Fracture Mechanical Properties of Tungsten Alloys

Daniel Rupp and Ermile Gaganidze

Contributors:
S. Weygand
R. Mönig
M. Walter
U. Bürkle
CONTENT

- Tungsten Alloys- Candidate Structural Material
- Test Method for Mode I Fracture Toughness
- Fracture Mechanical Properties of Tungsten Alloys
 - Polycrystalline Rolled Tungsten
 - Polycrystalline Rolled ODS Tungsten
 - MA + Hipped ODS Tungsten
 - Hipped Tungsten
- Summary & Outlook
Structural Materials for Fusion Applications

RAFM steel
RAFM ODS
W-alloy

Blanket Box
Thermal Load: 2.5 MW/m²
Operating Temperature: 250-550 °C
Irradiation Dose: up to 150 dpa

Divertor
Thermal Load: 10-15 MW/m²
Operating Temperature: up to 1300 °C
Irradiation Dose: up to 50 dpa

Key Issues:
- good thermo-physical (thermal conductivity, thermal expansion coefficient, ...) & mechanical properties (DBTT, toughness, ductility, strength, creep strength, ...)
- resistance to high energy neutron flux (irradiation-induced damage)
- low neutron-induced activation (specific radioactivity, decay heat)
- fusion relevant joining technologies (heat affected zone, proper PWHT, ...)
- compatibility with coolant, plasma (corrosion, erosion, oxidation)

Boccaccini et al., FZK-Nachrichten, 1/2004
ADVANTAGES:
- highest melting point of all metals $T_m = 3693K$
- lowest vapour pressure $P_v(T_m) = 1.3 \times 10^{-7} Pa$
- low sputter yield
- high thermal conductivity
- good thermal shock resistance
- good high temperature strength
- low-activating material
- nearly zero tritium retention

DISADVANTAGES:
- high hardness
- inherent low fracture toughness
- high DBTT
- low recrystallisation temperature (RCT)
- sensitivity to fabrication details
- sensitivity to impurities and alloying element
- "not matched" thermal expansion coefficient
Motivation

Microstructure belongs to the main controlling factors for fracture toughness and DBTT of tungsten alloys

Fracture Mechanical (FM) properties of rolled polycrystalline tungsten alloys are expected to exhibit strong anisotropy due to

- different grain shape/orientation with respect to the rolling direction (RD)
- pronounced fiber texture

Objective:
Understanding of fracture behaviour of tungsten alloys by investigation of microstructure (grain size, texture etc.) and load rate dependence of the fracture toughness (K_{IC})
Test Method for Mode I Fracture Toughness

Bend Specimen SE (B)

ASTM E399
standard: $B = 0.5W$
alternative: $B = 0.25W \div W$

\[
B, W - a_0, a_0 > 2.5\left(\frac{K_{IC}}{\sigma_y}\right)^2
\]

Specimen pre-cracking
- Fatigue pre-cracking
- Compression fatigue
- Composite bending
- Razor blade polishing

Specimen Loading
- Displacement controlled

\[
0.55 \leq \dot{K} \leq 2.75 \text{MPa} \sqrt{m/s}
\]

Test Record
- Load - Load Line Displacement
- Load - Crack Opening Displacement
Three Point Bending Experimental Facility
Universal Testing Machine INSTRON (RT-1600°C)

[Diagram showing high vacuum furnace, W-heater, ceramic rods, and bend fixture]
Fracture mechanical investigation of polycrystalline rolled tungsten

- Material (Plansee)
 unalloyed 99.98% pure polycrystalline W rods break down rolling with a degree of deformation of 65%

- Anisotropy
 <110> fiber texture and elongated grains parallel to the rolling direction

- Specimens
 6x4x27 mm with V shaped notch (3 mm)

- FM specimen preparation
 Introduction of sharp crack starter notches
 - razor blade polishing
 - compression fatigue
 - composite bending

Specimens with three different orientations of the crack front with respect to the rolling direction
Microstructure of polycrystalline rolled tungsten

High angle GB + Low angle GB

D. Rupp et al, 17th Plansee Seminar, 2009
Brittle-to-Ductile Transition of polycrystalline rolled tungsten

Temperature [°C]

Fracture toughness K_Q [MPa m$^{1/2}$]

d$K/dt = 0.5$ MPa m$^{1/2}$/s

Strong influence of the anisotropic microstructure on the fracture toughness and DBTT

D. Rupp et al,
17th Plansee Seminar, 2009
Fracture behavior of polycrystalline rolled tungsten

- Type I and II: No significant change of the fracture morphology with increasing temperature up to 800°C. First local traces of ductile fracture at 950°C.
- Type III: Change of fracture behavior above 200°C

Type I & II: Intergranular fracture, small amount of cleavage surfaces
Type III: Transgranular cleavage
Fracture behaviour of type III specimen

- brittle fracture at RT
- stable crack growth above 275°C
- plastic yielding prior to stable crack growth at high T
In situ Fracture Experiments

In-situ 3-point bending test were performed in SEM at elevated temperatures

- Insights into crack initiation and propagation

Fracture test at 350°C, type III specimen

D. Rupp et al, 17th Plansee Seminar, 2009
In situ Fracture Experiments

- competition between inter- and transgranular fracture
- elongated grain boundaries become preferred crack paths with increasing T
- stable crack growth
Loading rate dependence

Fracture toughness K_0 [MPa m$^{1/2}$],

- Type I
- Type II

Temperature [°C] vs. Temperature [K]

- 0.05 MPa m$^{1/2}$/s
- 0.5 MPa m$^{1/2}$/s
- 5 MPa m$^{1/2}$/s
Activation energy

- Loading rate dependence follows Arrhenius-relationship
- Activation energies in very good agreement with recently published results
- Transition controlled by mobility of screw dislocations

Arrhenius-relationship:
\[
\frac{\partial K}{\partial t} \sim \exp \left(- \frac{E_{BDT}}{k_B T_{BDT}} \right)
\]

- $E_{BDT} = 1.32\text{eV}$
- $E_{BDT} = 1.44\text{eV}$
Fracture mechanical properties of polycrystalline rolled W-1%La$_2$O$_3$

Specimens
- 3x4x27mm with U shaped notch (1mm)
- razor blade polishing
- compression fatigue pre-crack

P$_Q$=389 N \implies K$_Q$=22 MPam$^{1/2}$

P$_Q$=184 N \implies K$_{IC}$=11 MPam$^{1/2}$

transcrystalline cleavage at RT

transversal (II RD) cracking at 500°C
Fracture mechanical characterization of W-2%Y

Material (N. Baluc, CRPP-EPFL)
- W powder (99.9%); particle sizes 1-5 μm
- Y powder (99.99%), particle sizes below 40 μm
- W-2.0Y (in wt.%) manufactured by MA and HIPping
- Y₂O₃ particles formation during HIPping

Specimen (N. Baluc, CRPP-EPFL)
3x4x27 mm with V shaped notch (1mm)

FM specimen preparation (KIT)
- Introduction of sharp crack starter notches by means of a razor blade polishing
- initial crack length 1040-1200 μm
- notch final radius 20-25 μm
Fracture mechanical properties of W-2%Y

Rapid drop of the load at P_Q in the entire temperature range
\Rightarrow no indication of the ductile fracture
Fractography of W-2%Y specimen (RT)
Fractography of W-2%Y specimen (1000 °C)
Fracture mechanical characterization of HIPped W

- Material (N. Baluc, CRPP-EPFL)
 - W powder (99.9%); particle sizes 1-5 μm
 - HIPped at 1320°C

- Specimen (N. Baluc, CRPP-EPFL)
 - specimens 3x4x27 mm with V shaped notch (1mm)

- FM specimen preparation (KIT)
 - Introduction of sharp crack starter notches by means of a razor blade polishing
 - initial crack length 1100 μm
 - notch final radius 20-25 μm
Fracture mechanical properties of Hipped W

- **unstable crack propagation below 600 °C** ⇒ no indication of ductile behaviour
- **crack arrest events at 1000 °C**

Diagram showing force vs. displacement with curves for RT, 600°C, and 1000°C, indicating different behaviors at each temperature. Loading rate 1µm/s.
Fractography of HIPped W (RT)

I. necking between particles, open pore structure
II. neck blunting, channel closure
III. pore break down into discrete isolated pores

Fractography of HIPped W (600°C)

Fractography of HIPped W (1000°C)
Fracture toughness of W and W-2%Y alloys

- **MA & HIPped W-2%Y:** low, temperature independent fracture toughness
- **HIPped W:** low, weakly temperature dependent fracture toughness
Summary

The anisotropic microstructure of the polycrystalline rolled tungsten has a strong influence on the fracture behaviour.

- The largest fracture toughness and the lowest DBTT are observed for the longitudinal orientation when a crack propagates transverse to the RD through the elongated grains yielding a transgranular cleavage.
- Lower fracture toughnesses in the two transverse orientations are related to the propagation of a crack along weak GB yielding an intergranular fracture.
- Strong loading rate dependence of the DBTT in the two transverse orientations. The apparent activation energies suggest that the brittle-to-ductile transition is controlled by the mobility of screw dislocations.

The anisotropic microstructure of polycrystalline rolled W-1%La$_2$O$_3$ has a strong influence on the fracture behaviour. At 500°C the observed propagation of a crack along the RD indicates presence of weak GB.

- Low, temperature independent fracture toughness for MA & HIPped W-2%Y is ascribed to poorly consolidated matrix; islands of higher degree of consolidation.
- Low, weakly temperature dependent fracture toughness for HIPped W is ascribed to poorly consolidated matrix; onset of isolated grain growth.
Outlook

Fracture mechanical and microstructural characterization of novel tungsten alloys

- *Investigation of upper shelf fracture toughness of tungsten alloys by using J-Integral and/or COD methods*
- *Equipping the high vacuum furnace with an optical system for in-situ observation of crack initiation and growth*
- *Development and validation of alternative procedure for controlled pre-cracking of notched bend-bar specimens*