

The Open Cirrus Project

Towards an Open-source Cloud Stack

Marcel Kunze, Steinbuch Centre for Computing

KIT – The cooperation of Forschungszentrum Karlsruhe GmbH and Universität Karlsruhe (TH)

Mission of the SCC

- IT-Services under one roof with own research and development
- Promotion of research, teaching, study, further education and administration at KIT by excellent services
- Major center for modelling, simulation and optimization
- Leading role in scientific computing, HPC, cloud and grid computing as well as large scale data management and analysis

3

00's: Grid Shakeout and 10's: Cloud

The Cloud is just a new Computing Paradigm

- 70's: Mainframe
- 80's: PC
- 90's: Workstation

4

From http://blogs.zdnet.com/Hinchcliffe

Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

Cloud Computing: A possible Definition

 "Building on compute and storage virtualization, and leveraging the modern Web, Cloud
 Computing provides scalable, network-centric, abstracted IT infrastructure, platforms, and applications as on-demand services that are billed by consumption."

> C.Baun, M.Kunze, J.Nimis, S.Tai: Cloud Computing, Springer 2009

Marcel Kunze – Steinbuch Centre for Computing: The Open Cirrus Project 24.AIK-Symposium, Karlsruhe, Oct.2009

Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

Cloud Computing

Cloud Myths

- Cloud computing infrastructure is just a web service interface to operating system virtualization.
 - "I'm running Xen in my data center I'm running a private cloud."
 - Cloud needs more: Automation, SLAs, business model,...
- Cloud computing imposes a significant performance penalty over "bare metal" provisioning.
 - "I won't be able to run a private cloud because my users will not tolerate the performance hit."
 - With modern hardware, virtualized services are sometimes even faster
- Clouds and Grids are equivalent.
 - "In the mid 1990s, the term grid was coined to describe technologies that would allow consumers to obtain computing power on demand."
 - Grids are not self-service, do not grant privileges to users, have a decentralized management and often are missing business models

Grid as a Service

Universität Karlsruhe (TH) Research University · founded 1825

8

Open-source Cloud Infrastructure

- Cloud computing is primarily a commercial endeavor
- What are the options for open-source to stay competitive with cloud computing?
- Open-source is a driver to move technologies from innovation to commodity and towards utility services

9

First Option: Cooperation

- Create open-source infrastructure for clouds
- Return innovation and best practices to the community
- Apply open business models to all components
- Everybody can participate as resource provider and consumer
- Possibly evolving into the largest single cloud ecosystem in the world

Second Option: Federation

- Take advantage of standards
- Interoperability between similar data centers
- Enterprise virtual private clouds
- Open-source drives standardization and interoperability
- Overcome vendor lock-in and create a market
- Open Cirrus as an example

Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

Open Cirrus Cloud Computing Research Testbed

http://opencirrus.org

An open, internet-scale global testbed for cloud computing research

- A tool for collaborative research
- Focus: data center management & cloud services

Resources

- Multi-continent, multi-datacenter, cloud computing system
- Federated "Centers of Excellence" around the globe
 - each with 100–400+ nodes and up to ~2PB storage
 - and running a suite of cloud services

Structure

- Sponsors: HP Labs, Intel Research, Yahoo!
- Partners: UIUC, Singapore IDA, KIT, NSF
- New partners: ETRI, MIMOS, RAS
- Members: System and application development

Great opportunity for cloud systems research

- Accepts research proposals
- Apply through website

Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

Cloud Systems Research

Open Cirrus is seeking research in the following areas:

- Datacenter federation
- Datacenter management
- Web services
- Data-intensive applications and systems

Research requirements

- Perform experiments also on a low system level
- Flexible cloud computing framework
- Compare different methodologies and implementations

Simple, transparent, controllable cloud computing infrastructure

Proprietary Cloud Computing Stacks

Open-source Cloud Stack

Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

Open Cirrus Blueprint

24.AIK-Symposium, Karlsruhe, Oct.2009

in der Helmholtz-Gemeinschaft

Research University · founded 1825

Big Data

- Interesting applications are data hungry
- The data grows over time
- The data is immobile
 100 TB @ 1Gbps ~= 10 days
- Compute comes to the data
- Big Data clusters are the new libraries

Particle Physics Large Hadron Collider (15PB)	Humen Geratis (70001977 1 Gradina 20092 Contract 20092 Contract	World Wide Web (~1PB)	Wikipedia (10GB) 100% CAGR
Annual Email Traffic, no spam (300PB+)	⊢ A R C H I V E Internet Archive (1PB+)	Estimated On-line RAM in Google (8PB)	Personal Digital Photos (1000PB+) 100% CAGR
200 of London's Traffic Cams (8TB/day)	2004 Walmart Transaction DB (500TB)	<u>Typical Oil</u> <u>Company</u> (350TB+)	Merck Bio Research DB (1.5TB/qtr)
UPMC Hospitals Imaging Data (500TB/yr)	MIT. Babytalk Speech Experiment (1.4PB)	<u>Terashake</u> Earthquake Model of LA Basin (1PB)	<u>One Day of</u> Instant Messaging in 2002 (750GB)
Total digital data to be created this year 270,000PB (IDC)			

(J. Campbell, et al., Intel Research Pittsburgh, 2007)

The value of a cluster is its data

18 Marcel Kunze – Steinbuch Centre for Computing: The Open Cirrus Project 24.AIK-Symposium, Karlsruhe, Oct.2009

Programming the Cloud: Hadoop

- Reproduce the proprietary software infrastructure developed by Google as open-source
 - An Apache software foundation project sponsored by Yahoo!
- Provides a parallel programming model (MapReduce), a distributed file system, and a parallel database
 - Especially well suited for analysis of "Big Data"
 - The largest Hadoop cluster at Yahoo! comprises 32000 cores and 16 Petabytes storage

19 Marcel Kunze – Steinbuch Centre for Computing: The Open Cirrus Project 24.AIK-Symposium, Karlsruhe, Oct.2009

Co-Scheduling of CPU and data

20 Marcel Kunze – Steinbuch Centre for Computing: The Open Cirrus Project 24.AIK-Symposium, Karlsruhe, Oct.2009

Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

HPC vs. HTC vs. MTC (Many Task Computing)

21 Marcel Kunze – Steinbuch Centre for Computing: The Open Cirrus Project 24.AIK-Symposium, Karlsruhe, Oct.2009

Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

Cloud solutions for HPC and Data Intensive Computing

HPCaaS

- High Performance Computing as a Service
- Interesting fields for R&D in Open Cirrus
 - Flexible platform services for HPC customers
 - Development of MPI services for clouds
 - Development of scheduling services for clouds
 - Management of software licenses

DICaaS

- Data Intensive Computing as a Service
- Development of Big Data services
- Actual projects at KIT in this field:
 - Data storage for LHC computing
 - Data storage for ITER (EUFORIA)
 - Project ANKA (synchrotron radiation source)
 - Activities in materials research

Cloud data archives

Long-term data filing due to legal requirements

Cumulus: Private Cloud @ KIT

- Generate know-how to construct a private Cloud to support KIT
 - IT-Service supermarket
 - Self-service
 - Business models
- Work is based on open-source (PRS, Eucalyptus, Hadoop, ...)
 - Performed in the framework of Open Cirrus
 - Currently PhD and diploma students
 - Needs further support (Sponsors are welcome)

Hybrid Clouds: Cloud Bursting

Transfer workloads and data transparently between clouds
 Example: Amazon Virtual Private Cloud

26 Marcel Kunze – Steinbuch Centre for Computing: The Open Cirrus Project 24.AIK-Symposium, Karlsruhe, Oct.2009

Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

Cloudy Issues

Public clouds are opaque

- What applications will work well in a cloud?
- Data protection?
- Security?
- Many of the advantages offered by public clouds appear useful for "on premise" IT
 - Self-service provisioning
 - Legacy support
 - Flexible resource allocation
- What extensions or modifications are required to support a wider variety of services and applications?
 - Data assimilation
 - Multiplayer gaming
 - Mobile devices

Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

Notes from the Open-source Cloud

- Private clouds are really hybrid clouds
 - Users want private clouds to export the same APIs as the public clouds
- In the enterprise, the storage model is key
 - Scalable "blob" storage doesn't quite fit the notion of "data file."
- Cloud federation is a policy mediation problem
 - No good way to translate SLAs in a cloud allocation chain
 - "Cloud Bursting" will only work if SLAs are congruent
- Customer SLAs allow applications to consider cost as first-class principle
 - Buy the computational, network, and storage capabilities that are required
- Further work has to be done especially in service research area
 - Open-source is mostly dealing with technology related issues

Summary

Open-source cloud stack

- Standards are important to foster a cloud computing market
- De-facto standards are around (e.g. Amazon EC2, S3)
- Standards are evolving (OCCI)
- Federation of private and public clouds (Cloud bursting)

Open Cirrus project offers interesting R&D opportunities

- Cloud systems development
- Cloud application development
- Accepting research proposals

Generate know-how to construct a private Cloud @ KIT (Cumulus)

- IT-Service supermarket
- Self-service
- Business models

Marcel Kunze – Steinbuch Centre for Computing: The Open Cirrus Project 24.AIK-Symposium, Karlsruhe, Oct.2009

Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

Access to Open Cirrus Sites

- Project PIs apply to each site separately
- Contact names, email addresses, and web links for applications to each site will be available on the OpenCirrus Web site
 - http://opencirrus.org
- Each OpenCirrus site decides which users and projects get access to its site

