Tungsten as a structural material for nuclear fusion reactors **Michael Rieth** KARLSRUHE INSTITUE OF TECHNOLOGY, INSTITUTE FOR MATERIALS RESEARCH #### Contents - Introduction to Nuclear Fusion - High Heat Flux Components - **Divertor Designs** - Criteria for Structural Material Selection - Overview of Tungsten Materials - **Basic Properties of Tungsten Materials** - **Fracture Behavior of Tungsten Materials** - Conclusions Forschungszentrum Karlsruhe #### **Nuclear Fusion** T = 15 Mio. °C $$E_t = 3.7 \times 10^{17} \text{ GW}$$ $\Rightarrow \rho_E = 30 \text{ W} / \text{m}^3$ $E_t \sim 3.5 \text{ GW}$ $\rho_E \sim 4 \text{ MW / m}^3$ $\rightarrow T = 150 \text{ Mio. } ^{\circ}\text{C}$ # **Magnetic Confinement** #### **Tokamak** #### **Stellarator** Inner Poloidal field coils (Primary transformer circuit) Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft #### Research TOKAMAKs **Nuclear fusion is** relatively easy to accomplish. The trick is to gain energy out of it! **JET** ### Where is the challenge? complex superposition of intensive neutron/heat radiation and thermo-mechanical load/fatigue Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft # **High Heat Flux Components** **Blanket**: ≤150 dpa/5 years, 2.5 MW/m² Reduced activation ferriticmartensitic steels EUROFER (9Cr-WVTa) 350-550 °C **EUROFER-ODS** 350-650 °C He cooled structure, liquid lithium or lithiumceramics for tritium breeding → ~85 % power #### **DEMO** **Divertor:** ~30 dpa/2 years, ≥10 MW/m² Materials unknown Operating temperature 350-1300 °C? Cooled tungsten shield to remove He and other particles from plasma → ~15 % power ### **DEMO Divertor: a demanding Component!** Universität Karlsruhe (TH) Research University · founded 1825 ### **Coolants & Structural Materials** #### **Coolants** ### **Structural Materials** - Liquid Coolants - Water - (Lead-)Lithium - Gas Coolant - Helium - Copper (CuCrZr) - Eurofer (9Cr1WVTa) - Vanadium (V4Cr4Ti, ...) - SiC_f/SiC - Tungsten (WTa, WV, ...) plus Eurofer (or ODS) # ITER Divertor Concept (Cu & H₂O) - tungsten monoblocks - Cu interlayer - CuCrZr heat sink - 1000 cycles at 5 MW/m² # ITER Divertor Concept (Cu & H₂O) #### **Fabrication Technology** Hot Isostatic Pressing Brazing Hot Radial Pressing # ITER Divertor Concept (Cu & H₂O) # Advantages ### **Drawbacks** - **Fabrication processes** available - Proof for 1000 cycles at 5 MW/m² with potential for 15 MW/m² or more - Cost effective Cu is NOT applicable under DEMO conditions → T retention, embrittlement, swelling (~15 dpa/year !!!) Forschungszentrum Karlsruhe # "Upgrade" of ITER Concept (Steel & H₂O) - 2 01 0020111, 01 1101110111, 200 - → B. N. Kolabasov, 2008 - → L. Giancarli et al., 2005 - Hot Isostatic Pressing - 970 °C @ 150 MPa - Tempering 750 °C, 1.5 h #### **Drawbacks** - Mismatch between thermal expansion (Steel --- Tungsten) - Irradiation damage on 9Cr Steel problematic (T_{op} = 100-300 °C) ? - Feasibility not demonstrated yet (theor. 10-15 MW/m² with water cooling) # Vanadium & Liquid Lithium → B. N. Kolabasov et al., 2008 ### Drawbacks - V-4Cr-4Ti cooling channels - **Electr. insulation against** MHD pressure loss - Li inlet temperature 250 °C - Li outlet temperature 300 °C - Li flow velocity 5 m/s - Heat flux ~10 MW/m² - V suffers from hydrogen / tritium embrittlement - T retention - Irradiation embrittlement below 500 °C - Coating (liquid Li) ?! Forschungszentrum Karlsruhe # SiC_f/SiC & Lead-Lithium → K. Noborio, Y. Yamamoto, Y. Takeuchi, T. Hinoki, S. Konishi, 2008 → A. R. Raffray, L. El-Guebaly, S. Malang, I. Sviatoslavsky, M. S. Tillack, X. Wang, ARIES-AT, 2000 → Followed up by: A. Li Puma, L. Giancarli, H. Golfier, Y. Poitevin, J. Szczepanski, 2003 # SiC_f/SiC & Lead-Lithium ### **Theory** - Heat flux max. 5 MW/m² - Inlet temperature 600 °C - Flow velocity 1-1.5 m/s - Loss of thermal conductivity under irradiation - **Helium production** (transmutation) 5-10 times higher than in steel Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaf Open fabrication/joining issues ### Tungsten & Helium, 5 MW/m² Concepts ### Tungsten & Helium, 10 MW/m² Concepts → P. Norajitra et al., 2003-2009 # Tungsten & Helium, 5-10 MW/m² Concepts # Tungsten & Helium, 10 MW/m² Concepts ### **Tungsten & Helium** #### **Facts** ### **Drawbacks** - Heat flux 5-10 MW/m² - **Various concepts** available (proof for finger module) - Flexible operation temperatures - **Brittleness (fracture** behaviour) of tungsten (even without irradiation) - Unsolved fabrication issues (e.g. brazing for irrad. conditions) Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaf # Ranking of Divertor Concepts ### Feasibility (even for reduced heat flux of 5 MW/m²) - Low Activation Steel (Eurofer) not likely!? → coolant? concept? ... - SiC₄/\$i no go!? → long-term option, R&D needed - Tungsten (W, WL10, ...) Not yet! But ... - → solution for ductility problem needed! Forschungszentrum Karlsruhe #### He Cooled Divertor Dilemma M. Rieth: Tungsten as a structural material for fusion reactors #### **He Cooled Divertor Dilemma** #### **Main Criteria for Structure Divertor Material** ### Heat Flux (10 MW/m²) - Very Effective Cooling Strategy - Thermal Conductivity - High Operation Temperature ### Neutron Dose (min. 30 dpa) - Irradiation Damage - Activation (Transmutation?) #### **Other Criteria** - Fabrication/Joining - Tritium Inventory - Availability/Cost Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaf ### Why Tungsten? → Element Selection | 1 1 | Atomic # | | | | | | | | | | | | | | | | | Karlsruh | e Inst | itute of Te | echnology | |--|--|--|--|--|---|--|------------------------------------|-----------------------------|--|-------------------------------|--|--------------------------------------|-----------------------------------|--|--|---|------------------------------------|---|-------------------------|--------------------------------------|---| | Hydrogen
0.1805 | Symbol
Name
W/mK | | | | | | | | | | | | | | | | | | | He
Helium
0.1513 | | | 3 2
Li
Lithium
85 | 4 2
Be
Beryllium
190 | | The | rma | al Co | ndu | ıctiv | /ity | (W/ | 'n | ıK) | | | 5 2
B
Boron
27 | 6 2
C
Carbon
140 | 7 2 5 N Nitrogen 0.02583 | 8
Oxygen
0.02858 | 2 9
F
Fluorine
0.0277 | | 10
Ne
Neon
0.0491 | 2 K
8 L | | Na
Sodium | 12 | | | | | | | | | Al Aluminium 235 | 14 2
Si
Silicon
150 | 15 2
P 5
Phosphorus
0.238 | 16
S
Sulfur
0.205 | 2
8 17
6 CI
Chlorine
0.0089 | | 18
Ar
Argon
0.01772 | 2 K
8 L
8 M | | | | | | 19 K
Repotassium | 20 2
Ca 3
Calcium
200 | 21 2
SC 2
Scandium | 22 8 10 2 Titanium 22 | 23 1
V 27 27 27 27 27 27 27 27 27 27 27 27 27 | 24 28 13 1 Chromium 94 | 25 8
Mn 13
Manganese
7.8 | 26 | CO
Cobalt
100 | 2 28
15 Ni
Nickel
91 | 2
8
16
2 | 29 Cu
Copper
400 | 30
Zn
Zinc
120 | 18 2 | 31 2 8 18 3 Gallium 29 | JZ 8 | აა გ | 34
Se
Selenium
0.52 | 2 35
18 Br
Bromine
0.12 | | Kr
Krypton
0.00943 | 2 K
8 L
18 M
8 N | | 37 Rb Rubidium 58 | 38 2
Sr 18
Strontium
35 | Y 18 | | Nh 1 | Molybden | 43 8
Tc 18
13
13
Technetium 2 | | 45
Rh
Rhodium
150 | 2 46
18 Pd
10 Palladium
72 | 2
8
18
18 | 47 8
Ag 18
Silver
430 | 48
Cd
Cadmium
97 | 18
18
2 | 49 8 18 18 18 18 3 18 3 | | 51 2
Sb 18
Antimony 24 | | 2 53
18
18
10 lodine
0.449 | 18
18
7 | 54
Xe
Xenon
0.00585 | 2 K
8 L
18 M
18 N
8 O | | 55 2
CS 18
Caesium 3 | 56 2
Ba 18
Barium 2
18 | 57–71 | 72 28
Hf 32
Hafnium 2
23 | 73
Ta 18
33
Tantalum 19 | 74 8
W 18
Tungsten 12
170 | 75 2
Re 18
Rhenium 13
48 | 76 28
OS 18
Osmium 2 | 77
Ir
Iridium
150 | 78
18
32
15
15
Platinum
72 | 2
8
18
32
17
1 | 79
Au 3
Gold 16
320 | 80
Hg
Mercury
8.3 | 18
32 | 81 2
8 11 18 32
Thallium 3 48 | 82 2
Pb 32
Lead 4
35 | 83 2
Bi 18
32
Bismuth 5 | Polonium | 2 85
18 At
32 At
18 Astatine
2 | 18
32 | 86
Rn
Radon
0.00361 | 2 K
8 L
18 M
32 N
18 O
8 P | | 1 Hydrogen 14.01 | Atomic # Symbol Name Kelvin | | | | | | | | | | | | | | | | | | | 2
He
Helium
0.95 | 2 K | | 3
Li
Lithium
453.69 | 1 4 2 Be Beryllium 1500 Melting Point (K) Melting Point (K) Service Beryllium 1500 Sagar Sag | | | | | | | | | | ² 6 9 Fluorine 53.5 | | 10
Ne
Neon
24.58 | 2 K
8 L | | | | | | | | | 11 8
Na
Sodium
370.87 | 12 Mg
Mg
Magnesium
923 | | | | | | | | | | | | | 13 2 8
AI
Aluminium
933.47 | 14 2 8 4 Silicon 1687 | 15 8
P
Phosphorus
317.3 | 16
S
Sulfur
388.36 | 2
6 CI
Chlorine
171.8 | 2
8
7 | 18
Ar
Argon
83.8 | 2 K
8 L
8 M | | 19
K
Potassium
338.53 | 20 2
Ca 2
Calcium
1115 | 21 2
SC 2
Scandium
1814 | 22 2 8 10 2 Ti Titanium 1941 | 23 1
V 12
Vanadium
2183 | 24 28 13 13 1 Chromium 2180 | 25 2
Mn 13
Manganese
1519 | 26 | 27
CO
Cobalt
1768 | 2 28
15 Ni
Nickel
1728 | 16 2 | 29 8
Cu 19
Copper 1357.77 | 30
Zn
Zinc
692.68 | 18 | 31 2 8 18 3 Gallium 302.91 | 32 2 8 18 4 Germanium 1211.4 | 33 2 8 18 18 5 Arsenic 1090 | 34
Se
Selenium
494 | 2 35
18 Br
Bromine
285.8 | 2
8
18
7 | 36
Kr
Krypton
115.79 | 2 K
8 L
18 M
8 N | | 37 8 8 18 18 18 18 18 18 18 18 18 18 18 18 | 38 2
8 18
8 Strontium
1050 | 39 2
Y 18
9
Yttrium 2
1799 | 40 28
Zr 18
Zirconium 2128 | 41
Nb 1
Niobium
2750 | 23 42 8
Mo 18
Molybden | 43 2 8 18 18 TC 13 2 2430 | 44 28 18 18 15 15 12 1607 | 45
Rh
Rhodium
2237 | 2 46
18 Pd
Palladium
1828.05 | 18
18 | 47
Ag
Silver
1234.93 | 48
Cd
Cadmium
594.22 | 18
18
2 | 49 8 18 18 18 18 18 429.75 | Tin 505.08 | 51 2
Sb 18
Antimony
903.78 | 52
Te
Tellurium
722.88 | 2 53
18 1 lodine
388.85 | 2
8
18
18
7 | Xe
Xenon
181.3 | 2 K
8 L
18 M
18 N
8 O | | 55
Cs 18
Caesium 301.59 | 56 2
Ba 18
Barium 2
1000 | 57–71 | 72 2 8 18 18 32 Hafnium 2 2 5 0 8 | 73
Ta 32
Tantalum 3290 | 74 2
8 W 18
32 Tungsten 2
3695 | 75 8 18 32 Rhenium 2 3459 | 76 8
Os 18
Osmium 14
3306 | 77
Ir
Iridium
2739 | 78
18
32
15
2 Platinum
2041.4 | 18
32
17 | 79 18 29 29 29 29 29 29 29 29 29 29 29 29 29 | 80
Hg
Mercury
234.32 | 18
32
18
2 | 81 2
8 18 32
Thallium 18 32
777 | 82 2 8
Pb 18 32
Lead 4
600.81 | 83 2
8 18 32
Bismuth 5 | PO
Polonium
527 | 85
18
32
At
18
6 Astatine
575 | 18
32 | Rn
Radon
202 | 2 K
8 L
18 M
32 N
18 O
8 P | #### **HHFC Base Material** # Melting Point >2000 K Thermal Conductivity >50 W/mK # Availability, Cost | | 24 2 8 13 1 Chromium 2180 | | |-------------------------------|------------------------------|--| | 41 8
Nb 18
Niobium 2750 | 42 8 18 18 13 Molybden 2898 | | | | 74 2 8 18 32 Tungsten 2 3895 | | # Low/Medium Activation e.g. T_{RC} Tungsten ### **HHFC Alloying Elements (up to 1%)** #### **Melting Point >1300 K** Thermal Conductivity >20 W/mK Cu 47 Ag Silver 1234.93 ### HHF Alloying Elements (up to 1%) #### **Activation** #### **Irradiation** Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft #### What can be done with these elements? **Pure Tungsten** Grain **Tungsten Tungsten** Stabilized Compounds Alloys Tungsten W-(Ni)-Fe (Densimet) W-V W-Ta W-Cu (Elmet) (W-Ag) (W-Mo) Densimet **Potassium** Oxide **Particles** Doping La₂O₃ (e.g. WL10) e.g. WVM → Bulb Wire ZrO₂ CeO₂ (ThO₂) #### **Tungsten Material Production Routes** Sintering & Forming - + Mass Production - + Density - -/+ Specific, anisotropic microstructure Mechanical Alloying & HIP PowderMetallurgy Injection Molding & Sintering/HIP - + Fine Particles - + Homogenous Microstructure - Small Quantities - Porosity - Brittleness? + Real Alloying (-) sometimes expensive (→ EB, Arc, Vacuum, ...) (S)Melting & **Forming** - + Mass Production - + Nearly Finished Products - + Homogenous Microstructure - Porosity - Severe Brittleness Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft #### Where are we today? ### **Important Design Criteria** **Thermal** Conductivity 100 W/mK @ 1200 °C Creep Strength 55 MPa, 20 kh 1200 °C DBTT unnotched 300 °C, unirradiated Recrystallization **Temperature** 1300 °C, for 20 kh #### **Present Situation** #### W-Materials, Rolling Texture #### **RODS** Ø6,9 mm 91% Rolling Ø6,9 mm 91% Rolling Ø6,9 mm 94% Swaging Ø16 mm 91% Rolling Ø20 mm 93% Swaging Ø20 mm 93% Swaging Ø10 mm 81% Rolling Ø7 mm | 91% | Sw+Rol Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft #### **Microstructure** #### WL10 Rod, Ø7 mm #### **Microstructure** in the condition as delivered (by TEM) #### WL10 Rod, Ø7 mm W Rod, Ø7 mm ### **Rods: Fracture Characteristics** Test Temperature, °C ### **Rods: Fracture Characteristics** #### **Transition of Fracture Modes** # brittle -> delamination -> ductile Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft ### **Delamination Fracture in Rods** ## Delamination, Simple Analogy Prediction: Delamination will disappear with flat surfaces! Forschungszentrum Karlsruhe 40 ### **Plate Materials** 91% thickness 3.6 mm thickness 3.6 mm 91% thickness 4 mm thickness 3.6 mm 90% 91% ### **Plate Microstructure** #### **Charpy Tests, Plate Materials** M. Rieth: Tungsten as a structural material for fusion reactors ## Fracture: W & WL10, plates Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft ### Tested at 1000 °C !!! ### **Delamination Fracture in Plates** #### **Important Conclusions for HHFCs** - Plates delaminate at all temperatures - High deformation degree improves D-Delam.-TT - Oxide particles (and K doping) promote delamination - Microcracks (by EDM) promote delamination - Notches, edges, grooves, etc. promote delamination ### In other words: - Use highly deformed W rod material - Produce parts with flat surfaces by milling, sawing, turning (avoid EDM!) Forschungszentrum Karlsruhe # But how to fabricate divertor parts? → J. Reiser et al., FZK #### **Problem of Microstructure Orientation** **Pipe Impact Test** Forschungszentrum Karlsruhe # Summary ### There is no feasible divertor concept (yet) - No match between materials and required properties (ductility, thermal conductivity, recrystallization temperature, strength, compatibility, etc.) - Not even a basic concept with reduced capabilities (change boundary conditions, reduced heat flux, ...) #### There is no structural divertor material (yet) - Eurofer (heat conductivity, thermal expansion, 550°C limit, ...) - SiC_t/SiC (irradiation defects, He prod., joining, 5 MW/m² limit, ...) - Tungsten (ductility/irradiation, spec. fabrication issues) #### **Alternatives/Outlook** - Tungsten alloys, nanostructured and composite materials → ongoing - Tungsten composites → under investigation - Replacement by molybdenum \rightarrow high activation!!! - Liquid wall divertors or something completely different??? Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft ## ... and that's only one reason why fusion is so challenging! for your interest Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft #### **Additional Slides** # **Tungsten Problematic** Question: Is tungsten a brittle material? No! Tungsten is even more brittle! **Answer:** #### **Trans-Crystalline** #### Inter-Crystalline → R. Pippan et al., ÖAW ## **Tungsten Problematic** #### **Trans-Crystalline** #### Inter-Granular # **DBTT** is Strain-Rate Dependent → S. Roberts, J. Murphy, D. Armstrong, Oxford # Influence of the Grain Shape ### **Notches Influence Grain Boundary Fracture**