluster</td>
</tr>
</tbody>
</table>

Can be modified by users

Cannot be modified by users
How do users get access to OpenCirrus™ sites?

- Project PIs apply to each site separately.

- Contact names, email addresses, and web links for applications to each site will be available on the OpenCirrus™ Web site (which goes live Q1)

 - http://opencirrus.org

- Each OpenCirrus™ site decides which users and projects get access to its site.

- Planning to have a *global sign on* for all sites

 - Users will be able to login to each OpenCirrus™ site for which they are authorized using the same login and password.
Who can use the OpenCirrus™ Resources?

Three different types of users can use OpenCirrus™ sites:

(a) Individual PIs from academic research groups
(b) Industry researchers from the OpenCirrus™ partners
(c) Industry researchers who have a customer relationship with the OpenCirrus™ partners

What is the expected mix of these groups?

The majority of users will be (a) academic researchers and (b) researchers who work for the OpenCirrus™ partners.

There will be a few carefully chosen users who are (c) industry researchers with a customer relationship with an OpenCirrus™ partner.
What kinds of research projects are OpenCirrus™ sites looking for?

Open Cirrus™ is seeking research in the following areas (different centers will weight these differently):
- Datacenter federation
- Datacenter management
- Web services
- Data-intensive applications and systems
- Hadoop map-reduce applications

The following kinds of projects are not of primary interest:
- Traditional HPC application development.
- Production applications that just need lots of cycles.
- Closed source system development.
Potential Fields of Cloud System Development (1)

- Virtual organizations and social networks
 - Science is team work, clouds are rather for individuals right now

- Integration of cloud services
 - Standardization of APIs and protocols
 - Hyperclouds may integrate services of various providers (Stratosphere ?)

- Management of service quality
 - Negotiation and monitoring of SLAs
 - How does this work for Web service mashups ?

- Privacy, data protection and security
 - Importance of AAA and encryption
 - e.g. use of Trusted Platform Module (TPM)
Cloud Security: A possible Solution

Hypervisor Security Architecture complements OSes with strong isolation, controlled sharing, & verifiable / attestable environments

Source: IBM
Potential Fields of Cloud System Development (2)

- New infrastructure services
 - HPCaaS: High Performance Computing as a Service
 - LSDFaaS: Large Scale Data Facility as a Service
 - GenomeDBaaS: Genome Database as a Service

- How does this relate to Grid computing?
HPC vs. HTC vs. MTC (Many Task Computing)

Source: I. Foster
The Grid and Cloud Space

UNICORE

Traditional Cloud / Web 2.0

gLite
Extension of the Cloud Space to all Areas

- **Input Data Size**
 - Hi
 - Med
 - Low

- **Number of Tasks**
 - 1
 - 1K
 - 1M

LSDFaaS
Large Scale Data Facility as a Service

HPCaaS
High Performance Computing as a Service
HPCaaS

- High Performance Computing as a Service
- Interesting Fields for R&D in Open Cirrus™
 - Flexible platform services for HPC customers
 - Development of MPI services for clouds
 - Development of scheduling services for clouds
 - Management of software licenses
 - Integration of Grid resources: Grid as a Service (GaaS)
LSDFaaS

- Large Scale Data Facility as a Service
- Actual projects at KIT in this field:
 - Data storage for LHC computing
 - Data storage for ITER (EUFORIA)
 - Project ANKA (synchrotron radiation source)
 - Activities in materials research
- Long-term data filing due to legal requirements
- Development of big data services
Big Data

- Interesting applications are *data hungry*
- The data grows over time
- The data is immobile
 - 100 TB @ 1Gbps ≈ 10 days
- Compute comes to the data
- Big Data clusters are the new libraries

The value of a cluster is its data

(J. Campbell, et al., Intel Research Pittsburgh, 2007)
Cluster nodes are assumed to be commodity machines.

CM maintains databases and routes messages; decision logic is limited.

Data location information is exposed to scheduler and services.

The storage service aggregates the capacity of the commodity nodes to house Big Data repositories.

Most decisions happen in the scheduler; manages compute/storage in concert.

Services are instantiated through virtual machines.
Tashi Software Architecture

Centralized cluster administration

Resource DB
Node Manager DB
VM instance DB
Site Specific Plugin(s)
Scheduling Agent

Client API

Cluster Manager (CM)

Client

Compute node

Resource Controller Plugins (VMM, DFS, power, etc.)
Node Manager (NM)
Sensor Plugins

Tashi component
non-Tashi component

Legend

Compute node

Centralized cluster administration

VM
DFS
Pub/Sub System
VMM
VM

DFS Metadata Server

Data Location Service

Resource Telemetry Service

Legend

Tashi component
non-Tashi component

system software

Tashi Software Architecture
Tashi is both…

- An open source software project
 - The implementation is intended to become worthy of production use.
 - Alpha deployment running on OpenCirrus™ cluster at Intel Research Pittsburgh since October 2008.

- An open research project
 - Key question: *How should compute, storage, and power be managed in a Big Data cluster to optimize for performance, energy, and fault-tolerance?*

- Initial sponsors include:
 - Intel Research Pittsburgh
 - Carnegie Mellon University
 - Yahoo!
The Way to Cloud Nirvana

- The roadmap for cloud services
 - Leads to dynamic data centers
 - Ranges from infrastructure services to dynamic applications
 - Complements traditional IT services in the medium term

Source: rpath
Summary

- Cloud computing is the next big thing
 - Flexible and elastic resource provisioning
 - Economy of scale makes it attractive
 - Move from manufacture towards industrialization of IT (Everything as a Service)

- OpenCirrus™ offers interesting R&D opportunities
 - Cloud systems development
 - Cloud application development
 - Accepting research proposals soon

- OpenCirrus™ workshop at HP Palo Alto on June 8/9
Karlsruhe Institute of Technology

Steinbuch Centre for Computing (SCC)
Thank you for your attention.